JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Unusual role of epilayer-substrate interactions in determining orientational relations in van der Waals epitaxy.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-12-2014
Show Abstract
Hide Abstract
Using selected-area low-energy electron diffraction analysis, we showed strict orientational alignment of monolayer hexagonal boron nitride (h-BN) crystallites with Cu(100) surface lattices of Cu foil substrates during atmospheric pressure chemical vapor deposition. In sharp contrast, the graphene-Cu(100) system is well-known to assume a wide range of rotations despite graphene's crystallographic similarity to h-BN. Our density functional theory calculations uncovered the origin of this surprising difference: The crystallite orientation is determined during nucleation by interactions between the cluster's edges and the substrate. Unlike the weaker B- and N-Cu interactions, strong C-Cu interactions rearrange surface Cu atoms, resulting in the aligned geometry not being a distinct minimum in total energy. The discovery made in this specific case runs counter to the conventional wisdom that strong epilayer-substrate interactions enhance orientational alignment in epitaxy and sheds light on the factors that determine orientational relation in van der Waals epitaxy of 2D materials.
Related JoVE Video
Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation.
ACS Nano
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor-phase synthesis. Here, we demonstrate a method to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (?100 ?m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.
Related JoVE Video
Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles.
ACS Nano
PUBLISHED: 07-30-2014
Show Abstract
Hide Abstract
Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-ferromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.
Related JoVE Video
Universal formation of compositionally graded bulk heterojunction for efficiency enhancement in organic photovoltaics.
Adv. Mater. Weinheim
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
A universal method is reported to form graded bulk heterojunction (BHJ) organic photovoltaic devices (OPVs) by a simple solvent-fluxing process. Donors are enriched at the anode and acceptors are enriched at cathode side, matching the gradient electron and hole current across the film. Efficiency enhancements by 15-50% are achieved for all BHJ systems tested compared with the optimized regular BHJ OPVs.
Related JoVE Video
Electron energy loss spectroscopy of polytetrafluoroethylene: experiment and first principles calculations.
Microscopy (Oxf)
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
We have performed electron energy-loss spectroscopy (EELS) on a 200 kV transmission electron microscope (TEM) equipped with a monochromator to investigate molecular conformation of polytetrafluoroethylene (PTFE). The experimental spectra show several unique features in the low-loss region and the onset of carbon K-edge for PTFE. Density function theory (DFT) methods are employed to calculate the low-loss and core-loss spectra of PTFE with consideration of the effects of phase transitions, chain orientation and polarization. The shape and width of the characteristic peaks of the experimental spectra are well reproduced in DFT calculations. By comparing the spectra from experiments and theory, the detailed information about the conformational dependence of EEL spectra for PTFE can be obtained. In the present work, we have demonstrated an application of combining high-resolution EELS and DFT calculations in both low-loss and core-loss regions to discriminate changes of chain conformation and orientation for the polymer with complex phase transition behavior.
Related JoVE Video
Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper.
ACS Nano
PUBLISHED: 09-09-2013
Show Abstract
Hide Abstract
We present a facile method to grow millimeter-size, hexagon-shaped, monolayer, single-crystal graphene domains on commercial metal foils. After a brief in situ treatment, namely, melting and subsequent resolidification of copper at atmospheric pressure, a smooth surface is obtained, resulting in the low nucleation density necessary for the growth of large-size single-crystal graphene domains. Comparison with other pretreatment methods reveals the importance of copper surface morphology and the critical role of the melting-resolidification pretreatment. The effect of important growth process parameters is also studied to determine their roles in achieving low nucleation density. Insight into the growth mechanism has thus been gained. Raman spectroscopy and selected area electron diffraction confirm that the synthesized millimeter-size graphene domains are high-quality monolayer single crystals with zigzag edge terminations.
Related JoVE Video
High-temperature transformation of Fe-decorated single-wall carbon nanohorns to nanooysters: a combined experimental and theoretical study.
Nanoscale
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
The processes by which single-wall carbon nanohorns are transformed by iron nanoparticles at high temperatures to form "nanooysters", hollow graphene capsules containing metal particles that resemble pearls in an oyster shell, are examined both experimentally and theoretically. Quantum chemical molecular dynamics (QM/MD) simulations based on the density-functional tight-binding (DFTB) method were performed to investigate their growth mechanism. The simulations suggest that the nanoparticles self-encapsulate to form single-wall nanooysters (SWNOs) by assisting the assembly of dangling carbon bonds, accompanied by migration of the metal particle inside the carbon structure. These calculations indicate that the structure of the oyster consists primarily of hexagons along with a few pentagons that are predominantly formed near the former nanohorn edges as a result of their fusion. Experimental observations of large diameter nanoparticles inside multiwall carbon shells indicate that migration and coalescence of many iron particles must occur, perhaps by the convergence of smaller SWNOs or carbon-coated Fe-nanoparticles, whereby the void space is generated by the corresponding increase in the carbon shell surface area to metal nanoparticle volume.
Related JoVE Video
Oxidation resistance of reactive atoms in graphene.
Nano Lett.
Show Abstract
Hide Abstract
We have found that reactive elements that are normally oxidized at room temperature are present as individual atoms or clusters on and in graphene. Oxygen is present in these samples but it is only detected in the thicker amorphous carbon layers present in the graphene specimens we have examined. However, we have seen no evidence that oxygen reacts with the impurity atoms and small clusters of these normally reactive elements when they are incorporated in the graphene layers. First principles calculations suggest that the oxidation resistance is due to kinetic effects such as preferential bonding of oxygen to nonincorporated atoms and H passivation. The observed oxidation resistance of reactive atoms in graphene may allow the use of these incorporated metals in catalytic applications. It also opens the possibility of designing and producing electronic, opto-electronic, and magnetic devices based on these normally reactive atoms.
Related JoVE Video
Topological defects: origin of nanopores and enhanced adsorption performance in nanoporous carbon.
Small
Show Abstract
Hide Abstract
A scanning transmission electron microscopy investigation of two nanoporous carbon materials, wood-based ultramicroporous carbon and poly(furfuryl alcohol)-derived carbon, is reported. Atomic-resolution images demonstrate they comprise isotropic, three-dimensional networks of wrinkled one-atom-thick graphene sheets. In each graphene plane, nonhexagonal defects are frequently observed as connected five- and seven-atom rings. Atomic-level modeling shows that these topological defects induce localized rippling of graphene sheets, which interferes with their graphitic stacking and induces nanopores that lead to enhanced adsorption of H(2) molecules. The poly(furfuryl alcohol)-derived carbon contains larger regions of stacked layers, and shows significantly smaller surface area and pore volume than the ultramicroporous carbon.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.