JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Peptides in seminal fluid and their role in infertility: a potential role for opiorphin inhibition of neutral endopeptidase activity as a clinically relevant modulator of sperm motility: a review.
Reprod Sci
PUBLISHED: 05-22-2014
Show Abstract
Hide Abstract
Infertility is a devastating medical condition that adversely affects emotional health and well-being of couples who desire pregnancy and parenthood. The overall demographic data suggest that the indication for more than one-third of assisted reproductive technology cycles performed in the United States includes male factor infertility. There is increasing recognition of the role that peptides present in seminal plasma have in determining sperm motility. Several recent studies suggest that peptidases, such as neutral endopeptidase (NEP) and aminopeptidase N (APN), impose significant adverse effects on sperm motility. Interestingly, several recent studies demonstrate that there is an endogenous NEP/APN inhibitor peptide called opiorphin in human seminal plasma. Our pilot studies suggest opiorphin promotes sperm motility and may positively influence sperm motility parameters in some cases of males infertility characterized by asthenozoospermia.
Related JoVE Video
Menopausal implications of polycystic ovarian syndrome.
Semin. Reprod. Med.
PUBLISHED: 04-08-2014
Show Abstract
Hide Abstract
Polycystic ovary syndrome (PCOS) is a common endocrinopathy affecting up to 8 to 10% of reproductive-aged women. Although the medical and metabolic consequences of PCOS are well-described in young reproductive-aged women, its impact on female reproductive senescence and the menopausal transition is poorly understood. This review summarizes current knowledge regarding the effect of PCOS is menopausal and perimenopausal women. We also highlight areas that are ripe for clinical research.
Related JoVE Video
Vasoactive intestinal peptide modulation of the steroid-induced LH surge involves kisspeptin signaling in young but not in middle-aged female rats.
Endocrinology
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Age-related LH surge dysfunction in middle-aged rats is characterized, in part, by reduced responsiveness to estradiol (E2)-positive feedback and reduced hypothalamic kisspeptin neurotransmission. Vasoactive intestinal peptide (VIP) neurons in the suprachiasmatic nucleus project to hypothalamic regions that house kisspeptin neurons. Additionally, middle-age females express less VIP mRNA in the suprachiasmatic nucleus on the day of the LH surge and intracerebroventricular (icv) VIP infusion restores LH surges. We tested the hypothesis that icv infusion of VIP modulates the LH surge through effects on the kisspeptin and RFamide-related peptide-3 (RFRP-3; an estradiol-regulated inhibitor of GnRH neurons) neurotransmitter systems. Brains were collected for in situ hybridization analyses from ovariectomized and ovarian hormone-primed young and middle-aged females infused with VIP or saline. The percentage of GnRH and Kiss1 cells coexpressing cfos and total Kiss1 mRNA were reduced in saline-infused middle-aged compared with young females. In young females, VIP reduced the percentage of GnRH and Kiss1 cells coexpressing cfos, suggesting that increased VIP signaling in young females adversely affected the function of Kiss1 and GnRH neurons. In middle-aged females, VIP increased the percentage of GnRH but not Kiss1 neurons coexpressing cfos, suggesting VIP affects LH release in middle-aged females through kisspeptin-independent effects on GnRH neurons. Neither reproductive age nor VIP affected Rfrp cell number, Rfrp mRNA levels per cell, or coexpression of cfos in Rfrp cells. These data suggest that VIP differentially affects activation of GnRH and kisspeptin neurons of female rats in an age-dependent manner.
Related JoVE Video
Insulin-like growth factor-I regulates LH release by modulation of kisspeptin and NMDA-mediated neurotransmission in young and middle-aged female rats.
Endocrinology
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
This study investigated potential mechanisms by which age and IGF-I receptor (IGF-Ir) signaling in the neuroendocrine hypothalamus affect estradiol-positive feedback effects on GnRH neuronal activation and on kisspeptin and N-methyl-D-aspartate (NMDA)-induced LH release and on the abundance of NMDA receptor subunits Nr1 and Nr2b and Kiss1r transcript and protein in the hypothalamus of young and middle-aged female rats. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-Ir, into the third ventricle of ovariectomized female rats primed with estradiol or vehicle and injected with vehicle, kisspeptin (3 or 30 nmol/kg), or NMDA (15 or 30 mg/kg). Regardless of dose, NMDA and kisspeptin resulted in significantly more LH release, GnRH/c-Fos colabeling, and c-Fos immunoreative cells in young than in middle-aged females. Estradiol priming significantly increased Kiss1r, Nr1, and Nr2b receptor transcript and protein abundance in young but not middle-aged female hypothalamus. JB-1 attenuated kisspeptin and NMDA-induced LH release, numbers of GnRH/c-Fos and c-Fos cells, and Kiss1r, Nr1, and Nr2b transcript and protein abundance in young females to levels observed in middle-aged females. IGF-I significantly enhanced NMDA and kisspeptin-induced LH release in middle-aged females without increasing numbers of GnRH/c-Fos or c-Fos immunoreactive cells. IGF-I infusion in middle-aged females also increased Kiss1r, Nr1, and Nr2b protein and transcript to levels that were equivalent to young estradiol-primed females. These findings indicate that age-related changes in estradiol-regulated responsiveness to excitatory input from glutamate and kisspeptin reflect reduced IGF-Ir signaling.
Related JoVE Video
The KEEPS-Cognitive and Affective Study: baseline associations between vascular risk factors and cognition.
J. Alzheimers Dis.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Midlife vascular risk factors influence later cognitive decline and Alzheimer's disease (AD). The decrease in serum estradiol levels during menopause has been associated with cognitive impairment and increased vascular risk, such as high blood pressure (BP), which independently contributes to cognitive dysfunction and AD. We describe the extent to which vascular risk factors relate to cognition in healthy, middle-aged, recently postmenopausal women enrolled in the Kronos Early Estrogen Prevention Cognitive and Affective Study (KEEPS-Cog) at baseline. KEEPS-Cog is a double-blind, randomized, placebo-controlled, parallel group, clinical trial, investigating the efficacy of low-dose, transdermal 17?-estradiol and oral conjugated equine estrogen on cognition. All results are cross-sectional and represent baseline data only. Analyses confirm that the KEEPS-Cog cohort (n = 571) was middle aged (mean 52.7 years, range 42-59 years), healthy, and free of cognitive dysfunction. Higher systolic BP was weakly related to poorer performance in auditory working memory and attention (p = 0.004; adjusted for multiple comparisons p = 0.10). This relationship was not associated with endogenous hormone levels, and systolic BP was not related to any other cognitive domain. BP levels may be more sensitive than other vascular risk factors in detecting subtle differences in cognitive task performance in healthy, recently menopausal women. Lower BP early in menopause may affect cognitive domains known to be associated with AD.
Related JoVE Video
Agouti-related peptide plays a critical role in leptins effects on female puberty and reproduction.
Am. J. Physiol. Endocrinol. Metab.
PUBLISHED: 10-29-2013
Show Abstract
Hide Abstract
Deficient leptin signaling causes infertility via reduced activity of GnRH neurons, causing a hypogonadal state in both rodents and humans. Because GnRH neurons do not express leptin receptors, leptins effect on GnRH neurons must be indirect. Neurons within the hypothalamic arcuate nucleus that coexpress AGRP and NPY are considered to be important intermediate neurons involved in leptin regulation of GnRH neurons. Previously, we reported that the absence of AGRP and haploinsufficiency of MC4R in leptin receptor mutant (Lepr(db/db)) females result in restoration of fertility and lactation despite the persistence of obesity and insulin resistance. The overarching hypothesis in the present study is that the absence or reduction of leptins inhibition of AGRP/NPY neurons leads to suppression of GnRH release in cases of leptin signaling deficiency. Since TAC2 (NKB)-TAC3R signaling plays a role in puberty maturation and is modulated by metabolic status, the other aim of this study is to test whether TAC2/NKB neurons in ARC regulated by melanocortinergic signals herein affect leptins action on puberty and reproduction. Our data showed that AGRP deficiency in Lepr(db/db) females restores normal timing of vaginal opening and estrous cycling, although uterine weight gain and mammary gland development are morphologically delayed. Nonetheless, Agrp(-/-) Lepr(db/db) females are fertile and sustain adequate nutrition of pups with lactation to weaning age. AGRP deficiency results in advanced vaginal opening in wild-type female mice. The postpubertal increase in hypothalamic TAC2 mRNA was not observed in Lepr(db/db) females, whereas AGRP deficiency restored it in Lepr(db/db) females. Additionally, MC4R activation with MTII induced FOS expression in TAC2 neurons, supporting the concept of melanocortinergic regulation of TAC2 neurons. These studies suggest that AGRP imposes an inhibitory effect on puberty and that TAC2 neurons may transmit melanocortinergic inhibition of GnRH neurons.
Related JoVE Video
Actinomycosis pelvic abscess after in vitro fertilization.
Fertil. Steril.
PUBLISHED: 03-08-2013
Show Abstract
Hide Abstract
To report a case of pelvic actinomycosis presenting as large, multiloculated abscesses after an in vitro fertilization (IVF) cycle for male factor infertility.
Related JoVE Video
Characterization of vascular disease risk in postmenopausal women and its association with cognitive performance.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
While global measures of cardiovascular (CV) risk are used to guide prevention and treatment decisions, these estimates fail to account for the considerable interindividual variability in pre-clinical risk status. This study investigated heterogeneity in CV risk factor profiles and its association with demographic, genetic, and cognitive variables.
Related JoVE Video
Differential effects of hypothalamic IGF-I on gonadotropin releasing hormone neuronal activation during steroid-induced LH surges in young and middle-aged female rats.
Endocrinology
PUBLISHED: 09-13-2011
Show Abstract
Hide Abstract
Interactions between brain IGF-I receptors and estrogen receptors regulate female reproductive physiology and behavior. The present study investigated potential mechanisms by which IGF-I receptors in the neuroendocrine hypothalamus regulate GnRH neuronal activation and LH release in young and middle-aged female rats under estradiol (E2) positive feedback conditions. We infused vehicle, IGF-I, or JB-1, a selective antagonist of IGF-I receptors, into the third ventricle of ovariectomized female rats primed with E2 and progesterone or vehicle. In young females, blockade of IGF-I receptors attenuated the steroid hormone-induced LH surge, reduced the percent of GnRH neurons expressing c-fos on the day of the LH surge, and decreased the total number of neurons expressing c-fos in the preoptic area. Middle-aged females had fewer GnRH neurons expressing c-fos during the LH surge than young females, and the LH surge amplitude was attenuated. Infusion of an IGF-I dose previously shown to increase LH surge amplitude did not increase the percent of GnRH neurons expressing c-fos in middle-aged females. Brain IGF-I receptor blockade did not modify E2 induction of progestin receptor-immunoreactive neurons in the preoptic area, arcuate, or ventromedial hypothalamus of young rats. These findings indicate that brain IGF-I receptors are required for E2 activation of GnRH neurons in young rats and for robust GnRH release from axon terminals in middle-aged females. IGF-I likely exerts its effects by actions on E2-sensitive neurons that are upstream of GnRH neurons and terminals.
Related JoVE Video
Association of ethnicity with involuntary childlessness and perceived reasons for infertility: baseline data from the Study of Womens Health Across the Nation (SWAN).
Fertil. Steril.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
To evaluate whether ethnicity is associated with involuntary childlessness and perceived reasons for difficulties in becoming pregnant.
Related JoVE Video
Determinants of female reproductive senescence: differential roles for the ovary and the neuroendocrine axis.
Semin. Reprod. Med.
PUBLISHED: 09-15-2010
Show Abstract
Hide Abstract
Aging in women is a complex process that begins with the transition into reproductive senescence and evolves to impact not just womens procreative potential but also multiple health-related parameters including longevity. Although somatic aging is an equal opportunity nemesis, certain disease states correlate highly with ovarian failure and the menopause, such as osteoporosis, diabetes, cardiovascular disease, and compromised cognitive function. Epidemiological studies suggest that a delayed natural menopause confers longevity and decelerates the appearance of many of the debilitating morbidities associated with the menopause. However, recent randomized clinical trials assessing the benefits of menopausal hormone therapy during the postmenopause clearly suggest that attenuation of the negative consequences of reproductive aging involves much more than a simple add back of ovarian steroids in the postmenopause. Conflicts between observations in epidemiological studies and in randomized clinical trials give good reason for continued innovative research focused on identifying the mechanisms that bring about the transition from peak reproductive potential to female reproductive quiescence. This article provides a brief update on our current understanding of the physiological and cellular mechanisms that precipitate and/or commit women to transit into reproductive senescence.
Related JoVE Video
Prolonged gonadotropin stimulation is associated with decreased ART success.
J. Assist. Reprod. Genet.
PUBLISHED: 06-10-2010
Show Abstract
Hide Abstract
to evaluate whether the duration of gonadotropin stimulation predicts the likelihood of live birth after ART.
Related JoVE Video
The neuroendocrine physiology of female reproductive aging: An update.
Maturitas
PUBLISHED: 03-13-2010
Show Abstract
Hide Abstract
The transition into menopause is a complex process that affects fertility and increases the risk for a number of health problems in aging women that include, but are not limited to osteoporosis, heart disease, diabetes mellitus and cognitive dysfunction. Improved nutrition and enhanced access to medical care have increased the average lifespan for women in developed countries, and many will spend more than one-third of their life in a post-menopausal state. Epidemiological studies indicate that a delayed natural menopause confers longevity and decelerates the appearance of much age-related morbidity, suggesting that developing treatments to delay menopause would significantly improve quality of life for women. Although menopause is ultimately defined by ovarian follicular exhaustion, several lines of scientific evidence in humans and animals now suggest that dysregulation of estradiol feedback mechanisms and hypothalamic-pituitary dysfunction contributes to the onset and progression of reproductive senescence, independent of ovarian failure. This article provides a brief update on our current understanding of the role of the hypothalamic-pituitary axis in the onset of and transition into female reproductive senescence.
Related JoVE Video
Hypothalamic insulin-like growth factor-I receptors are necessary for hormone-dependent luteinizing hormone surges: implications for female reproductive aging.
Endocrinology
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
Brain IGF-I receptors are required for maintenance of estrous cycles in young adult female rats. Circulating and hypothalamic IGF-I levels decrease with aging, suggesting a role for IGF-I in the onset of reproductive senescence. Therefore, the present study investigated potential mechanisms of action of brain IGF-I receptors in the regulation of LH surges in young adult and middle-aged rats. We continuously infused IGF-I, the selective IGF-I receptor antagonist JB-1, or vehicle into the third ventricle of ovariectomized young adult and middle-aged female rats primed with estradiol and progesterone. Pharmacological blockade of IGF-I receptors attenuated and delayed the LH surge in young adult rats, reminiscent of the LH surge pattern that heralds the onset of reproductive senescence in middle-aged female rats. Infusion of IGF-I alone had no effect on the LH surge but reversed JB-1 attenuation of the surge in young females. In middle-aged rats, infusion of low doses of IGF-I partially restored LH surge amplitude, and infusion of JB-1 completely obliterated the surge. Intraventricular infusion of IGF-I or JB-1 did not modify pituitary sensitivity to exogenous GnRH or GnRH peptide content in the anterior or mediobasal hypothalamus in either young or middle-aged rats. These findings support the hypothesis that brain IGF-I receptor signaling is necessary for GnRH neuron activation under estrogen-positive feedback conditions and that decreased brain IGF-I signaling in middle-aged females contributes, in part, to LH surge dysfunction by disrupting estradiol-sensitive processes that affect GnRH neuron activation and/or GnRH release.
Related JoVE Video
Effect of nourishing "Yin"-removing "Fire" Chinese herbal mixture on hypothalamic kisspeptin expression in female precocious rats.
J Ethnopharmacol
PUBLISHED: 07-09-2009
Show Abstract
Hide Abstract
The present study aims to investigate the effect of nourishing "Yin"-removing "Fire" herbal mixture, a Chinese herb-based formulation, on hypothalamic kisspeptin expression in danazol-induced female precocious model rats.
Related JoVE Video
The excitatory peptide kisspeptin restores the luteinizing hormone surge and modulates amino acid neurotransmission in the medial preoptic area of middle-aged rats.
Endocrinology
PUBLISHED: 05-07-2009
Show Abstract
Hide Abstract
Reproductive success depends on a robust and appropriately timed preovulatory LH surge. The LH surge, in turn, requires ovarian steroid modulation of GnRH neuron activation by the neuropeptide kisspeptin and glutamate and gamma-aminobutyric acid (GABA) neurotransmission in the medial preoptic area (mPOA). Middle-aged females exhibit reduced excitation of GnRH neurons and attenuated LH surges under estrogen-positive feedback conditions, in part, due to increased GABA and decreased glutamate neurotransmission in the mPOA. This study tested the hypothesis that altered kisspeptin regulation by ovarian steroids plays a role in age-related LH surge dysfunction. We demonstrate that middle-aged rats exhibiting delayed and attenuated LH surges have reduced levels of Kiss1 mRNA in the anterior hypothalamus under estrogen-positive feedback conditions. Kisspeptin application directly into the mPOA rescues total LH release and the LH surge amplitude in middle-aged rats and increases glutamate and decreases GABA release to levels seen in the mPOA of young females. Moreover, the N-methyl-D-aspartate receptor antagonist MK801 blocks kisspeptin reinstatement of the LH surge. These observations suggest that age-related LH surge dysfunction results, in part, from reduced kisspeptin drive under estrogen-positive feedback conditions and that kisspeptin regulates GnRH/LH release, in part, through modulation of mPOA glutamate and GABA release.
Related JoVE Video
Age-related LH surge dysfunction correlates with reduced responsiveness of hypothalamic anteroventral periventricular nucleus kisspeptin neurons to estradiol positive feedback in middle-aged rats.
Neuropharmacology
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
Female reproductive aging in rats is characterized by reduced gonadotropin releasing hormone (GnRH) neuronal activation under estradiol positive feedback conditions and a delayed and attenuated luteinizing hormone (LH) surge. The newly identified excitatory neuropeptide kisspeptin is proposed to be a critical mediator of the pubertal transition and the ovarian steroid-induced LH surge. We previously showed that estradiol induces less kisspeptin mRNA expression in the anterior hypothalamus [anatomical location of anteroventral periventricular nucleus (AVPV)] in middle-aged than in young rats and intrahypothalamic infusion of kisspeptin restores LH surge amplitude in middle-aged females. Thus, reduced kisspeptin neurotransmission may contribute to age-related LH surge abnormalities. This study tested the hypothesis that middle-aged females will also exhibit reduced numbers of kisspeptin immunopositive neurons in the AVPV under estradiol positive feedback conditions. Using immunohistochemistry, we demonstrate that middle-aged females primed with ovarian steroids have fewer AVPV kisspeptin immunopositive neurons than young females. Age did not affect kisspeptin mRNA expression in the pituitary, numbers of kisspeptin immunopositive neurons in the arcuate nucleus, or estradiol-dependent reductions in kisspeptin mRNA expression in the posterior hypothalamus (containing the arcuate nucleus). These data strongly suggest that age-related LH surge dysfunction results, in part, from a reduced sensitivity of AVPV kisspeptin neurons to estradiol and hence decreased availability of AVPV kisspeptin neurons to activate GnRH neurons under positive feedback conditions.
Related JoVE Video
Relevance of vitamin D in reproduction.
Hum. Reprod.
Show Abstract
Hide Abstract
The steroid hormone vitamin D is historically recognized for its relevance to bone health and calcium homeostasis. Recent years have witnessed a shift in focus to non-skeletal benefits of vitamin D; in this latter context, an accruing body of literature attests to a relevance of vitamin D to reproductive physiology. This article reviews the existing data about the diverse and previously underappreciated roles for vitamin D in reproductive health. A large body of available literature suggests that vitamin D deficiency may be detrimental to reproductive biology. However, given that our appreciation of vitamin Ds role in reproductive physiology is almost entirely shaped by associative studies and that data based on prospective interventional trials are limited, these concepts remain predominantly conjectural. Exact mechanisms whereby vitamin D may participate in the regulation of reproductive physiology remain far from clear. This review underscores a need for appropriately designed intervention trials to address the existing knowledge gaps and to delineate the specific roles of vitamin D signaling in reproductive biology.
Related JoVE Video
Intracerebroventricular infusion of vasoactive intestinal Peptide rescues the luteinizing hormone surge in middle-aged female rats.
Front Endocrinol (Lausanne)
Show Abstract
Hide Abstract
Reproductive aging is characterized by delayed and attenuated luteinizing hormone (LH) surges apparent in middle-aged rats. The suprachiasmatic nucleus (SCN) contains the circadian clock that is responsible for the timing of diverse neuroendocrine rhythms. Electrophysiological studies suggest vasoactive intestinal peptide (VIP) originating from the SCN excites gonadotropin-releasing hormone (GnRH) neurons and affects daily patterns of GnRH-LH release. Age-related LH surge dysfunction correlates with reduced VIP mRNA expression in the SCN and fewer GnRH neurons with VIP contacts expressing c-fos, a marker of neuronal activation, on the day of the LH surge. To determine if age-related LH surge dysfunction reflects reduced VIP availability or altered VIP responsiveness under estradiol positive feedback conditions, we assessed the effect of intracerebroventricular (icv) VIP infusion on c-fos expression in GnRH neurons and on LH release in ovariohysterectomized, hormone-primed young and middle-aged rats. Icv infusion of VIP between 1300 and 1600?h significantly advanced the time of peak LH release, increased total and peak LH release, and increased the number of GnRH neurons expressing c-fos on the day of the LH surge in middle-aged rats. Surprisingly, icv infusion of VIP in young females significantly reduced the number of GnRH neurons expressing c-fos and delayed and reduced the LH surge. These observations suggest that a critical balance of VIP signaling is required to activate GnRH neurons for an appropriately timed and robust LH surge in young and middle-aged females. Age-related LH surge changes may, in part, result from decreased availability and reduced VIP-mediated neurotransmission under estradiol positive feedback conditions.
Related JoVE Video
Peripubertal vitamin D(3) deficiency delays puberty and disrupts the estrous cycle in adult female mice.
Biol. Reprod.
Show Abstract
Hide Abstract
The mechanism(s) by which vitamin D(3) regulates female reproduction is minimally understood. We tested the hypothesis that peripubertal vitamin D(3) deficiency disrupts hypothalamic-pituitary-ovarian physiology. To test this hypothesis, we used wild-type mice and Cyp27b1 (the rate-limiting enzyme in the synthesis of 1,25-dihydroxyvitamin D(3)) null mice to study the effect of vitamin D(3) deficiency on puberty and reproductive physiology. At the time of weaning, mice were randomized to a vitamin D(3)-replete or -deficient diet supplemented with calcium. We assessed the age of vaginal opening and first estrus (puberty markers), gonadotropin levels, ovarian histology, ovarian responsiveness to exogenous gonadotropins, and estrous cyclicity. Peripubertal vitamin D(3) deficiency significantly delayed vaginal opening without affecting the number of GnRH-immunopositive neurons or estradiol-negative feedback on gonadotropin levels during diestrus. Young adult females maintained on a vitamin D(3)-deficient diet after puberty had arrested follicular development and prolonged estrous cycles characterized by extended periods of diestrus. Ovaries of vitamin D(3)-deficient Cyp27b1 null mice responded to exogenous gonadotropins and deposited significantly more oocytes into the oviducts than mice maintained on a vitamin D(3)-replete diet. Estrous cycles were restored when vitamin D(3)-deficient Cyp27b1 null young adult females were transferred to a vitamin D(3)-replete diet. This study is the first to demonstrate that peripubertal vitamin D(3) sufficiency is important for an appropriately timed pubertal transition and maintenance of normal female reproductive physiology. These data suggest vitamin D(3) is a key regulator of neuroendocrine and ovarian physiology.
Related JoVE Video
Middle-aged female rats retain sensitivity to the anorexigenic effect of exogenous estradiol.
Behav. Brain Res.
Show Abstract
Hide Abstract
It is well established that estradiol (E2) decreases food intake and body weight in young female rats. However, it is not clear if female rats retain responsiveness to the anorexigenic effect of E2 during middle age. Because middle-aged females exhibit reduced responsiveness to E2, manifesting as a delayed and attenuated luteinizing hormone surge, it is plausible that middle-aged rats are less responsive to the anorexigenic effect of E2. To test this we monitored food intake in ovariohysterectomized young and middle-aged rats following E2 treatment. E2 decreased food intake and body weight to a similar degree in both young and middle-aged rats. Next, we investigated whether genes that mediate the estrogenic inhibition of food intake are similarly responsive to E2 by measuring gene expression of the anorexigenic genes corticotropin-releasing hormone (CRH), proopiomelanocortin (POMC), the long form of the leptin receptor (Lepr) and serotonin 2C receptors (5HT2CR) and the orexigenic genes agouti-related peptide (AgRP), neuropeptide Y (NPY), prepromelanin-concentrating hormone (pMCH) and orexin in the hypothalamus of young and middle-aged OVX rats treated with E2. As expected, E2 increased expression of all anorexigenic genes while decreasing expression of all orexigenic genes in young rats. Although CRH, 5HT2CR, Lepr, AgRP, NPY and orexin were also sensitive to E2 treatment in middle-aged rats, POMC and pMCH expression were not influenced by E2 in middle-aged rats. These data demonstrate that young and middle-aged rats are similarly sensitive to the anorexigenic effect of E2 and that most, but not all feeding-related genes retain sensitivity to E2.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.