JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea).
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
Around 88 large vertebrate taxa disappeared from Sahul sometime during the Pleistocene, with the majority of losses (54 taxa) clearly taking place within the last 400,000 years. The largest was the 2.8-ton browsing Diprotodon optatum, whereas the ?100- to 130-kg marsupial lion, Thylacoleo carnifex, the worlds most specialized mammalian carnivore, and Varanus priscus, the largest lizard known, were formidable predators. Explanations for these extinctions have centered on climatic change or human activities. Here, we review the evidence and arguments for both. Human involvement in the disappearance of some species remains possible but unproven. Mounting evidence points to the loss of most species before the peopling of Sahul (circa 50-45 ka) and a significant role for climate change in the disappearance of the continents megafauna.
Related JoVE Video
Pliocene paleoenvironments of southeastern Queensland, Australia inferred from stable isotopes of marsupial tooth enamel.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The Chinchilla Local Fauna is a diverse assemblage of both terrestrial and aquatic Pliocene vertebrates from the fluviatile Chinchilla Sand deposits of southeastern Queensland, Australia. It represents one of Australias few but exceptionally rich Pliocene vertebrate localities, and as such is an important source of paleoecological data concerning Pliocene environmental changes and its effects on ecosystems. Prior inferences about the paleoenvironment of this locality made on the basis of qualitative observations have ranged from grassland to open woodland to wetland. Examination of the carbon and oxygen isotopes in the tooth enamel of marsupials from this site represents a quantitative method for inferring the paleoenvironments and paleoecology of the fossil fauna. Results from Chinchilla show that Protemnodon sp. indet. consumed both C3 and C4 photosynthesis plant types (mean ?(13)C?=?-14.5±2.0‰), and therefore probably occupied a mixed vegetation environment. Macropus sp. indet. from Chinchilla also consumed a mixed diet of both C3 and C4 plants, with more of a tendency for C4 plant consumption (mean ?(13)C?=?-10.3±2.3‰). Interestingly, their isotopic dietary signature is more consistent with tropical and temperate kangaroo communities than the sub-tropical communities found around Chinchilla today. Other genera sampled in this study include the extinct kangaroo Troposodon sp. indet. and the fossil diprotodontid Euryzygoma dunense each of which appear to have occupied distinct dietary niches. This study suggests that southeastern Queensland hosted a mosaic of tropical forests, wetlands and grasslands during the Pliocene and was much less arid than previously thought.
Related JoVE Video
Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea.
Mar. Environ. Res.
PUBLISHED: 05-20-2010
Show Abstract
Hide Abstract
We examined metal-to-calcium ratios (Fe/Ca, Mn/Ca and Zn/Ca) in the growth bands of two Porites corals from Daya Bay, South China Sea, in order to trace long-term trends in local ambient pollution levels. Although Fe and Mn did not show any obvious increasing trends over 32 years in the period 1976-2007, peak values of Fe/Ca and Mn/Ca occurred in the mid-late 1980s, temporally-coeval with the local construction of a nuclear power station. Furthermore, both corals showed rapid increases in Zn concentrations over the past 14 years (1994-2007), most likely due to increases in domestic and industrial sewage discharge. The Daya Bay corals had higher concentrations of metals than other reported corals from both pristine and seriously polluted locations, suggesting that acute (Fe and Mn) and chronic (Zn) heavy metal contamination has occurred locally over the past approximately 32 years.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.