JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy.
Hum. Mol. Genet.
PUBLISHED: 06-16-2014
Show Abstract
Hide Abstract
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Related JoVE Video
Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy.
Epilepsia
PUBLISHED: 05-30-2014
Show Abstract
Hide Abstract
Rolandic epilepsy (RE) and its atypical variants (atypical rolandic epilepsy, ARE) along the spectrum of epilepsy-aphasia disorders are characterized by a strong but largely unknown genetic basis. Two genes with a putative (ELP4) or a proven (SRPX2) function in neuronal migration were postulated to confer susceptibility to parts of the disease spectrum: the ELP4 gene to centrotemporal spikes and SRPX2 to ARE. To reexamine these findings, we investigated a cohort of 280 patients of European ancestry with RE/ARE for the etiological contribution of these genes and their close interaction partners. We performed next-generation sequencing and single-nucleotide polymorphism (SNP)-array based genotyping to screen for sequence and structural variants. In comparison to European controls we could not detect an enrichment of rare deleterious variants of ELP4, SRPX2, or their interaction partners in affected individuals. The previously described functional p.N327S variant in the X chromosomal SRPX2 gene was detected in two affected individuals (0.81%) and also in controls (0.26%), with some preponderance of male patients. We did not detect an association of SNPs in the ELP4 gene with centrotemporal spikes as previously reported. In conclusion our data do not support a major role of ELP4 and SRPX2 in the etiology of RE/ARE.
Related JoVE Video
DEPDC5 mutations in genetic focal epilepsies of childhood.
Ann. Neurol.
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
Recent studies reported DEPDC5 loss-of-function mutations in different focal epilepsy syndromes. Here we identified 1 predicted truncation and 2 missense mutations in 3 children with rolandic epilepsy (3 of 207). In addition, we identified 3 families with unclassified focal childhood epilepsies carrying predicted truncating DEPDC5 mutations (3 of 82). The detected variants were all novel, inherited, and present in all tested affected (n=11) and in 7 unaffected family members, indicating low penetrance. Our findings extend the phenotypic spectrum associated with mutations in DEPDC5 and suggest that rolandic epilepsy, albeit rarely, and other nonlesional childhood epilepsies are among the associated syndromes.
Related JoVE Video
A genetic polymorphism of the endogenous opioid dynorphin modulates monetary reward anticipation in the corticostriatal loop.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The dynorphin/?-opioid receptor (KOP-R) system has been shown to play a role in different types of behavior regulation, including reward-related behavior and drug craving. It has been shown that alleles with 3 or 4 repeats (HH genotype) of the variable nucleotide tandem repeat (68-bp VNTR) functional polymorphism of the prodynorphin (PDYN) gene are associated with higher levels of dynorphin peptides than alleles with 1 or 2 repeats (LL genotype). We used fMRI on N = 71 prescreened healthy participants to investigate the effect of this polymorphism on cerebral activation in the limbic-corticostriatal loop during reward anticipation. Individuals with the HH genotype showed higher activation than those with the LL genotype in the medial orbitofrontal cortex (mOFC) when anticipating a possible monetary reward. In addition, the HH genotype showed stronger functional coupling (as assessed by effective connectivity analyses) of mOFC with VMPFC, subgenual anterior cingulate cortex, and ventral striatum during reward anticipation. This hints at a larger sensitivity for upcoming rewards in individuals with the HH genotype, resulting in a higher motivation to attain these rewards. These findings provide first evidence in humans that the PDYN polymorphism modulates neural processes associated with the anticipation of rewards, which ultimately may help to explain differences between genotypes with respect to addiction and drug abuse.
Related JoVE Video
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A.
Brain
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures.
Related JoVE Video
Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes.
Nat. Genet.
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Idiopathic focal epilepsy (IFE) with rolandic spikes is the most common childhood epilepsy, comprising a phenotypic spectrum from rolandic epilepsy (also benign epilepsy with centrotemporal spikes, BECTS) to atypical benign partial epilepsy (ABPE), Landau-Kleffner syndrome (LKS) and epileptic encephalopathy with continuous spike and waves during slow-wave sleep (CSWS). The genetic basis is largely unknown. We detected new heterozygous mutations in GRIN2A in 27 of 359 affected individuals from 2 independent cohorts with IFE (7.5%; P = 4.83 × 10(-18), Fishers exact test). Mutations occurred significantly more frequently in the more severe phenotypes, with mutation detection rates ranging from 12/245 (4.9%) in individuals with BECTS to 9/51 (17.6%) in individuals with CSWS (P = 0.009, Cochran-Armitage test for trend). In addition, exon-disrupting microdeletions were found in 3 of 286 individuals (1.0%; P = 0.004, Fishers exact test). These results establish alterations of the gene encoding the NMDA receptor NR2A subunit as a major genetic risk factor for IFE.
Related JoVE Video
Rare exonic deletions of the RBFOX1 gene increase risk of idiopathic generalized epilepsy.
Epilepsia
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Structural variations disrupting the gene encoding the neuron-specific splicing regulator RBFOX1 have been reported in three patients exhibiting epilepsy in comorbidity with other neuropsychiatric disorders. Consistently, the Rbfox1 knockout mouse model showed an increased susceptibility of seizures. The present candidate gene study tested whether exon-disrupting deletions of RBFOX1 increase the risk of idiopathic generalized epilepsies (IGEs), representing the largest group of genetically determined epilepsies.
Related JoVE Video
RBFOX1 and RBFOX3 mutations in rolandic epilepsy.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Partial deletions of the gene encoding the neuronal splicing regulator RBFOX1 have been reported in a range of neurodevelopmental diseases, including idiopathic generalized epilepsy. The RBFOX1 protein and its homologues (RBFOX2 and RBFOX3) regulate alternative splicing of many neuronal transcripts involved in the homeostatic control of neuronal excitability. In this study, we explored if structural microdeletions and exonic sequence variations in RBFOX1, RBFOX2, RBFOX3 confer susceptibility to rolandic epilepsy (RE), a common idiopathic focal childhood epilepsy. By high-density SNP array screening of 289 unrelated RE patients, we identified two hemizygous deletions, a 365?kb deletion affecting two untranslated 5-terminal exons of RBFOX1 and a 43 kb deletion spanning exon 3 of RBFOX3. Exome sequencing of 242 RE patients revealed two novel probably deleterious variants in RBFOX1, a frameshift mutation (p.A233Vfs*74) and a hexanucleotide deletion (p.A299_A300del), and a novel nonsense mutation in RBFOX3 (p.Y287*). Although the three variants were inherited from unaffected parents, they were present in all family members exhibiting the RE trait clinically or electroencephalographically with only one exception. In contrast, no deleterious mutations of RBFOX1 and RBFOX3 were found in the exomes of 6503 non-RE subjects deposited in the Exome Variant Server database. The observed RBFOX3 exon 3 deletion and nonsense mutation suggest that RBFOX3 represents a novel risk factor for RE, indicating that exon deletions and truncating mutations of RBFOX1 and RBFOX3 contribute to the genetic variance of partial and generalized idiopathic epilepsy syndromes.
Related JoVE Video
A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease.
Am. J. Hum. Genet.
PUBLISHED: 05-08-2011
Show Abstract
Hide Abstract
To identify rare causal variants in late-onset Parkinson disease (PD), we investigated an Austrian family with 16 affected individuals by exome sequencing. We found a missense mutation, c.1858G>A (p.Asp620Asn), in the VPS35 gene in all seven affected family members who are alive. By screening additional PD cases, we saw the same variant cosegregating with the disease in an autosomal-dominant mode with high but incomplete penetrance in two further families with five and ten affected members, respectively. The mean age of onset in the affected individuals was 53 years. Genotyping showed that the shared haplotype extends across 65 kilobases around VPS35. Screening the entire VPS35 coding sequence in an additional 860 cases and 1014 controls revealed six further nonsynonymous missense variants. Three were only present in cases, two were only present in controls, and one was present in cases and controls. The familial mutation p.Asp620Asn and a further variant, c.1570C>T (p.Arg524Trp), detected in a sporadic PD case were predicted to be damaging by sequence-based and molecular-dynamics analyses. VPS35 is a component of the retromer complex and mediates retrograde transport between endosomes and the trans-Golgi network, and it has recently been found to be involved in Alzheimer disease.
Related JoVE Video
Functional variant in complement C3 gene promoter and genetic susceptibility to temporal lobe epilepsy and febrile seizures.
PLoS ONE
PUBLISHED: 06-08-2010
Show Abstract
Hide Abstract
Human mesial temporal lobe epilepsies (MTLE) represent the most frequent form of partial epilepsies and are frequently preceded by febrile seizures (FS) in infancy and early childhood. Genetic associations of several complement genes including its central component C3 with disorders of the central nervous system, and the existence of C3 dysregulation in the epilepsies and in the MTLE particularly, make it the C3 gene a good candidate for human MTLE.
Related JoVE Video
Role of LINGO1 polymorphisms in Parkinsons disease.
Mov. Disord.
PUBLISHED: 11-13-2009
Show Abstract
Hide Abstract
A clinical overlap between Parkinsons disease (PD) and essential tremor (ET) has prompted a discussion whether these conditions share common genetic susceptibility factors. Recently, the first genome-wide association study in ET revealed a significant association with a variant in the LINGO1 gene. LINGO1 has also been demonstrated to play a role in the survival of dopaminergic neurons in an animal model of PD, and therefore constitutes a potential candidate gene for PD. In this study, SNPs rs9652490, rs11856808, and rs7177008 of LINGO1 were genotyped in a total of 694 Austrian subjects (349 PD, 345 controls). No association could be found between genotype or allele counts and PD. Neither did a subgroup analysis in tremor-dominant patients with PD reveal a significant association. This study on LINGO1-variants in PD argues against a major role of LINGO1 gene variations for PD.
Related JoVE Video
Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies.
Brain
PUBLISHED: 10-20-2009
Show Abstract
Hide Abstract
Idiopathic generalized epilepsies account for 30% of all epilepsies. Despite a predominant genetic aetiology, the genetic factors predisposing to idiopathic generalized epilepsies remain elusive. Studies of structural genomic variations have revealed a significant excess of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 in various neuropsychiatric disorders including autism, intellectual disability and schizophrenia. Microdeletions at 15q13.3 have recently been shown to constitute a strong genetic risk factor for common idiopathic generalized epilepsy syndromes, implicating that other recurrent microdeletions may also be involved in epileptogenesis. This study aimed to investigate the impact of five microdeletions at the genomic hotspot regions 1q21.1, 15q11.2, 16p11.2, 16p13.11 and 22q11.2 on the genetic risk to common idiopathic generalized epilepsy syndromes. The candidate microdeletions were assessed by high-density single nucleotide polymorphism arrays in 1234 patients with idiopathic generalized epilepsy from North-western Europe and 3022 controls from the German population. Microdeletions were validated by quantitative polymerase chain reaction and their breakpoints refined by array comparative genomic hybridization. In total, 22 patients with idiopathic generalized epilepsy (1.8%) carried one of the five novel microdeletions compared with nine controls (0.3%) (odds ratio = 6.1; 95% confidence interval 2.8-13.2; chi(2) = 26.7; 1 degree of freedom; P = 2.4 x 10(-7)). Microdeletions were observed at 1q21.1 [Idiopathic generalized epilepsy (IGE)/control: 1/1], 15q11.2 (IGE/control: 12/6), 16p11.2 IGE/control: 1/0, 16p13.11 (IGE/control: 6/2) and 22q11.2 (IGE/control: 2/0). Significant associations with IGEs were found for the microdeletions at 15q11.2 (odds ratio = 4.9; 95% confidence interval 1.8-13.2; P = 4.2 x 10(-4)) and 16p13.11 (odds ratio = 7.4; 95% confidence interval 1.3-74.7; P = 0.009). Including nine patients with idiopathic generalized epilepsy in this cohort with known 15q13.3 microdeletions (IGE/control: 9/0), parental transmission could be examined in 14 families. While 10 microdeletions were inherited (seven maternal and three paternal transmissions), four microdeletions occurred de novo at 15q13.3 (n = 1), 16p13.11 (n = 2) and 22q11.2 (n = 1). Eight of the transmitting parents were clinically unaffected, suggesting that the microdeletion itself is not sufficient to cause the epilepsy phenotype. Although the microdeletions investigated are individually rare (<1%) in patients with idiopathic generalized epilepsy, they collectively seem to account for a significant fraction of the genetic variance in common idiopathic generalized epilepsy syndromes. The present results indicate an involvement of microdeletions at 15q11.2 and 16p13.11 in epileptogenesis and strengthen the evidence that recurrent microdeletions at 15q11.2, 15q13.3 and 16p13.11 confer a pleiotropic susceptibility effect to a broad range of neuropsychiatric disorders.
Related JoVE Video
Dynamic up-regulation of prodynorphin transcription in temporal lobe epilepsy.
Hippocampus
PUBLISHED: 05-14-2009
Show Abstract
Hide Abstract
Dynorphin neuropeptides are believed to act as endogenous anticonvulsants, though direct evidence for such a role in humans is sparse. We now report pronounced increases of prodynorphin mRNA expression in the dentate gyrus of patients with temporal lobe epilepsy in comparison to controls. We detected a conspicuously right skewed, bimodal distribution of mRNA levels among patients, suggestive of a dynamic up-regulation of prodynorphin expression in epilepsy. Highest transcript levels were seen postictally. Our data argue for an essential role of dynorphin in the termination of seizures.
Related JoVE Video
The clinical impact of pharmacogenetics on the treatment of epilepsy.
Epilepsia
PUBLISHED: 02-06-2009
Show Abstract
Hide Abstract
Drug treatment of epilepsy is characterized by unpredictability of efficacy, adverse drug reactions, and optimal doses in individual patients, which, at least in part, is a consequence of genetic variation. Since genetic variability in drug metabolism was reported to affect the treatment with phenytoin more than 25 years ago, the ultimate goal of pharmacogenetics is to use the genetic makeup of an individual to predict drug response and efficacy, as well as potential adverse drug events. However, determining the practical relevance of pharmacogenetic variants remains difficult, in part because of problems with study design and replication. This article reviews the published work with particular emphasis on pharmacogenetic alterations that may affect efficacy, tolerability, and safety of antiepileptic drugs (AEDs), including variation in genes encoding drug target (SCN1A), drug transport (ABCB1), drug metabolizing (CYP2C9, CYP2C19), and human leucocyte antigen (HLA) proteins. Although the current studies associating particular genes and their variants with seizure control or adverse events have inherent weaknesses and have not provided unifying conclusions, several results, for example that Asian patients with a particular HLA allele, HLA-B*1502, are at a higher risk for Stevens-Johnson syndrome when using carbamazepine, are helpful to increase our knowledge how genetic variation affects the treatment of epilepsy. Although genetic testing raises ethical and social issues, a better understanding of the genetic influences on epilepsy outcome is key to developing the much needed new therapeutic strategies for individuals with epilepsy.
Related JoVE Video
Genetic structure of Europeans: a view from the North-East.
PLoS ONE
PUBLISHED: 01-29-2009
Show Abstract
Hide Abstract
Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (lambda) (ranging from 1.00 to 4.21), fixation index (F(st)) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).
Related JoVE Video
From eugenic euthanasia to habilitation of "disabled children: Andreas Retts contribution.
J. Child Neurol.
PUBLISHED: 01-27-2009
Show Abstract
Hide Abstract
Although the name of Andreas Rett is familiar to many from his eponymous neurogenetic syndrome, his other achievements involving the care of disabled children deserve special attention. His tireless advocacy helped to bring fundamental changes in the medical and societal attitude toward disabled individuals in a city that had recently seen more than 7500 disabled children and inmates of psychiatric hospitals actively euthanized by National Socialist (Nazi) decree. Most notably, this study demonstrates the remarkable changes that can be achieved single-handedly by a vocal and energetic physician. Yet at the same time, several instances are recorded in which Rett appeared to prioritize his own professional advancement at the expense of truthful disclosure of his own past, as well as that of some of his close associates. Dr Retts professional life and contributions, now 10 years after his death, presents a compelling object lesson for neurologists and others involved in the care of the disabled.
Related JoVE Video
15q13.3 microdeletions increase risk of idiopathic generalized epilepsy.
Nat. Genet.
PUBLISHED: 01-11-2009
Show Abstract
Hide Abstract
We identified 15q13.3 microdeletions encompassing the CHRNA7 gene in 12 of 1,223 individuals with idiopathic generalized epilepsy (IGE), which were not detected in 3,699 controls (joint P = 5.32 x 10(-8)). Most deletion carriers showed common IGE syndromes without other features previously associated with 15q13.3 microdeletions, such as intellectual disability, autism or schizophrenia. Our results indicate that 15q13.3 microdeletions constitute the most prevalent risk factor for common epilepsies identified to date.
Related JoVE Video
Genetic characterization of northeastern Italian population isolates in the context of broader European genetic diversity.
Eur. J. Hum. Genet.
Show Abstract
Hide Abstract
Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the countrys complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate.
Related JoVE Video
Epidemiology of myasthenia gravis in Austria: rising prevalence in an ageing society.
Wien. Klin. Wochenschr.
Show Abstract
Hide Abstract
The purpose of this study was to investigate recent epidemiological trends of myasthenia gravis (MG) in Austria.
Related JoVE Video
Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32.
, Michael Steffens, Costin Leu, Ann-Kathrin Ruppert, Federico Zara, Pasquale Striano, Angela Robbiano, Giuseppe Capovilla, Paolo Tinuper, Antonio Gambardella, Amedeo Bianchi, Angela la Neve, Giovanni Crichiutti, Carolien G F de Kovel, Dorothée Kasteleijn-Nolst Trenité, Gerrit-Jan de Haan, Dick Lindhout, Verena Gaus, Bettina Schmitz, Dieter Janz, Yvonne G Weber, Felicitas Becker, Holger Lerche, Bernhard J Steinhoff, Ailing A Kleefuss-Lie, Wolfram S Kunz, Rainer Surges, Christian E Elger, Hiltrud Muhle, Sarah von Spiczak, Philipp Ostertag, Ingo Helbig, Ulrich Stephani, Rikke S Møller, Helle Hjalgrim, Leanne M Dibbens, Susannah Bellows, Karen Oliver, Saul Mullen, Ingrid E Scheffer, Samuel F Berkovic, Kate V Everett, Mark R Gardiner, Carla Marini, Renzo Guerrini, Anna-Elina Lehesjoki, Auli Sirén, Michel Guipponi, Alain Malafosse, Pierre Thomas, Rima Nabbout, Stephanie Baulac, Eric Leguern, Rosa Guerrero, José M Serratosa, Philipp S Reif, Felix Rosenow, Martina Mörzinger, Martha Feucht, Fritz Zimprich, Claudia Kapser, Christoph J Schankin, Arvid Suls, Katrin Smets, Peter De Jonghe, Albena Jordanova, Hande Cağlayan, Zuhal Yapici, Destina A Yalcin, Betul Baykan, Nerses Bebek, Ugur Ozbek, Christian Gieger, Heinz-Erich Wichmann, Tobias Balschun, David Ellinghaus, Andre Franke, Christian Meesters, Tim Becker, Thomas F Wienker, Anne Hempelmann, Herbert Schulz, Franz Rüschendorf, Markus Leber, Steffen M Pauck, Holger Trucks, Mohammad R Toliat, Peter Nürnberg, Giuliano Avanzini, Bobby P C Koeleman, Thomas Sander.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.
Related JoVE Video
The receptor for advanced glycation endproducts and its ligands in patients with myasthenia gravis.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Myasthenia gravis (MG) is a T- and B-cell mediated autoimmune disorder affecting the neuromuscular junction. The receptor for advanced glycation endproducts (RAGE) plays a role in the amplification of chronic inflammatory disorders and autoimmune diseases. We sought to investigate the role of RAGE and its ligands in the pathophysiology of MG.
Related JoVE Video
Lack of association between ABCC2 gene variants and treatment response in epilepsy.
Pharmacogenomics
Show Abstract
Hide Abstract
The aim of this study was to replicate a previously reported association between drug resistance in epilepsy patients and the 24C>T variant of the ABCC2 gene that codes for the drug efflux transporter MRP2.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.