JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health. Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal development will provide an important management tool for controlling coral disease epizootics.
Related JoVE Video
Dynamic stability of coral reefs on the west Australian coast.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10-35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (?28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.
Related JoVE Video
Unprecedented mass bleaching and loss of coral across 12° of latitude in Western Australia in 2010-11.
PLoS ONE
Show Abstract
Hide Abstract
Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010-11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA).
Related JoVE Video
Digitise this! A quick and easy remote sensing method to monitor the daily extent of dredge plumes.
PLoS ONE
Show Abstract
Hide Abstract
Technological advancements in remote sensing and GIS have improved natural resource managers abilities to monitor large-scale disturbances. In a time where many processes are heading towards automation, this study has regressed to simple techniques to bridge a gap found in the advancement of technology. The near-daily monitoring of dredge plume extent is common practice using Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and associated algorithms to predict the total suspended solids (TSS) concentration in the surface waters originating from floods and dredge plumes. Unfortunately, these methods cannot determine the difference between dredge plume and benthic features in shallow, clear water. This case study at Barrow Island, Western Australia, uses hand digitising to demonstrate the ability of human interpretation to determine this difference with a level of confidence and compares the method to contemporary TSS methods. Hand digitising was quick, cheap and required very little training of staff to complete. Results of ANOSIM R statistics show remote sensing derived TSS provided similar spatial results if they were thresholded to at least 3 mg L(-1). However, remote sensing derived TSS consistently provided false-positive readings of shallow benthic features as Plume with a threshold up to TSS of 6 mg L(-1), and began providing false-negatives (excluding actual plume) at a threshold as low as 4 mg L(-1). Semi-automated processes that estimate plume concentration and distinguish between plumes and shallow benthic features without the arbitrary nature of human interpretation would be preferred as a plume monitoring method. However, at this stage, the hand digitising method is very useful and is more accurate at determining plume boundaries over shallow benthic features and is accessible to all levels of management with basic training.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.