JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A mutation in the CASQ1 gene causes a vacuolar myopathy with accumulation of sarcoplasmic reticulum protein aggregates.
Hum. Mutat.
PUBLISHED: 09-10-2014
Show Abstract
Hide Abstract
A missense mutation in the calsequestrin-1 gene (CASQ1) was found in a group of patients with a myopathy characterized by weakness, fatigue, and the presence of large vacuoles containing characteristic inclusions resulting from the aggregation of sarcoplasmic reticulum (SR) proteins. The mutation affects a conserved aspartic acid in position 244 (p.Asp244Gly) located in one of the high-affinity Ca(2+) -binding sites of CASQ1 and alters the kinetics of Ca(2+) release in muscle fibers. Expression of the mutated CASQ1 protein in COS-7 cells showed a markedly reduced ability in forming elongated polymers, whereas both in cultured myotubes and in in vivo mouse fibers induced the formation of electron-dense SR vacuoles containing aggregates of the mutant CASQ1 protein that resemble those observed in muscle biopsies of patients. Altogether, these results support the view that a single missense mutation in the CASQ1 gene causes the formation of abnormal SR vacuoles containing aggregates of CASQ1, and other SR proteins, results in altered Ca(2+) release in skeletal muscle fibers, and, hence, is responsible for the clinical phenotype observed in these patients.
Related JoVE Video
Polymyositis in solid organ transplant recipients receiving tacrolimus.
J. Neurol. Sci.
PUBLISHED: 08-06-2014
Show Abstract
Hide Abstract
Tacrolimus, also known as FK506, is an immunosuppressive agent widely used for the prevention of acute allograft rejection in organ transplantation and for the treatment of immunological diseases. This study reports two male patients who underwent solid organ transplantation (liver and kidney). After transplant, the patients received continuous immunosuppressive therapy with oral tacrolimus and later presented clinical manifestations and laboratory signs of myopathy. Muscle biopsies of both patients clearly documented an inflammatory myopathy with the histological features of polymyositis including CD8+ T cells which invaded healthy muscle fibers and expressed granzyme B and perforin, many CD68+ macrophages and MHC class I antigen upregulation on the surface of most fibers. Because of the temporal association while receiving tacrolimus and since other possible causes for myopathy were excluded, the most likely cause of polymyositis in our patients was tacrolimus toxicity. We suggest that patients on tacrolimus should be carefully monitored for serum CK levels and clinical signs of muscle disease.
Related JoVE Video
Differential regulation of TNF receptors in maternal leukocytes is associated with severe preterm preeclampsia.
J. Matern. Fetal. Neonatal. Med.
PUBLISHED: 07-19-2014
Show Abstract
Hide Abstract
Abstract We tested the hypothesis that maternal peripheral blood leukocytes contribute to elevated levels of soluble TNF receptors (sTNFR) in preeclampsia (PE) with concomitant intrauterine growth restriction (IUGR). TNFR1 and TNFR2 were evaluated in a cross-sectional study comparing preeclamptic (n?=?15) with or without IUGR versus normotensive pregnant women (PREG, n?=?30), and non-pregnant controls (Con; n?=?20). Plasma levels of sTNFR1 were higher in PE (1675.0?±?227.1?pg/mL) compared with PREG (1035.0?±?101.1?pg/mL) and Con (589.3?±?82.67?pg/mL), with the highest values observed in PE with IUGR (2624.0?±?421.4?pg/mL; n?=?6). Plasma sTNFR2 was higher during pregnancy (PE: 1836.0?±?198.7?pg/mL; PREG: 1697.0?±?95.0?pg/mL) compared with Con (598.3?±?82.7?pg/mL). Urinary levels of sTNFR1 and sTNFR2 were higher in PE and PREG compared with the Con group. Abundance of TNFR1 mRNA in peripheral blood leukocytes was strongly correlated with plasma levels of sTNFR1 in PE. However, TNFR2 mRNA accumulation in leukocytes did not correlate with sTNFR2 plasma levels. The level of sTNFR1 in plasma was correlated with body weight of the newborn (r?=?-0.56). The data suggest that maternal leukocytes contribute to sTNFR1 levels in plasma in association with decreasing newborn weight and PE with concomitant IUGR.
Related JoVE Video
Autophagy, inflammation and innate immunity in inflammatory myopathies.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Autophagy has a large range of physiological functions and its dysregulation contributes to several human disorders, including autoinflammatory/autoimmune diseases such as inflammatory myopathies (IIMs). In order to better understand the pathogenetic mechanisms of these muscular disorders, we sought to define the role of autophagic processes and their relation with the innate immune system in the three main subtypes of IIM, specifically sporadic inclusion body myositis (sIBM), polymyositis (PM), dermatomyositis (DM) and juvenile dermatomyositis (JDM). We found that although the mRNA transcript levels of the autophagy-related genes BECN1, ATG5 and FBXO32 were similar in IIM and controls, autophagy activation in all IIM subgroups was suggested by immunoblotting results and confirmed by immunofluorescence. TLR4 and TLR3, two potent inducers of autophagy, were highly increased in IIM, with TLR4 transcripts significantly more expressed in PM and DM than in JDM, sIBM and controls, and TLR3 transcripts highly up-regulated in all IIM subgroups compared to controls. Co-localization between autophagic marker, LC3, and TLR4 and TLR3 was observed not only in sIBM but also in PM, DM and JDM muscle tissues. Furthermore, a highly association with the autophagic processes was observed in all IIM subgroups also for some TLR4 ligands, endogenous and bacterial HSP60, other than the high-mobility group box 1 (HMGB1). These findings indicate that autophagic processes are active not only in sIBM but also in PM, DM and JDM, probably in response to an exogenous or endogenous 'danger signal'. However, autophagic activation and regulation, and also interaction with the innate immune system, differ in each type of IIM. Better understanding of these differences may lead to new therapies for the different IIM types.
Related JoVE Video
SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers.
Mol. Genet. Metab.
PUBLISHED: 06-10-2013
Show Abstract
Hide Abstract
Brody disease is an inherited myopathy associated with a defective function of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase 1 (SERCA1) protein. Mutations in the ATP2A1 gene have been reported only in some patients. Therefore it has been proposed to distinguish patients with ATP2A1 mutations, Brody disease (BD), from patients without mutations, Brody syndrome (BS). We performed a detailed study of SERCA1 protein expression in muscle of patients with BD and BS, and evaluated the alternative splicing of SERCA1 in primary cultures of normal human muscle and in infant muscle. SERCA1 reactivity was observed in type 2 muscle fibers of patients with and without ATP2A1 mutations and staining intensity was similar in patients and controls. Immunoblot analysis showed a significant reduction of SERCA1 band in muscle of BD patients. In addition we demonstrated that the wild type and mutated protein exhibits similar solubility properties and that RIPA buffer improves the recovery of the wild type and mutated SERCA1 protein. We found that SERCA1b, the SERCA1 neonatal form, is the main protein isoform expressed in cultured human muscle fibers and infant muscle. Finally, we identified two novel heterozygous mutations within exon 3 of the ATP2A1 gene from a previously described patient with BD.
Related JoVE Video
Pisa syndrome in Parkinsons disease: an electrophysiological and imaging study.
J. Neurol.
PUBLISHED: 03-09-2013
Show Abstract
Hide Abstract
The pathophysiology of postural abnormalities in patients with Parkinsons disease is poorly understood. In the present study, 13 patients with Pisa syndrome (PS) underwent EMG study of paraspinal lumbar (L2-L4) and thoracic (T8-T10) muscles, and of non-paraspinal muscles. Patients also underwent a whole spine X-ray and an MRI assessment of paraspinal muscles (L1-S1). The EMG evaluation disclosed two main patterns: patients with pattern I (n = 6, hyperactivity of lumbar paraspinals ipsilateral to the trunk leaning side) or pattern II (n = 7: hyperactivity of lumbar paraspinals contralateral to the trunk leaning side. In pattern I, half the patients also had ipsilateral hyperactivity of the thoracic paraspinals, the other half had contralateral thoracic hyperactivity; in pattern II, thoracic paraspinal hyperactivity was contralateral in all patients (like the lumbar paraspinal hyperactivity). Non-paraspinal muscles were hyperactive ipsilaterally in four of six patients with pattern I and in all patients with pattern II. The MRI showed mild muscular atrophy with fatty degeneration in patients with pattern I, whereas in pattern II patients this was greater and prevalent on paraspinal lumbar muscles ipsilateral to the leaning side. The present data support the hypothesis that two main patterns of muscular activation are associated with PS. In both patterns, hyperactivity of contralateral paraspinal muscles is probably compensatory for the trunk leaning.
Related JoVE Video
Overexpression of TNF-? in mitochondrial diseases caused by mutations in mtDNA: evidence for signaling through its receptors on mitochondria.
Free Radic. Biol. Med.
PUBLISHED: 01-02-2013
Show Abstract
Hide Abstract
Mitochondrial diseases (MDs) are heterogeneous disorders due to impaired respiratory chain function causing defective ATP production. Although the disruption of oxidative phosphorylation is central to the MD pathophysiology, other factors may contribute to these disorders. We investigated the expression and the cellular localization of TNF-? and its receptors, TNFR1 and TNFR2, in muscle biopsies from 15 patients with mitochondrial respiratory chain dysfunction. Our data unambiguously demonstrate that TNF-? is expressed in muscle fibers with abnormal focal accumulations of mitochondria, so-called ragged red fibers, and is delivered to mitochondria where both receptors are localized. Moreover TNF receptors are differentially regulated in patients muscle in which the expression levels of TNFR1 mRNA are decreased and those of TNFR2 mRNA are increased compared with controls. These findings suggest for the first time that TNF-? could exert a direct effect on mitochondria via its receptors.
Related JoVE Video
Increased protein nitration in mitochondrial diseases: evidence for vessel wall involvement.
Mol. Cell Proteomics
PUBLISHED: 12-14-2010
Show Abstract
Hide Abstract
Mitochondrial diseases (MD) are heterogeneous disorders because of impairment of respiratory chain function leading to oxidative stress. We hypothesized that in MD the vascular endothelium may be affected by increased oxidative/nitrative stress causing a reduction of nitric oxide availability. We therefore, investigated the pathobiology of vasculature in MD patients by assaying the presence of 3-nitrotyrosine in muscle biopsies followed by the proteomic identification of proteins which undergo tyrosine nitration. We then measured the flow-mediated vasodilatation as a proof of altered nitric oxide generation/bioactivity. Here, we show that 3-nitrotyrosine staining is specifically located in the small vessels of muscle tissue and that the reaction is stronger and more evident in a significant percentage of vessels from MD patients as compared with controls. Eleven specific proteins which are nitrated under pathological conditions were identified; most of them are involved in energy metabolism and are located mainly in mitochondria. In MD patients the flow-mediated vasodilatation was reduced whereas baseline arterial diameters, blood flow velocity and endothelium-independent vasodilatation were similar to controls. The present results provide evidence that in MD the vessel wall is a target of increased oxidative/nitrative stress.
Related JoVE Video
Diagnostic performance and validation of autoantibody testing in myositis by a commercial line blot assay.
Rheumatology (Oxford)
PUBLISHED: 08-19-2010
Show Abstract
Hide Abstract
Serological testing for myositis-specific or associated autoantibodies [myositis-specific antibody (MSA) and myositis-associated antibody (MAA)] is useful for the diagnosis of idiopathic inflammatory myopathies (IIMs). However, available assays are neither standardized nor validated. The objective is to evaluate the accuracy of a commercial line blot assay for myositis diagnosis.
Related JoVE Video
Brody disease: insights into biochemical features of SERCA1 and identification of a novel mutation.
J. Neuropathol. Exp. Neurol.
PUBLISHED: 02-10-2010
Show Abstract
Hide Abstract
Brody disease is an inherited disorder of skeletal muscle function characterized by increasing impairment of relaxation during exercise. The autosomal recessive form can be caused by mutations in the ATP2A1 gene, which encodes for the sarcoplasmic/endoplasmic reticulum Ca-ATPase 1 (SERCA1) protein. We studied 2 siblings affected by Brody disease. The patients complained of exercise-induced delay of muscle relaxation and stiffness since childhood and had gene analysis of ATP2A1. Morphologic and biochemical studies were performed on a muscle biopsy from 1 patient. The biopsy showed fiber size variation and increased numbers of fibers with internal nuclei. Ultrastructural examination revealed dilatation of lateral cisternae and proliferation of tubular elements of the sarcoplasmic reticulum. By immunohistochemistry, SERCA1 was expressed in a normal pattern, but sarcoplasmic reticulum Ca-ATPase activity was significantly reduced. Immunoblotting after high-resolution 2-dimensional gel electrophoresis showed a significant difference in the amount of SERCA1 protein between the patient and controls. Both patients were found to have 2 previously unreported in-frame deletions in ATP2A1. Because SERCA1 protein has specific biochemical characteristics in our patient, these results underline the importance of a pathologic and biochemical analyses for the diagnosis. In addition, we describe 2 novel mutations in the ATP2A1 gene.
Related JoVE Video
Cationic PMMA nanoparticles bind and deliver antisense oligoribonucleotides allowing restoration of dystrophin expression in the mdx mouse.
Mol. Ther.
PUBLISHED: 02-24-2009
Show Abstract
Hide Abstract
For subsets of Duchenne muscular dystrophy (DMD) mutations, antisense oligoribonucleotide (AON)-mediated exon skipping has proven to be efficacious in restoring the expression of dystrophin protein. In the mdx murine model systemic delivery of AON, recognizing the splice donor of dystrophin exon 23, has shown proof of concept. Here, we show that using cationic polymethylmethacrylate (PMMA) (marked as T1) nanoparticles loaded with a low dose of 2-O-methyl-phosphorothioate (2OMePS) AON delivered by weekly intraperitoneal (IP) injection (0.9 mg/kg/week), could restore dystrophin expression in body-wide striated muscles. Delivery of an identical dose of naked AON did not result in detectable dystrophin expression. Transcription, western, and immunohistochemical analysis showed increased levels of dystrophin transcript and protein, and correct localization at the sarcolemma. This study shows that T1 nanoparticles have the capacity to bind and convoy AONs in body-wide muscle tissues and to reduce the dose required for dystrophin rescue. By immunofluorescence and electron microscopy studies, we highlighted the diffusion pathways of this compound. This nonviral approach may valuably improve the therapeutic usage of AONs in DMD as well as the delivery of RNA molecules with many implications in both basic research and medicine.
Related JoVE Video
Amyloid-beta42 is preferentially accumulated in muscle fibers of patients with sporadic inclusion-body myositis.
Acta Neuropathol.
PUBLISHED: 02-01-2009
Show Abstract
Hide Abstract
Sporadic inclusion-body myositis (s-IBM) is the only muscle disease in which accumulation of amyloid-beta (Abeta) in abnormal muscle fibers appears to play a key pathogenic role. Increased amyloid-beta precursor protein (AbetaPP) and Abeta accumulation have been reported to be upstream steps in the development of the s-IBM pathologic phenotype, based on cellular and animal models. Abeta is released from AbetaPP as a 40 or 42 aminoacid peptide. Abeta42 is considered more cytotoxic than Abeta40, and it has a higher propensity to aggregate and form amyloid fibrils. Using highly specific antibodies, we evaluated in s-IBM muscle biopsies intra-muscle fiber accumulation of Abeta40 and Abeta42-immunoreactive aggregates by light- and electron-microscopic immunocytochemistry, and quantified their amounts by ELISA. In s-IBM, 80-90% of the vacuolated muscle fibers and 5-20% of the non-vacuolated muscle fibers contained plaque-like Abeta42-immunoreactive inclusions, while only 69% of those fibers also contained Abeta40 deposits. By immuno-electronmicroscopy, Abeta42 was associated with 6-10 nm amyloid-like fibrils, small electron-dense floccular clumps and larger masses of amorphous material. Abeta40 was present only on small patches of floccular clumps and amorphous material; it was not associated with 6-10 nm amyloid fibrils. By ELISA, in s-IBM muscle biopsies Abeta42 was present in values 8.53-44.7 pg/ml, while Abeta40 was not detectable; normal age-matched control biopsies did not have any detectable Abeta42 or Abeta40. Thus, in s-IBM muscle fibers, Abeta42 is accumulated more than Abeta40. We suggest that Abeta42 oligomers and their cytotoxicity may play an important role in the s-IBM pathogenesis.
Related JoVE Video
Persistent dystrophin protein restoration 90 days after a course of intraperitoneally administered naked 2OMePS AON and ZM2 NP-AON complexes in mdx mice.
J. Biomed. Biotechnol.
Show Abstract
Hide Abstract
In Duchenne muscular dystrophy, the exon-skipping approach has obtained proof of concept in animal models, myogenic cell cultures, and following local and systemic administration in Duchenne patients. Indeed, we have previously demonstrated that low doses (7.5 mg/Kg/week) of 2-O-methyl-phosphorothioate antisense oligoribonucleotides (AONs) adsorbed onto ZM2 nanoparticles provoke widespread dystrophin restoration 7 days after intraperitoneal treatment in mdx mice. In this study, we went on to test whether this dystrophin restoration was still measurable 90 days from the end of the same treatment. Interestingly, we found that both western blot and immunohistochemical analysis (up to 7% positive fibres) were still able to detect dystrophin protein in the skeletal muscles of ZM2-AON-treated mice at this time, and the level of exon-23 skipping could still be assessed by RT real-time PCR (up to 10% of skipping percentage). In contrast, the protein was undetectable by western blot analysis in the skeletal muscles of mdx mice treated with an identical dose of naked AON, and the percentage of dystrophin-positive fibres and exon-23 skipping were reminiscent of those of untreated mdx mice. Our data therefore demonstrate the long-term residual efficacy of this systemic low-dose treatment and confirm the protective effect nanoparticles exert on AON molecules.
Related JoVE Video
Selective pseudohypertrophy of vastus medialis muscles associated with calpain 3 deficiency.
Neurologist
Show Abstract
Hide Abstract
Calpain 3 deficiency causes limb girdle muscular dystrophy type 2A, which is one of the most common forms of limb girdle muscular dystrophy. Nevertheless, calpainopathy is not always associated with mutations in the specific gene and secondary reduction in protein expression has been described.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.