JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1 Promoter and Other Aluminum-Responsive Genes.
Mol Plant
PUBLISHED: 11-19-2013
Show Abstract
Hide Abstract
Acidic soils comprise a large portion of the Earths crust. In this environment, aluminum becomes soluble to plants affecting directly plant development. Among crops, rice is the most Al-resistant but the base of this tolerance is far from being elucidated. In this work, we showed a large-scale profile of Al-responsive genes in rice. Besides, we extended the study in relation to ASR5, a protein previously found by our group as having an important function in Al resistance.
Related JoVE Video
Functional study of TCP23 in Arabidopsis thaliana during plant development.
Plant Physiol. Biochem.
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
The TCP class of genes is found only in plants and is represented by the first three identified genes: teosinte branched1, cycloidea and pcf. Members belonging to this class are important regulators of plant growth, development and control multiple traits in diverse plant species, including flower and petal asymmetry, plant architecture, leaf morphogenesis and senescence, embryo growth and circadian rhythm. Here we described a member of the TCP-P subfamily called AtTCP23. Using qRT-PCR we present evidence that AtTCP23 is ubiquitously express in all organs examined. To ascertain AtTCP23 localization, we fused GFP at the C-terminal position and analyzed stable expression by confocal microscopy. Transgenic lines harboring the full-length protein (OxTCP23:GFP) seems to accumulate GFP in the nucleus. In order to analyze AtTCP23 function, we obtained a T-DNA insertional line and developed AtTCP23 over-expression (OxTCP23) lines. Phenotypic analysis indicates that tcp23-1 knockout line has an early-flowering phenotype while overexpression lines (OxTCP23 and OxTCP23:eGFP) presents opposite phenotype. Besides that those lines have leaf morphology alteration, pale leaf borders and smaller roots. Thus we propose in this study that AtTCP23 may be involved in flowering time control and plant development.
Related JoVE Video
The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism.
BMC Plant Biol.
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
The translocator protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is important for many cellular functions in mammals and bacteria, such as steroid biosynthesis, cellular respiration, cell proliferation, apoptosis, immunomodulation, transport of porphyrins and anions. Arabidopsis thaliana contains a single TSPO/PBR-related gene with a 40 amino acid N-terminal extension compared to its homologs in bacteria or mammals suggesting it might be chloroplast or mitochondrial localized.
Related JoVE Video
The tissue expression pattern of the AtGRP5 regulatory region is controlled by a combination of positive and negative elements.
Plant Cell Rep.
PUBLISHED: 02-09-2010
Show Abstract
Hide Abstract
The AtGRP5 gene from Arabidopsis thaliana encodes a glycine-rich protein which has a major activity in protoderm-derived cells and is expressed in cells that undergo the first anatomical modifications leading to somatic embryo development. It has been previously demonstrated that its minimum promoter is 316 bp long including the 5UTR and presents three putative TATA-boxes sequences and several regions that are homologous to previous characterized cis-acting elements. In order to better characterize the AtGRP5 expression and to identify the promoter regions involved in its preferential epidermal expression, in situ hybridization and 5 promoter deletions were employed. In situ hybridization and GUS expression assays indicate that, besides being present during somatic embryogenesis, AtGRP5 is also expressed during the zygotic embryo development. The sequential 5 deletions indicate that multiple negative and positive regulatory elements are present in the AtGRP5 promoter and operate in order to confer its distinct expression pattern. A 44-bp region was shown to be essential for the epidermal expression of this gene in leaves, stems, flowers and fruits, and is also responsible for high activity of the AtGRP5 promoter in zygotic embryos. An element responsible for the phloem expression was also identified in a 35-bp region.
Related JoVE Video
AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation.
Planta
PUBLISHED: 02-12-2009
Show Abstract
Hide Abstract
Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.
Related JoVE Video
Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5.
BMC Genomics
PUBLISHED: 01-13-2009
Show Abstract
Hide Abstract
Gluconacetobacter diazotrophicus Pal5 is an endophytic diazotrophic bacterium that lives in association with sugarcane plants. It has important biotechnological features such as nitrogen fixation, plant growth promotion, sugar metabolism pathways, secretion of organic acids, synthesis of auxin and the occurrence of bacteriocins.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.