JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Impact of Polymers on the Crystallization and Phase Transition Kinetics of Amorphous Nifedipine during Dissolution in Aqueous Media.
Mol. Pharm.
PUBLISHED: 09-18-2014
Show Abstract
Hide Abstract
The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.
Related JoVE Video
Transforming growth factor beta (TGF?) plays a crucial role in prolonging allograft survival in an allodepletion ("pruning") skin transplant model.
Transpl. Immunol.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
Adoptive cell therapies involving cell manipulation to achieve tolerance are increasingly being studied in animal models and in human trials. We have demonstrated that the specific removal of allo-stimulated dividing cells (or "pruning") promotes long-term allograft survival across a major MHC mismatch in transplant models including skin, heart and islet transplants. In this study, we examine the role of transforming growth factor beta (TGF?), an important regulatory cytokine, on allograft survival in our allodepletion or "pruning" skin transplant model. Increased proliferation of CD4(+) T cells was observed following allo-stimulation of BALB/c spleen cells (labeled with CFSE) in the presence of the regulatory cytokines TGF? and (interleukin-2) IL-2 in a mixed lymphocyte culture (MLC). Expression of the regulatory gene forkhead box-3 (FoxP3) was increased in both the allo-stimulated non-dividing (ND) (CFSE(high)) and dividing (D) (CFSE(low)) CD4(+) T cell populations, with the highest expression found in the D CD4(+) T cell population. Mice reconstituted with allo-stimulated ND CD4(+) T cells following TGF?/IL-2 stimulation showed prolonged allograft survival, similar to previous data. Significantly, TGF?/IL-2 stimulation prevented acute rejection of allografts across a major MHC mismatch in the presence of highly activated allo-stimulated D CD4(+) T cells. Blockade of TGF? promoted rejection of allografts even following depletion of allo-stimulated D CD4(+) T cells. These studies support a crucial role for TGF? in the survival of allografts and shows that regulatory cytokines TGF?/IL2 can delay the rejection of allografts, even in the presence of highly activated alloreactive T cells.
Related JoVE Video
Regulatory T cells require renal antigen recognition through the TCR to protect against injury in nephritis.
Int J Clin Exp Pathol
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Regulatory T cells (Treg) are important for maintaining immune homeostasis. Adoptive transfer of Tregs is protective in renal disease models in both immunocompetent and immunodeficient mice. However the involvement of TCR recognition of renal antigens remains to be clarified. To address this question, we made use of Tregs from the DO11.10 mouse (a TCR transgenic (Tg) mouse), that recognise the non-murine antigen Ovalbumin (OVA) and therefore are not activated by renal antigens. DO11.10 Tregs were assessed functionally in vitro and demonstrated equivalent suppression to WT BALB/c Tregs. Adriamycin Nephropathy (AN) was induced in mice which had been transfused with CD4+CD25+Tregs isolated from DO11.10 or BALB/c mice. To eliminate the memory/activation state as a cause of differences in activity, the protective capacity of DO11.10 Tregs pre-activated with OVA in vivo was assessed. Transfer of WT BALB/c Tregs significantly attenuated the development of AN with less glomerulosclerosis, tubular atrophy and macrophage infiltration as compared to AN mice without Treg transfer. However, mice receiving either naïve or pre-activated DO11.10 Tregs were not protected from AN. The lack of protection by DO11.10 Tregs was not due to failure to traffic to the affected kidney. These results suggest that antigen recognition in the kidney is important for Treg protection against injury.
Related JoVE Video
Enhancements and Limits in Drug Membrane Transport Using Supersaturated Solutions of Poorly Water-Soluble Drugs.
J Pharm Sci
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.
Related JoVE Video
Low-concentration polymers inhibit and accelerate crystal growth in organic glasses in correlation with segmental mobility.
J Phys Chem B
PUBLISHED: 08-26-2013
Show Abstract
Hide Abstract
Crystal growth in organic glasses has been studied in the presence of low-concentration polymers. Doping the organic glass nifedipine (NIF) with 1 wt % polymer has no measurable effect on the glass transition temperature Tg of host molecules, but substantially alters the rate of crystal growth, from a 10-fold reduction to a 30% increase at 12 °C below the host Tg. Among the polymers tested, all but polyethylene oxide (PEO) inhibit growth. The inhibitory effects greatly diminish in the liquid state (at Tg + 38 °C), but PEO persists to speed crystal growth. The crystal growth rate varies exponentially with polymer concentration, in analogy with the polymer effect on solvent mobility, though the effect on crystal growth can be much stronger. The ability to inhibit crystal growth is not well ordered by the strength of host-polymer hydrogen bonds, but correlates remarkably well with the neat polymers Tg, suggesting that the mobility of polymer chains is an important factor in inhibiting crystal growth in organic glasses. The polymer dopants also affect crystal growth at the free surface of NIF glasses, but the effect is attenuated according to the power law us ? ub(0.35), where us and ub are the surface and bulk growth rates.
Related JoVE Video
A microfluidic platform for evaporation-based salt screening of pharmaceutical parent compounds.
Lab Chip
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
We describe a microfluidic platform to screen for salt forms of pharmaceutical compounds (PCs) via controlled evaporation. The platform enables on-chip combinatorial mixing of PC and salt former solutions in a 24-well array (~200 nL/well), which is a drastic reduction in the amount of PC needed per condition screened compared to traditional screening approaches that require ~100 ?L/well. The reduced sample needs enable salt screening at a much earlier stage in the drug development process, when only limited quantities of PCs are available. Compatibility with (i) solvents commonly used in the pharmaceutical industry, and (ii) Raman spectroscopy for solid form identification was ensured by using a hybrid microfluidic platform. A thin layer of elastomeric PDMS was utilized to retain pneumatic valving capabilities. This layer is sandwiched between layers of cyclic-olefin copolymer, a material with low air and solvent permeability and low Raman background to yield a physically rigid and Raman compatible chip. A solvent-impermeable thiolene layer patterned with evaporation channels permits control over the rate of solvent evaporation. Control over the rate of solvent evaporation (2-15 nL h(-1)) results in consistent, known rates of increase in the supersaturation levels attained on-chip, and increases the probability for crystalline solids to form. The modular nature of the platform enables on-chip Raman and birefringence analysis of the solid forms. Model compounds, tamoxifen and ephedrine, were used to validate the platforms ability to screen for salts. On-chip Raman analysis helped to identify six different salts each of tamoxifen and ephedrine.
Related JoVE Video
Treg depletion attenuates the severity of skin disease from ganglionic spread after HSV-2 flank infection.
Virology
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Regulatory T cells (Tregs) attenuate lesion severity and disease after HSV ocular or genital infection, but their role in cutaneous infection remains unclear. Treg depletion (anti-CD25 mAb in C57BL/6 mice or diphtheria toxin (DT) in DEREG mice) prior to tk-deficient HSV-2 flank infection significantly decreased skin lesion severity, granulocyte receptor-1(Gr-1(+)) cell number, and chemokine (KC) expression in the secondary skin, but significantly increased immune effectors and chemokine expression (MCP-1, KC, VEGF-A) in the draining LN, and activated, interferon-? producing CD8(+)T cells in the ganglia. Treg depletion also significantly reduced HSV-2 DNA in the ganglia. Thus, Tregs increase the severity of recurrent skin lesions, and differentially alter chemokine expression and immune effector homing in the skin and LN after cutaneous infection, and limit CD8(+) T cell responses in the ganglia. Our data suggests that effects of Treg manipulation on recurrent herpes lesions should be considered when developing Treg mediated therapeutics.
Related JoVE Video
Bilateral Wilms tumor and early presentation in pediatric patients is associated with the truncation of the Wilms tumor 1 protein.
J. Pediatr.
PUBLISHED: 02-10-2013
Show Abstract
Hide Abstract
To investigate the frequency of constitutional Wilms tumor 1 gene (WT1) abnormalities in children with bilateral Wilms tumor (WT) and the age of tumor onset in patients with a mutation.
Related JoVE Video
Daedalic DNA vaccination against self antigens as a treatment for chronic kidney disease.
Int J Clin Exp Pathol
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Chronic kidney disease (CKD) is a major cause of death and morbidity in Australia and worldwide. DNA vaccination has been used for targeting foreign antigens to induce immune responses and prevent autoimmune disease, viral infection and cancer. However, the use of DNA vaccination has been restricted by a limited ability to induce strong immune responses, especially against self-antigens which are limited by mechanisms of self-tolerance. Furthermore, there have been few studies on the potential of DNA vaccination in chronic inflammatory diseases, including CKD. We have established strategies of DNA vaccination targeting specific self-antigens in the immune system including co-stimulatory pathways, T cell receptors and chemokine molecules, which have been effective in protecting against the development of CKD in a variety of animal models. In particular, we find that the efficacy of DNA vaccination is improved by dendritic cell (DC) targeting and can protect against animal models of autoimmune nephritis mimicking human membranous nephropathy. In this review, we summarize several approaches that have been tested to improve the efficacy of DNA vaccination in CKD models, including enhanced DNA vaccine delivery methods, DNA vaccine modifications and new molecular targets for DNA vaccination. Finally, we discuss the specific application of DNA vaccination for preventing and treating CKD.
Related JoVE Video
A microfluidic platform for pharmaceutical salt screening.
Lab Chip
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
We describe a microfluidic platform comprised of 48 wells to screen for pharmaceutical salts. Solutions of pharmaceutical parent compounds (PCs) and salt formers (SFs) are mixed on-chip in a combinatorial fashion in arrays of 87.5-nanolitre wells, which constitutes a drastic reduction of the volume of PC solution needed per condition screened compared to typical high throughput pharmaceutical screening approaches. Nucleation and growth of salt crystals is induced by diffusive and/or convective mixing of solutions containing, respectively, PCs and SFs in a variety of solvents. To enable long term experiments, solvent loss was minimized by reducing the thickness of the absorptive polymeric material, polydimethylsiloxane (PDMS), and by using solvent impermeable top and bottom layers. Additionally, well isolation was enhanced via the incorporation of pneumatic valves that are closed at rest. Brightfield and polarized light microscopy and Raman spectroscopy were used for on-chip analysis and crystal identification. Using a gold-coated glass substrate and minimizing the thickness of the PDMS control layer drastically improved the signal-to-noise ratio for Raman spectra. Two drugs, naproxen (acid) and ephedrine (base), were used for validation of the platforms ability to screen for salts. Each PC was mixed combinatorially with potential SFs in a variety of solvents. Crystals were visualized using brightfield polarized light microscopy. Subsequent on-chip analyses of the crystals with Raman spectroscopy identified four different naproxen salts and five different ephedrine salts.
Related JoVE Video
A novel accelerated oxidative stability screening method for pharmaceutical solids.
J Pharm Sci
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Despite the fact that oxidation is the second most frequent degradation pathway for pharmaceuticals, means of evaluating the oxidative stability of pharmaceutical solids, especially effective stress testing, are still lacking. This paper describes a novel experimental method for peroxide-mediated oxidative stress testing on pharmaceutical solids. The method utilizes urea-hydrogen peroxide, a molecular complex that undergoes solid-state decomposition and releases hydrogen peroxide vapor at elevated temperatures (e.g., 30°C), as a source of peroxide. The experimental setting for this method is simple, convenient, and can be operated routinely in most laboratories. The fundamental parameter of the system, that is, hydrogen peroxide vapor pressure, was determined using a modified spectrophotometric method. The feasibility and utility of the proposed method in solid form selection have been demonstrated using various solid forms of ephedrine. No degradation was detected for ephedrine hydrochloride after exposure to the hydrogen peroxide vapor for 2 weeks, whereas both anhydrate and hemihydrate free base forms degraded rapidly under the test conditions. In addition, both the anhydrate and the hemihydrate free base degraded faster when exposed to hydrogen peroxide vapor at 30°C under dry condition than at 30°C/75% relative humidity (RH). A new degradation product was also observed under the drier condition. The proposed method provides more relevant screening conditions for solid dosage forms, and is useful in selecting optimal solid form(s), determining potential degradation products, and formulation screening during development.
Related JoVE Video
Dissolution and precipitation behavior of amorphous solid dispersions.
J Pharm Sci
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
Amorphous solid dispersions (ASDs) are widely utilized in the pharmaceutical industry for bioavailability enhancement of low solubility drugs. The important factors governing the dissolution behavior of these systems are still far from adequately understood. As a consequence, it is of interest to investigate the behavior of these systems during the dissolution process. The purpose of this research was twofold. First, the degree of supersaturation generated upon dissolution as a function of drug-polymer composition was investigated. Second, an investigation was conducted to correlate physical behavior upon dissolution with polymer loading. Felodipine and indomethacin were selected as model drugs and hydroxypropylmethylcellulose (HPMC) and polyvinylpyrrolidone (PVP) were used to form the dispersions. Diffusion and nuclear magnetic resonance spectroscopy experiments revealed that the extent of bulk supersaturation generated on dissolution of the ASD did not depend on the drug-polymer ratio. Interestingly, the maximum supersaturation generated was similar to the predicted amorphous solubility advantage. However, dynamic light scattering measurements revealed that particles on the submicron scale were generated during dissolution of the solid dispersions containing 90% polymer, whereas solid dispersions at a 50% polymer loading did not yield these nanoparticles. The nanoparticles were found to result in anomalous concentration measurements when using in situ ultraviolet spectroscopy. The supersaturation generated upon dissolution of the solid dispersions was maintained for biologically relevant timeframes for the HPMC dispersions, whereas PVP appeared to be a less effective crystallization inhibitor.
Related JoVE Video
Cocrystal intrinsic dissolution behavior using a rotating disk.
J Pharm Sci
PUBLISHED: 08-03-2010
Show Abstract
Hide Abstract
The aim of this study was to investigate the dissolution characteristics of an acetaminophen/theophylline (AT) cocrystal compared with its pure components and physical mixtures. Intrinsic dissolution studies were conducted by a rotating-disk method. Solubility studies were conducted by collecting transient samples at 5, 30, and 60 min and equilibrium samples after 72 h, both at 37 °C. The AT cocrystal had a faster dissolution rate than AT physical mixtures, and the dissolution profiles were congruent (1:1 mole ratio) under different pH conditions. Thus, the AT cocrystal dissolved congruently at short times and exhibited higher transient solubility compared with its two pure components. Equilibrium solubilities of theophylline from the cocrystal were lower than transient values due to theophylline hydrate precipitation but no precipitation of free acetaminophen occurred. The solubility behavior of acetaminophen and theophylline exhibited typical 1:1 complex formation in physical mixtures, cocrystal, and phase-solubility studies. The Levich equation was used to predict the dissolution behavior of the AT cocrystal as well as that of the single components.
Related JoVE Video
Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc.
J Pharm Sci
PUBLISHED: 07-08-2010
Show Abstract
Hide Abstract
A previous method for measuring solubilities of crystalline drugs in polymers has been improved to enable longer equilibration and used to survey the solubilities of indomethacin (IMC) and nifedipine (NIF) in two homo-polymers [polyvinyl pyrrolidone (PVP) and polyvinyl acetate (PVAc)] and their co-polymer (PVP/VA). These data are important for understanding the stability of amorphous drug-polymer dispersions, a strategy actively explored for delivering poorly soluble drugs. Measuring solubilities in polymers is difficult because their high viscosities impede the attainment of solubility equilibrium. In this method, a drug-polymer mixture prepared by cryo-milling is annealed at different temperatures and analyzed by differential scanning calorimetry to determine whether undissolved crystals remain and thus the upper and lower bounds of the equilibrium solution temperature. The new annealing method yielded results consistent with those obtained with the previous scanning method at relatively high temperatures, but revised slightly the previous results at lower temperatures. It also lowered the temperature of measurement closer to the glass transition temperature. For D-mannitol and IMC dissolving in PVP, the polymers molecular weight has little effect on the weight-based solubility. For IMC and NIF, the dissolving powers of the polymers follow the order PVP > PVP/VA > PVAc. In each polymer studied, NIF is less soluble than IMC. The activities of IMC and NIF dissolved in various polymers are reasonably well fitted to the Flory-Huggins model, yielding the relevant drug-polymer interaction parameters. The new annealing method yields more accurate data than the previous scanning method when solubility equilibrium is slow to achieve. In practice, these two methods can be combined for efficiency. The measured solubilities are not readily anticipated, which underscores the importance of accurate experimental data for developing predictive models.
Related JoVE Video
A red zwitterionic co-crystal of acetaminophen and 2,4-pyridinedicarboxylic acid.
J Pharm Sci
PUBLISHED: 06-25-2010
Show Abstract
Hide Abstract
We report on a co-crystal of acetaminophen (APAP) and 2,4-pyridinedicarboxylic acid (PDA). The co-crystal was discovered by screening using the solution-mediated phase transformation (SMPT) technique. Despite the bulk solids of each component being white in color, the new co-crystal phase exhibited a red color. The new phase was analyzed using single-crystal X-ray diffraction and identified as (APAP).(PDA).(1). Structural analysis revealed PDA to exist in a hitherto unreported zwitterionic form in the co-crystal. A structural analysis of pure PDA revealed the presence of the zwitterion form in (PDA).(H(2)O) (2), as well. The components of 1 self-assemble as a three-dimensional (3D) hydrogen-bonded network with a pronounced 2D structure. The origin of the red color was investigated using density functional theory calculations, which demonstrate a decreasing pi-pi(*) separation involving the components of the solid.
Related JoVE Video
Understanding the behavior of amorphous pharmaceutical systems during dissolution.
Pharm. Res.
PUBLISHED: 02-12-2010
Show Abstract
Hide Abstract
To investigate the underlying physical processes taking place during dissolution of amorphous pharmaceuticals and correlate them to the observed solution concentration-time profiles. Felodipine and indomethacin were used as model hydrophobic compounds.
Related JoVE Video
Tolerance induction by removal of alloreactive T cells: in-vivo and pruning strategies.
Curr Opin Organ Transplant
PUBLISHED: 07-18-2009
Show Abstract
Hide Abstract
Current depletion strategies used in clinical transplantation can prevent acute rejection of a transplanted organ; however, they are nonspecific and are limited by their efficacy or the side effects of wide ranging cellular depletion. This review will focus on strategies that prevent rejection of allografts using specific allodepletion of the T cells that mediate rejection.
Related JoVE Video
Solubility of small-molecule crystals in polymers: D-mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA.
Pharm. Res.
PUBLISHED: 05-08-2009
Show Abstract
Hide Abstract
Amorphous pharmaceuticals, a viable approach to enhancing bioavailability, must be stable against crystallization. An amorphous drug can be stabilized by dispersing it in a polymer matrix. To implement this approach, it is desirable to know the drugs solubility in the chosen polymer, which defines the maximal drug loading without risk of crystallization. Measuring the solubility of a crystalline drug in a polymer is difficult because the high viscosity of polymers makes achieving solubility equilibrium difficult.
Related JoVE Video
Foxp3 as a marker of tolerance induction versus rejection.
Curr Opin Organ Transplant
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Foxp3 is the transcription factor that induces the regulatory T cell phenotype. This review will examine issues around Foxp3 induction and function as well as clinical data on tolerance and rejection.
Related JoVE Video
DNA vaccine encoding CD40 targeted to dendritic cells in situ prevents the development of Heymann nephritis in rats.
Kidney Int.
Show Abstract
Hide Abstract
The CD40-CD154 costimulatory pathway has been shown to be critical for both T- and B-cell activation in autoimmune disease. Here, we assessed the effects of blocking this pathway using CD40 DNA vaccine enhanced by dendritic cell targeting on the development of active Heymann nephritis, a rat model of human membranous nephropathy. DNA vaccination delivers plasmid DNA encoding the target antigen, either alone or in combination with enhancing elements, to induce both humoral and cellular immune responses. To determine whether CD40 DNA vaccine targeting the encoded CD40 directly to dendritic cells would improve the efficacy of the vaccination against self-protein CD40, we utilized a plasmid encoding a single-chain Fv antibody specific for the dendritic cell-restricted antigen-uptake receptor DEC205 (scDEC), the target gene CD40, and the adjuvant tetanus sequence p30. This vaccine plasmid was compared to a control plasmid without scDEC. Rats vaccinated with scDEC-CD40 had significantly less proteinuria and renal injury than did rats receiving scControl-CD40 and were protected from developing Heymann nephritis. Thus, CD40 DNA vaccination targeted to dendritic cells limits the development of Heymann nephritis.
Related JoVE Video
Absence of MyD88 signaling induces donor-specific kidney allograft tolerance.
J. Am. Soc. Nephrol.
Show Abstract
Hide Abstract
Toll-like receptors (TLRs) play a fundamental role in innate immunity and provide a link between innate and adaptive responses to an allograft; however, whether the development of acute and chronic allograft rejection requires TLR signaling is unknown. Here, we studied TLR signaling in a fully MHC-mismatched, life-sustaining murine model of kidney allograft rejection. Mice deficient in the TLR adaptor protein MyD88 developed donor antigen-specific tolerance, which protected them from both acute and chronic allograft rejection and increased their survival after transplantation compared with wild-type controls. Administration of an anti-CD25 antibody to MyD88-deficient recipients depleted CD4(+)CD25(+)FoxP3(+) cells and broke tolerance. In addition, defective development of Th17 immune responses to alloantigen both in vitro and in vivo occurred, resulting in an increased ratio of Tregs to Th17 effectors. Thus, MyD88 deficiency was associated with an altered balance of Tregs over Th17 cells, promoting tolerance instead of rejection. This study provides evidence that targeting innate immunity may be a clinically relevant strategy to facilitate transplantation tolerance.
Related JoVE Video
Regulatory T cells participate in CD39-mediated protection from renal injury.
Eur. J. Immunol.
Show Abstract
Hide Abstract
CD39 is an ecto-enzyme that degrades extracellular nucleotides, such as ATP, and is highly expressed on by the vasculature and circulating cells including Foxp3+ regulatory T (Treg) cells. To study the role of purinergic regulation in renal disease, we used the adriamycin nephropathy (AN) mouse model of chronic renal injury, using human CD39-transgenic (hCD39Tg) and wild-type (WT) BALB/c mice. Effects of CD39 expression by Treg cells were assessed in AN by adoptive transfer of CD4(+) CD25(+) and CD4(+) CD25(-) T cells isolated from hCD39Tg and WT mice. hCD39Tg mice were protected from renal injury in AN with decreased urinary protein and serum creatinine, and significantly less renal injury compared with WT mice. While WT CD25(+) and hCD39Tg CD25(-) T cells conferred some protection against AN, hCD39Tg CD25(+) Treg cells offered greater protection. In vitro studies showed direct pro-apoptotic effects of ATP on renal tubular cells. In conclusion, hCD39 expressed by circulating leukocytes and intrinsic renal cells limits innate AN injury. Specifically, CD39 expression by Treg cells contributes to its protective role in renal injury. These findings suggest that extracellular nucleotides mediate AN kidney injury and that CD39, expressed by Treg cells and other cells, is protective in this model.
Related JoVE Video
IL-2/IL-2Ab complexes induce regulatory T cell expansion and protect against proteinuric CKD.
J. Am. Soc. Nephrol.
Show Abstract
Hide Abstract
Regulatory T cells (Tregs) help protect against autoimmune renal injury. The use of agonist antibodies and antibody/cytokine combinations to expand Tregs in vivo may have therapeutic potential for renal disease. Here, we investigated the effects of administering IL-2/IL-2Ab complexes in mice with adriamycin nephropathy, a model of proteinuric kidney disease that resembles human focal segmental glomerulosclerosis. Injecting IL-2/IL-2Ab complexes before or, to a lesser extent, after induction of disease promoted expansion of Tregs. Furthermore, administration of this complex was renoprotective, evidenced by improved renal function, maintenance of body weight, less histologic injury, and reduced inflammation. IL-2/IL-2Ab reduced serum IL-6 and renal expression of IL-6 and IL-17 but enhanced expression of IL-10 and Foxp3 in the spleen. In vitro, the addition of IL-2/IL-2Ab complexes induced rapid STAT-5 phosphorylation in CD4 T cells. In summary, these data suggest that inducing the expansion of Tregs by administering IL-2/IL-2Ab complexes is a possible strategy to treat renal disease.
Related JoVE Video
CD8+ regulatory T cells induced by T cell vaccination protect against autoimmune nephritis.
J. Am. Soc. Nephrol.
Show Abstract
Hide Abstract
Autoreactive T cells play a pivotal role in the pathogenesis of autoimmune kidney disease. T cell vaccination (TCV) may limit autoimmune disease and induce CD8+ regulatory T cells (Tregs). We used Heymann nephritis (HN), a rat model of human membranous nephritis, to study the effects of TCV on autoimmune kidney disease. We harvested CD4+ T cells from renal tubular antigen (Fx1A) -immunized rats and activated these cells in vitro to express the MHC Class Ib molecule Qa-1. Vaccination of Lewis rats with these autoreactive Fx1A-induced T cells protected against HN, whereas control-primed T cells did not. Rats that underwent TCV had lower levels of proteinuria and serum creatinine and significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates. Furthermore, these rats expressed less IFN-? and IL-6 in splenocytes, whereas the numbers of Tregs and the expression of Foxp3 were unchanged. In vitro cytotoxicity assays showed CD8+ T cell-mediated elimination of Qa-1-expressing CD4+ T cells. In vivo, TCV abrogated the increase in Qa-1-expressing CXCR5+ TFH cells observed in HN compared with controls. Taken together, these results suggest that TCV protects against autoimmune kidney disease by targeting Qa-1-expressing autoreactive CD4+ cells.
Related JoVE Video
DEC205-DC targeted DNA vaccines to CX3CR1 and CCL2 are potent and limit macrophage migration.
Int J Clin Exp Med
Show Abstract
Hide Abstract
Monocytes utilise a variety of chemokines to traffic to atherosclerotic plaques. CX3C chemokine ligand 1 (CX3CL1 & Fractalkine) and its receptor CX3CR1 and monocyte chemoattractant protein 1 (CCL2) have been identified as chemokines/receptors that have an important role in the migration and recruitment of monocytes during the pathogenesis of several inflammatory diseases including atherosclerosis. DNA vectors containing single chain variable region fragment (scFv) for DC-targeted receptor DEC205 were cloned with mouse CX3CR1 and CCL2 genes respectively, and vaccinated into C57/BL6 mice weekly for 3 weeks. Induced anti-CX3CR1 and anti-CCL2 in vaccinated mice was examined by ELISA and Western Blot analysis, while the cellular response was examined by ELISPOT. The inhibition of chemotaxis of J774 macrophages to Py-4-1 endothelial cells was examined by in vitro transwell migration assay using serum collected from vaccinated mice. All vaccinated mice generated anti-CX3CR1 and anti-CCL2 Ab and cellular response by 8 weeks after DNA vaccination. Macrophage migration towards TNF-? activated endothelial cells was significantly inhibited by serum containing both anti-CX3CR1 or anti-CCL2 Ab from vaccinated mice. These results demonstrate that DC-targeting of DNA vaccines to self-antigens generates functional immune responses which can inhibit specific key chemotactic targets. This suggests a potential therapeutic role for chemokine/receptor DNA vaccination in atherosclerosis, where chemotaxis has a pivotal role in the inflammatory process.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.