JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
AUTOLOGOUS FAT GRAFTING IN THE TREATMENT OF FIBROTIC PERIORAL CHANGES IN PATIENTS WITH SYSTEMIC SCLEROSIS.
Cell Transplant
PUBLISHED: 10-22-2013
Show Abstract
Hide Abstract
Background: Autologous fat tissue grafting (AFTG) has been successfully used in the treatment of different sclerotic conditions, including localised scleroderma. Patients with advanced systemic sclerosis (SSc)-related perioral thickening and mouth opening limitation are candidates to this therapeutic approach. Aims: AFTG of the lips was performed to improve mouth opening in patients with SSc. Materials and Methods: We enrolled in the study 20 patients with diffuse SSc, (median age 35 ±15 years and 11±10 years of disease duration). Two-ml fractions of autologous fat drawn from trochanteric or peri-umbelical areas were injected in 8 different sites around the mouth. Baseline and after treatment mouth opening changes were assessed by measuring inter-incisal distance and oral perimeter, while skin hardness was tested by digital durometer. Pre- and post-treatment modifications of microvascular architecture were assessed by counting capillaries in the inferior lip videocapillaroscopy (VC) images, and by scoring the microvascular density (MVD) in anti-CD34/CD31 immuno-histochemical (IH) stained perioral skin biopsy sections. Similarly, histological sections were examined to evaluate dermo-epidermic junction (DEJ) modifications. Results: Three months after treatment, both the inter-incisal distance and oral perimeter significantly increased (p <0.001). At the same time, a significant skin neovascularization became evident, both considering the VC images (p <0.001) and MVD scores in IH sections (p <0.0001). Finally, some skin histological aspects also improved, as shown by the significant changes in DEJ flattening scores (p <0.0001). Conclusions: The present study suggests that, in patients with SSc, AFTG can improve mouth opening and function, induce a neovascularization, and partially restore the skin structure.
Related JoVE Video
Endogenous neuroprotection: hamartin modulates an austere approach to staying alive in a recession.
Int J Stroke
PUBLISHED: 07-25-2013
Show Abstract
Hide Abstract
Tuberous sclerosis complex 1 (hamartin) is an effective endogenous neuroprotectant. Understanding the endogenous mechanism for neuroprotection mediated by hamartin may afford a novel approach to effective treatment of neurological diseases such as stroke, neurodegenerative diseases, and epilepsy, with possible applications to nonneurological conditions.
Related JoVE Video
Prolonged lifespan with enhanced exploratory behavior in mice overexpressing the oxidized nucleoside triphosphatase hMTH1.
Aging Cell
PUBLISHED: 04-21-2013
Show Abstract
Hide Abstract
The contribution that oxidative damage to DNA and/or RNA makes to the aging process remains undefined. In this study, we used the hMTH1-Tg mouse model to investigate how oxidative damage to nucleic acids affects aging. hMTH1-Tg mice express high levels of the hMTH1 hydrolase that degrades 8-oxodGTP and 8-oxoGTP and excludes 8-oxoguanine from both DNA and RNA. Compared to wild-type animals, hMTH1-overexpressing mice have significantly lower steady-state levels of 8-oxoguanine in both nuclear and mitochondrial DNA of several organs, including the brain. hMTH1 overexpression prevents the age-dependent accumulation of DNA 8-oxoguanine that occurs in wild-type mice. These lower levels of oxidized guanines are associated with increased longevity and hMTH1-Tg animals live significantly longer than their wild-type littermates. Neither lipid oxidation nor overall antioxidant status is significantly affected by hMTH1 overexpression. At the cellular level, neurospheres derived from adult hMTH1-Tg neural progenitor cells display increased proliferative capacity and primary fibroblasts from hMTH1-Tg embryos do not undergo overt senescence in vitro. The significantly lower levels of oxidized DNA/RNA in transgenic animals are associated with behavioral changes. These mice show reduced anxiety and enhanced investigation of environmental and social cues. Longevity conferred by overexpression of a single nucleotide hydrolase in hMTH1-Tg animals is an example of lifespan extension associated with healthy aging. It provides a link between aging and oxidative damage to nucleic acids.
Related JoVE Video
Relationship between seasonal weather changes, risk of dehydration, and incidence of severe bradyarrhythmias requiring urgent temporary transvenous cardiac pacing in an elderly population.
Int J Biometeorol
PUBLISHED: 04-12-2013
Show Abstract
Hide Abstract
There is little information on any seasonal variations or meteorological factors associated with symptomatic bradyarrhythmias requiring cardiac pacing. The aim of this single-center study was to investigate the seasonal distribution of the incidence of severe, life-threatening bradyarrhythmias requiring urgent temporary transvenous cardiac pacing in an elderly population. Consecutive patients who underwent urgent temporary transvenous cardiac pacing between 2007 and 2012 were enrolled. The baseline characteristics of the patients and some meteorological parameters, including the calculation the daily heat index (HI), were recorded. During the study period, 79 consecutive patients (mean age 82?±?8 years, 41 % male) underwent urgent temporary transvenous cardiac pacing, mainly for third-degree atrioventricular block (79 %). The incidence of bradyarrhythmias was significantly higher in summer than in the other seasons (P??90 °F for >3 h per day for at least 10 days (P?
Related JoVE Video
Rare variants in the CYP27B1 gene are associated with multiple sclerosis.
Ann. Neurol.
PUBLISHED: 12-23-2011
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex neurological disease. Genetic linkage analysis and genotyping of candidate genes in families with 4 or more affected individuals more heavily loaded for susceptibility genes has not fully explained familial disease clustering.
Related JoVE Video
Ha-Ras stabilization mediates pro-fibrotic signals in dermal fibroblasts.
Fibrogenesis Tissue Repair
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
Scleroderma (systemic sclerosis; SSc) is a clinically heterogeneous and often lethal acquired disorder of the connective tissue that is characterized by vascular, immune/inflammatory and fibrotic manifestations. Tissue fibrosis is the main cause of morbidity and mortality in SSc and an unmet medical challenge, mostly because of our limited understanding of the molecular factors and signalling events that trigger and sustain disease progression. Recent evidence has correlated skin fibrosis in SSc with stabilization of proto-oncogene Ha-Ras secondary to auto-antibody stimulation of reactive oxygen species production. The goal of the present study was to explore the molecular connection between Ha-Ras stabilization and collagen I production, the main read-out of fibrogenesis, in a primary dermal fibroblast culture system that replicates the early stages of disease progression in SSc.
Related JoVE Video
Heterogeneity in multiple sclerosis: scratching the surface of a complex disease.
Autoimmune Dis
PUBLISHED: 09-08-2010
Show Abstract
Hide Abstract
Multiple Sclerosis (MS) is the most common demyelinating disease of the central nervous system. Although the etiology and the pathogenesis of MS has been extensively investigated, no single pathway, reliable biomarker, diagnostic test, or specific treatment have yet been identified for all MS patients. One of the reasons behind this failure is likely to be the wide heterogeneity observed within the MS population. The clinical course of MS is highly variable and includes several subcategories and variants. Moreover, apart from the well-established association with the HLA-class II DRB1*15:01 allele, other genetic variants have been shown to vary significantly across different populations and individuals. Finally both pathological and immunological studies suggest that different pathways may be active in different MS patients. We conclude that these "MS subtypes" should still be considered as part of the same disease but hypothesize that spatiotemporal effects of genetic and environmental agents differentially influence MS course. These considerations are extremely relevant, as outcome prediction and personalised medicine represent the central aim of modern research.
Related JoVE Video
Oxidized purine nucleotides, genome instability and neurodegeneration.
Mutat. Res.
PUBLISHED: 06-03-2010
Show Abstract
Hide Abstract
Oxidative DNA damage can be the consequence of endogenous metabolic processes and exogenous insults and several DNA repair enzymes provide protection against the toxic effects of oxidized DNA bases. Here we review the increasing knowledge on the relationship between an oxidized dNTPs pool and genome instability. The review also describes some important progress toward understanding the role of oxidative DNA damage and its repair in neurodegenerative diseases. In particular the hMTH1 hydrolase destroys oxidized nucleic acid precursors to prevent their harmful incorporation into DNA and RNA. Based on results obtained in our transgenic mouse overexpressing hMTH1 in the brain we discussed the mechanisms by which this hydrolase protects against neurodegeneration in Huntington disease models.
Related JoVE Video
The Mutyh base excision repair gene influences the inflammatory response in a mouse model of ulcerative colitis.
PLoS ONE
PUBLISHED: 05-14-2010
Show Abstract
Hide Abstract
The Mutyh DNA glycosylase is involved in the repair of oxidized DNA bases. Mutations in the human MUTYH gene are responsible for colorectal cancer in familial adenomatous polyposis. Since defective DNA repair genes might contribute to the increased cancer risk associated with inflammatory bowel diseases, we compared the inflammatory response of wild-type and Mutyh(-/-) mice to oxidative stress.
Related JoVE Video
No evidence for an effect of DNA methylation on multiple sclerosis severity at HLA-DRB1*15 or HLA-DRB5.
J. Neuroimmunol.
PUBLISHED: 01-16-2010
Show Abstract
Hide Abstract
Multiple sclerosis (MS) is a complex neurological disease with huge variability in disease outcome. The majority of MS genetic susceptibility is determined by major histocompatibility complex (MHC) alleles, in particular haplotypes carrying HLA-DRB1*1501. HLA-DRB1*1501 also affects the clinical outcome of the disease and animal research has suggested that HLA-DRB5 interacts with HLA-DRB1*1501 to influence disease severity. We used an extremes-of-outcome design with 48 benign and 20 malignant MS patients to assess whether or not DNA methylation at HLA-DRB1*1501 and/or HLA-DRB5 also contributes to MS phenotypic heterogeneity. We found no significant effect of DNA methylation across HLA-DRB1*1501 and HLA-DRB5 on severity, although we cannot rule out time- or tissue-specific effects of DNA methylation.
Related JoVE Video
Assessment of in vivo genotoxicity of the rodent carcinogen furan: evaluation of DNA damage and induction of micronuclei in mouse splenocytes.
Mutagenesis
PUBLISHED: 10-22-2009
Show Abstract
Hide Abstract
In recent years, several surveys have highlighted the presence of the rodent carcinogen furan in a variety of food items. Even though the evidence of carcinogenicity of furan is unequivocal, the underlying mechanism has not been fully elucidated. In particular, the role of genotoxicity in furan carcinogenicity is still not clear, even though this information is considered pivotal for the assessment of the risk posed by the presence of low doses of furan in food. In this work, the genotoxic potential of furan in vivo has been investigated in mice, under exposure conditions similar to those associated with cancer onset in the National Toxicology Program long-term bioassay. To this aim, male B6C3F1 mice were treated by gavage for 4 weeks with 2, 4, 8 and 15 mg furan/kg b.w./day. Spleen was selected as the target organ for genotoxicity assessment, in view of the capability of quiescent splenocytes to accumulate DNA damage induced by repeat dose exposure. The induction of primary DNA damage in splenocytes was evaluated by alkaline single-cell gel electrophoresis (comet assay) and by the immunofluorescence detection of foci of phosphorylated histone H2AX (gamma-H2AX). The presence of cross-links was probed in a modified comet assay, in which cells were irradiated in vitro with gamma-rays before electrophoresis. Chromosome damage was quantitated through the detection of micronuclei in mitogen-stimulated splenocytes using the cytokinesis-block method. Micronucleus induction was also assessed with a modified protocol, using the repair inhibitor 1-beta-arabinofuranosyl-cytosine to convert single-strand breaks in micronuclei. The results obtained show a significant (P < 0.01) increase of gamma-H2AX foci in mitogen-stimulated splenocytes of mice treated with 8 and 15 mg furan/kg b.w. and a statistically significant (P < 0.001) increases of micronuclei in binucleated splenocytes cultured in vitro. Conversely, no effect of in vivo exposure to furan was observed when freshly isolated quiescent splenocytes were analysed by immunofluorescence and in comet assays, both with standard and radiation-modified protocols. These results indicate that the in vivo exposure to furan gives rise to pre-mutagenic DNA damage in resting splenocytes, which remains undetectable until it is converted in frank lesions during the S-phase upon mitogen stimulation. The resulting DNA strand breaks are visualized by the increase in gamma-H2AX foci and may originate micronuclei at the subsequent mitosis.
Related JoVE Video
Notch3 and pTalpha/pre-TCR sustain the in vivo function of naturally occurring regulatory T cells.
Int. Immunol.
PUBLISHED: 05-21-2009
Show Abstract
Hide Abstract
Dysregulated generation and/or function of naturally occurring CD4(+)CD25(+) regulatory T cells (T(reg)s) play key role in the development of autoimmune diseases, including type 1 diabetes. Recent findings suggest that Notch3 signaling activation promotes thymic generation and peripheral expansion and in vivo function of naturally occurring T(reg)s, thus preventing autoimmune diabetes progression in mouse models. However, the mechanisms underlying these effects have remained elusive, thus far. Here, we show that the expression of pTalpha gene is up-regulated in naturally occurring T(reg)s, at both mRNA and protein levels. Moreover, by using double mutant mice, with T cell-targeted constitutive activation of Notch3 in a pTalpha(-/-) background, we demonstrate that pTalpha deletion significantly counteracts the Notch3-dependent expansion, the increased FoxP3 expression and the enhanced in vitro activity of naturally occurring T(reg)s. Notably, the absence of pTalpha also impairs the Notch3-dependent protection against experimentally induced autoimmune diabetes. Finally, by adoptive cell transfer experiments, we demonstrated that this failure is directly related to the impaired in vivo function of naturally occurring T(reg)s bearing pTalpha deletion. Collectively, our data suggest that pTalpha expression is required for the in vivo function of naturally occurring T(reg)s and that the activation of Notch3 signaling may positively regulate the function of this population, through the pTalpha/pre-T cell receptor pathway.
Related JoVE Video
Role of MUTYH and MSH2 in the control of oxidative DNA damage, genetic instability, and tumorigenesis.
Cancer Res.
PUBLISHED: 05-12-2009
Show Abstract
Hide Abstract
Mismatch repair is the major pathway controlling genetic stability by removing mispairs caused by faulty replication and/or mismatches containing oxidized bases. Thus, inactivation of the Msh2 mismatch repair gene is associated with a mutator phenotype and increased cancer susceptibility. The base excision repair gene Mutyh is also involved in the maintenance of genomic integrity by repairing premutagenic lesions induced by oxidative DNA damage. Because evidence in bacteria suggested that Msh2 and Mutyh repair factors might have some overlapping functions, we investigated the biological consequences of their single and double inactivation in vitro and in vivo. Msh2(-/-) mouse embryo fibroblasts (MEF) showed a strong mutator phenotype at the hprt gene, whereas Mutyh inactivation was associated with a milder phenotype (2.9 x 10(-6) and 3.3 x 10(-7) mutation/cell/generation, respectively). The value of 2.7 x 10(-6) mutation/cell/generation in Msh2(-/-)Mutyh(-/-) MEFs did not differ significantly from Msh2(-/-) cells. When steady-state levels of DNA 8-oxo-7,8-dihydroguanine (8-oxoG) were measured in MEFs of different genotypes, single gene inactivation resulted in increases similar to those observed in doubly defective cells. In contrast, a synergistic accumulation of 8-oxoG was observed in several organs of Msh2(-/-)Mutyh(-/-) animals, suggesting that in vivo Msh2 and Mutyh provide separate repair functions and contribute independently to the control of oxidative DNA damage. Finally, a strong delay in lymphomagenesis was observed in Msh2(-/-)Mutyh(-/-) when compared with Msh2(-/-) animals. The immunophenotype of these tumors indicate that both genotypes develop B-cell lymphoblastic lymphomas displaying microsatellite instability. This suggests that a large fraction of the cancer-prone phenotype of Msh2(-/-) mice depends on Mutyh activity.
Related JoVE Video
hMTH1 expression protects mitochondria from Huntingtons disease-like impairment.
Neurobiol. Dis.
Show Abstract
Hide Abstract
Huntington disease (HD) is a neurodegenerative disease caused by expansion of CAG repeats in the huntingtin (Htt) gene. The expression of hMTH1, the human hydrolase that degrades oxidized purine nucleoside triphosphates, grants protection in a chemical HD mouse model in which HD-like features are induced by the mitochondrial toxin 3-nitropropionic acid (3-NP). To further examine the relationship between oxidized dNTPs and HD-like neurodegeneration, we studied the effects of hMTH1 expression in a genetic cellular model for HD, such as striatal cells expressing mutant htt (Hdh(Q111)). hMTH1 expression protected these cells from 3-NP and H(2)O(2)-induced killing, by counteracting the mutant htt-dependent increased vulnerability and accumulation of nuclear and mitochondrial DNA 8-hydroxyguanine levels. hMTH1 expression reverted the decreased mitochondrial membrane potential characteristic of Hdh(Q111) cells and delayed the increase in mitochondrial reactive oxygen species associated with 3-NP treatment. Further indications of hMTH1-mediated mitochondrial protection are the partial reversion of 3-NP-induced alterations in mitochondrial morphology and the modulation of DRP1 and MFN1 proteins, which control fusion/fission rates of mitochondria. Finally, in line with the in vitro findings, upon 3-NP in vivo treatment, 8-hydroxyguanine levels in mitochondrial DNA from heart, muscle and brain are significantly lower in transgenic hMTH1-expressing mice than in wild-type animals.
Related JoVE Video
MutT homolog-1 attenuates oxidative DNA damage and delays photoreceptor cell death in inherited retinal degeneration.
Am. J. Pathol.
Show Abstract
Hide Abstract
Retinitis pigmentosa (RP) is a genetically heterogenous group of inherited retinal degenerative diseases resulting from photoreceptor cell death and affecting >1 million persons globally. Although oxidative stress has been implicated in the pathogenesis of RP, the mechanisms by which oxidative stress mediates photoreceptor cell death are largely unknown. Here, we show that oxidation of nucleic acids is a key component in the initiation of death-signaling pathways in rd10 mice, a model of RP. Accumulation of 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxo-dG) increased in photoreceptor cells, and especially within their nuclei, in rd10 mice as well as in Royal College of Surgeons rats, another model of RP caused by different genetic mutations. Vitreous samples from humans with RP contained higher levels of 8-oxo-dG excreted than samples from nondegenerative controls. Transgenic overexpression of human MutT homolog-1, which hydrolyzes oxidized purine nucleoside triphosphates in the nucleotide pool, significantly attenuated 8-oxo-dG accumulation in nuclear DNA and photoreceptor cell death in rd10 mice, in addition to suppressing DNA single-strand break formation, poly(ADP-ribose) polymerase activation, and nuclear translocation of apoptosis-inducing factor. These findings indicate that oxidative DNA damage is an important process for the triggering of photoreceptor cell death in rd10 mice and suggest that stimulation of DNA repair enzymes may be a novel therapeutic approach to attenuate photoreceptor cell loss in RP.
Related JoVE Video
Exome sequencing identifies a novel multiple sclerosis susceptibility variant in the TYK2 gene.
Neurology
Show Abstract
Hide Abstract
To identify rare variants contributing to multiple sclerosis (MS) susceptibility in a family we have previously reported with up to 15 individuals affected across 4 generations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.