JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins.
J. Interferon Cytokine Res.
PUBLISHED: 04-05-2014
Show Abstract
Hide Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Related JoVE Video
Regulation of the mRNA half-life in breast cancer.
World J Clin Oncol
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
The control of the half-life of mRNA plays a central role in normal development and in disease progression. Several pathological conditions, such as breast cancer, correlate with deregulation of the half-life of mRNA encoding growth factors, oncogenes, cell cycle regulators and inflammatory cytokines that participate in cancer. Substantial stability means that a mRNA will be available for translation for a longer time, resulting in high levels of protein gene products, which may lead to prolonged responses that subsequently result in over-production of cellular mediators that participate in cancer. The stability of these mRNA is regulated at the 3'UTR level by different mechanisms involving mRNA binding proteins, micro-RNA, long non-coding RNA and alternative polyadenylation. All these events are tightly inter-connected to each other and lead to steady state levels of target mRNAs. Compelling evidence also suggests that both mRNA binding proteins and regulatory RNAs which participate to mRNA half-life regulation may be useful prognostic markers in breast cancers, pointing to a potential therapeutic approach to treatment of patients with these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay and discuss the possibility of its implication in breast cancer aggressiveness and the efficacy of targeted therapy.
Related JoVE Video
The ELR(+)CXCL chemokines and their receptors CXCR1/CXCR2: A signaling axis and new target for the treatment of renal cell carcinoma.
Oncoimmunology
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The long-term efficacy of anti-angiogenesis drugs targeting vascular endothelial growth factor (VEGF) and VEGF receptors in the treatment of renal cell carcinoma (RCC) has been lacking. We have shown that the ELR(+)CXCL cytokines and their (C-X-C) chemokine receptors, namely CXCR1 and CXCR2, stimulate cancer cell proliferation, tumor inflammation, and angiogenesis. Hence, this essential molecular nexus regulating cancer growth represents a key therapeutic target.
Related JoVE Video
The relevance of testing the efficacy of anti-angiogenesis treatments on cells derived from primary tumors: a new method for the personalized treatment of renal cell carcinoma.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Despite the numerous available drugs, the most appropriate treatments for patients affected by common or rare renal cell carcinomas (RCC), like those associated with the Xp11.2 translocation/transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) gene fusion (TFE3 RCC), are not clearly defined. We aimed to make a parallel between the sensitivity to targeted therapies on living patients and on cells derived from the initial tumor. Three patients diagnosed with a metastatic RCC (one clear cell RCC [ccRCC], two TFE3 RCC) were treated with anti-angiogenesis drugs. The concentrations of the different drugs giving 50% inhibition of cell proliferation (IC50) were determined with the Thiazolyl Blue Tetrazolium Bromide (MTT) assay on cells from the primary tumors and a reference sensitive RCC cell line (786-O). We considered the cells to be sensitive if the IC50 was lower or equal to that in 786-O cells, and insensitive if the IC50 was higher to that in 786-O cells (IC 50 of 6 ± 1 µM for sunitinib, 10 ± 1 µM for everolimus and 6 ± 1 µM for sorafenib). Based on this standard, the response in patients and in cells was equivalent. The efficacy of anti-angiogenesis therapies was also tested in cells obtained from five patients with non-metastatic ccRCC, and untreated as recommended by clinical practice in order to determine the best treatment in case of progression toward a metastatic grade. In vitro experiments may represent a method for evaluating the best first-line treatment for personalized management of ccRCC during the period following surgery.
Related JoVE Video
Linking JNK Activity to the DNA Damage Response.
Genes Cancer
PUBLISHED: 12-19-2013
Show Abstract
Hide Abstract
The activity of c-Jun N-terminal kinase (JNK) was initially described as ultraviolet- and oncogene-induced kinase activity on c-Jun. Shortly after this initial discovery, JNK activation was reported for a wider variety of DNA-damaging agents, including ?-irradiation and chemotherapeutic compounds. As the DNA damage response mechanisms were progressively uncovered, the mechanisms governing the activation of JNK upon genotoxic stresses became better understood. In particular, a recent set of papers links the physical breakage in DNA, the activation of the transcription factor NF-?B, the secretion of TNF-?, and an autocrine activation of the JNK pathway. In this review, we will focus on the pathway that is initiated by a physical break in the DNA helix, leading to JNK activation and the resultant cellular consequences. The implications of these findings will be discussed in the context of cancer therapy with DNA-damaging agents.
Related JoVE Video
The CXCL7/CXCR1/2 axis is a key driver in the growth of clear cell renal cell carcinoma.
Cancer Res.
PUBLISHED: 12-12-2013
Show Abstract
Hide Abstract
Mutations in the VHL upregulate expression of the central angiogenic factor VEGF which drives abnormal angiogenesis in clear cell renal cell carcinomas (ccRCC). However, the overexpression of VEGF in these tumors was not found to correlate with overall survival. Here we show that the pro-angiogenic, pro-inflammatory cytokine CXCL7 is an independent prognostic factor for overall survival in this setting. CXCL7 antibodies strongly reduced the growth of ccRCC tumors in nude mice. Conversely, conditional overexpression of CXCL7 accelerated ccRCC development. CXCL7 promoted cell proliferation in vivo and in vitro, where expression of CXCL7 was induced by the central pro-inflammatory cytokine IL-1ß. ccRCC cells normally secrete low amounts of CXCL7, it was more highly expressed in tumors due high levels of IL-1ß there. We found that a pharmacological inhibitor of the CXCL7 receptors CXCR1 and CXCR2 (SB225002) was sufficient to inhibit endothelial cell proliferation and ccRCC growth. Because CXCR1 and CXCR2 are present on both endothelial and ccRCC cells, their inhibition affected both the tumor vasculature and the proliferation of tumor cells. Our results highlight the CXCL7/CXCR1/CXCR2 axis as a pertinent target for the treatment of ccRCC.
Related JoVE Video
Mechanisms of resistance to anti-angiogenesis therapies.
Biochimie
PUBLISHED: 03-04-2013
Show Abstract
Hide Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, provides oxygen and nutrients to actively proliferating tumor cells. Hence, it represents a critical aspect of tumor progression and metastasis. Because inhibition of angiogenesis represents a major approach to cancer treatment, the development of inhibitors of angiogenesis is a major challenge. The first FDA approved anti-angiogenic drug bevacizumab, a humanized monoclonal antibody directed against the Vascular Endothelial Growth Factor (VEGF), has been approved for the treatment of metastatic colorectal, lung, breast, and kidney cancers. The encouraging results have lead to the development, in the past few years, of other agents targeting angiogenic pathways as potent anti-cancer drugs and a number of them have been approved for metastatic breast, lung, kidney, and central nervous system cancers. Despite a statistically significant increase in progression free survival, which has accelerated FDA approval, no major benefit to overall survival was described and patients inevitably relapsed due to acquired resistance. However, while progression free survival was increased by only a few months for the majority of the patients, some clearly benefited from the treatment with a real increase in life span. The objective of this review is to present an overview of the different treatments targeting angiogenesis, their efficacy and the mechanisms of resistance that have been identified in different cancer types. It is essential to understand how resistance (primary or acquired over time) develops and how it may be overcome.
Related JoVE Video
TRF2 inhibits a cell-extrinsic pathway through which natural killer cells eliminate cancer cells.
Nat. Cell Biol.
PUBLISHED: 02-25-2013
Show Abstract
Hide Abstract
Dysfunctional telomeres suppress tumour progression by activating cell-intrinsic programs that lead to growth arrest. Increased levels of TRF2, a key factor in telomere protection, are observed in various human malignancies and contribute to oncogenesis. We demonstrate here that a high level of TRF2 in tumour cells decreased their ability to recruit and activate natural killer (NK) cells. Conversely, a reduced dose of TRF2 enabled tumour cells to be more easily eliminated by NK cells. Consistent with these results, a progressive upregulation of TRF2 correlated with decreased NK cell density during the early development of human colon cancer. By screening for TRF2-bound genes, we found that HS3ST4--a gene encoding for the heparan sulphate (glucosamine) 3-O-sulphotransferase 4--was regulated by TRF2 and inhibited the recruitment of NK cells in an epistatic relationship with TRF2. Overall, these results reveal a TRF2-dependent pathway that is tumour-cell extrinsic and regulates NK cell immunity.
Related JoVE Video
TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation.
J. Biol. Chem.
PUBLISHED: 10-27-2011
Show Abstract
Hide Abstract
Listeria monocytogenes is a facultative intracellular pathogen that invades both phagocytic and non-phagocytic cells. Recent studies have shown that L. monocytogenes infection activates the autophagy pathway. However, the innate immune receptors involved and the downstream signaling pathways remain unknown. Here, we show that macrophages deficient in the TLR2 and NOD/RIP2 pathway display defective autophagy induction in response to L. monocytogenes. Inefficient autophagy in Tlr2(-/-) and Nod2(-/-) macrophages led to a defect in bacteria colocalization with the autophagosomal marker GFP-LC3. Consequently, macrophages lacking TLR2 and NOD2 were found to be more susceptible to L. monocytogenes infection, as were the Rip2(-/-) mice. Tlr2(-/-) and Nod2(-/-) cells showed perturbed NF-?B and ERK signaling. However, autophagy against L. monocytogenes was dependent selectively on the ERK pathway. In agreement, wild-type cells treated with a pharmacological inhibitor of ERK or ERK-deficient cells displayed inefficient autophagy activation in response to L. monocytogenes. Accordingly, fewer bacteria were targeted to the autophagosomes and, consequently, higher bacterial growth was observed in cells deficient in the ERK signaling pathway. These findings thus demonstrate that TLR2 and NOD proteins, acting via the downstream ERK pathway, are crucial to autophagy activation and provide a mechanistic link between innate immune receptors and induction of autophagy against cytoplasm-invading microbes, such as L. monocytogenes.
Related JoVE Video
A synonymous polymorphism of the Tristetraprolin (TTP) gene, an AU-rich mRNA-binding protein, affects translation efficiency and response to Herceptin treatment in breast cancer patients.
Hum. Mol. Genet.
PUBLISHED: 08-29-2011
Show Abstract
Hide Abstract
Post-transcriptional regulation plays a central role in cell differentiation and proliferation. Among the regulatory factors involved in this mechanism, Tristetraprolin (ZFP36 or TTP) is the prototype of a family of RNA-binding proteins that bind to adenylate and uridylate (AU)-rich sequences in the 3UTR of mRNAs, which promotes their physiological decay. Here, we investigated whether TTP correlates with tumor aggressiveness in breast cancer and is a novel prognostic factor for this neoplasia. By immunoblot analysis, we determined the amount of TTP protein in different breast cancer cell lines and found an inverse correlation between aggressiveness and metastatic potential. TTP mRNA levels were very variable among cells lines and did not correlate with protein levels. Interestingly, by sequencing the entire TTP coding region in Hs578T cells that do not express the TTP protein, we identified a synonymous polymorphism (rs3746083) that showed a statistically significant association with a lack of response to Herceptin/Trastuzumab in HER2-positive-breast cancer patients. Even though this genetic change did not modify the corresponding amino acid, we performed functional studies and showed an effect on protein translation associated with the variant allele with respect to the wild-type. These data underline the importance of synonymous variants on gene expression and the potential role of TTP genetic polymorphisms as a prognostic marker for breast cancer.
Related JoVE Video
VEGF spliced variants: possible role of anti-angiogenesis therapy.
J Nucleic Acids
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
Angiogenesis has been targeted in retinopathies, psoriasis, and a variety of cancers (colon, breast, lung, and kidney). Among these tumour types, clear cell renal cell carcinomas (RCCs) are the most vascularized tumours due to mutations of the von Hippel Lindau gene resulting in HIF-1 alpha stabilisation and overexpression of Vascular Endothelial Growth Factor (VEGF). Surgical nephrectomy remains the most efficient curative treatment for patients with noninvasive disease, while VEGF targeting has resulted in varying degrees of success for treating metastatic disease. VEGF pre-mRNA undergoes alternative splicing generating pro-angiogenic isoforms. However, the recent identification of novel splice variants of VEGF with anti-angiogenic properties has provided some insight for the lack of current treatment efficacy. Here we discuss an explanation for the relapse to anti-angiogenesis treatment as being due to either an initial or acquired resistance to the therapy. We also discuss targeting angiogenesis via SR (serine/arginine-rich) proteins implicated in VEGF splicing.
Related JoVE Video
Constitutive ERK activity induces downregulation of tristetraprolin, a major protein controlling interleukin8/CXCL8 mRNA stability in melanoma cells.
Am. J. Physiol., Cell Physiol.
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
Most melanoma cells are characterized by the V600E mutation in B-Raf kinase. This mutation leads to increased expression of interleukin (CXCL8), which plays a key role in cell growth and angiogenesis. Thus CXCL8 appears to be an interesting therapeutic target. Hence, we performed vaccination of mice with GST-CXCL8, which results in a reduced incidence of syngenic B16 melanoma cell xenograft tumors. We next addressed the molecular mechanisms responsible for aberrant CXCL8 expression in melanoma. The CXCL8 mRNA contains multiples AU-rich sequences (AREs) that modulate mRNA stability through the binding of tristetraprolin (TTP). Melanoma cell lines express very low TTP levels. We therefore hypothesized that the very low endogenous levels of TTP present in different melanoma cell lines might be responsible for the relative stability of CXCL8 mRNAs. We show that TTP is actively degraded by the proteasome and that extracellular-regulated kinase inhibition results in TTP accumulation. Conditional expression of TTP in A375 melanoma cells leads to CXCL8 mRNA destabilization via its 3 untranslated regions (3-UTR), and TTP overexpression reduces its production. In contrast, downregulation of TTP by short hairpin RNA results in upregulation of CXCL8 mRNA. Maintaining high TTP levels in melanoma cells decreases cell proliferation and autophagy and induces apoptosis. Sorafenib, a therapeutic agent targeting Raf kinases, decreases CXCL8 expression in melanoma cells through reexpression of TTP. We conclude that loss of TTP represents a key event in the establishment of melanomas through constitutive expression of CXCL8, which constitutes a potent therapeutic target.
Related JoVE Video
The extracellular regulated kinase-1 (ERK1) controls regulated alpha-secretase-mediated processing, promoter transactivation, and mRNA levels of the cellular prion protein.
J. Biol. Chem.
PUBLISHED: 05-17-2011
Show Abstract
Hide Abstract
The ?-secretases A disintegrin and metalloprotease 10 (ADAM10) and ADAM17 trigger constitutive and regulated processing of the cellular prion protein (PrP(c)) yielding N1 fragment. The latter depends on protein kinase C (PKC)-coupled M1/M3 muscarinic receptor activation and subsequent phosphorylation of ADAM17 on its intracytoplasmic threonine 735. Here we show that regulated PrP(c) processing and ADAM17 phosphorylation and activation are controlled by the extracellular-regulated kinase-1/MAP-ERK kinase (ERK1/MEK) cascade. Thus, reductions of ERK1 or MEK activities by dominant-negative analogs, pharmacological inhibition, or genetic ablation all impair N1 secretion, whereas constitutively active proteins increase N1 recovery in the conditioned medium. Interestingly, we also observed an ERK1-mediated enhanced expression of PrP(c). We demonstrate that the ERK1-associated increase in PrP(c) promoter transactivation and mRNA levels involve transcription factor AP-1 as a downstream effector. Altogether, our data identify ERK1 as an important regulator of PrP(c) cellular homeostasis and indicate that this kinase exerts a dual control of PrP(c) levels through transcriptional and post-transcriptional mechanisms.
Related JoVE Video
ERK1-independent ?-secretase cut of ?-amyloid precursor protein via M1 muscarinic receptors and PKC?/?.
Mol. Cell. Neurosci.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
The amyloid precursor protein (?APP) undergoes several proteolytic cleavages. While ?- and ?-secretases are responsible for the production of the 40-43 amino-acid long amyloid ? peptide (A?), the ?-secretase cut performed by the disintegrins ADAM10 and ADAM17, occurs in the middle of the A? sequence, thereby preventing its formation and leading to the secretion of the large sAPP? neuroprotective fragment. Here we showed that a series of M1 muscarinic receptor agonists dose-dependently stimulated sAPP? secretion without interfering with ?APP subcellular distribution. Carbachol- and PDBu-induced sAPP? secretions were blocked by the general PKC inhibitor GF109203X. We established that HEK293 and rhabdhomyosarcoma cells overexpressing constitutively active (CA) PKC? or PKC? secrete increased amounts of sAPP? while those expressing PKC? were unable to modify sAPP? recovery. Conversely, the overexpression of PKC? or PKC? dominant negative (DN) constructs abolished PDBU-stimulated sAPP? secretion, whereas DN-PKC? remained inert. In agreement, PKC? knockout lowered sAPP? recovery in primary cultured fibroblasts. We also demonstrated that the regulated ?-secretase processing of ?APP is not controlled by the Extracellular-Regulated Kinase-1/MAP-ERK Kinase (ERK1/MEK) cascade and likely does not require ADAM17 phosphorylation on its threonine735 residue. Because the muscarinic-dependent ?-secretase-like processing of PrP(c) is fully dependent on ADAM17 phosphorylation on its threonine735 residue by ERK1, these results indicate that a single extracellular signal triggers ADAM17-dependent regulated cleavages of ?APP and PrP(c) through distinct signalling cascades. This opens new potential therapeutic strategies aimed, in the context of Alzheimers disease, at selectively activating ADAM17 towards ?APP without affecting the cleavages of its numerous other substrates.
Related JoVE Video
Deletion of ERK1 and ERK2 in the CNS causes cortical abnormalities and neonatal lethality: Erk1 deficiency enhances the impairment of neurogenesis in Erk2-deficient mice.
J. Neurosci.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Intracellular signaling through extracellular signal-regulated kinase (ERK) is important in regulating cellular functions in a variety of tissues including the CNS. Although ERK1 and ERK2 have a very similar substrate profile and amino acid sequences, there are strikingly different phenotypes between Erk1- and Erk2-deficient mice. Thus, the question arose as to whether these two proteins are functional homologs that compensate for each other, or whether they have distinct functions. Here, we generated double knock-out mice deficient for Erk2 in the CNS, with ubiquitous homozygous deletion of Erk1, and compared the phenotypes of these mice with those of monogenic Erk2-deficient mice. Although we did obtain double knock-out newborn pups, they survived for not >1 d. These pups appeared normal just after parturition. However, they had no milk in their stomachs even 6-7 h after birth. Intracerebral hemorrhages with varying location and severity were observed. The ventricular zones and corpus callosum of the double knock-out pups did not develop adequately. Neuronal size and nuclear morphology in some brain regions were markedly aberrant in the double knock-out pups compared with controls, while deficiency in Erk2 only caused a mild phenotype. These results suggest that total ERK1/2 activity governs cellular behaviors to ensure proper brain development.
Related JoVE Video
ERK1 and ERK2 are required for radial glial maintenance and cortical lamination.
Genes Cells
PUBLISHED: 09-05-2010
Show Abstract
Hide Abstract
ERK1/2 is involved in a variety of cellular processes during development, but the functions of these isoforms in brain development remain to be determined. Here, we generated double knockout (DKO) mice to study the individual and combined roles of ERK1 and ERK2 during cortical development. Mice deficient in Erk2, and more dramatically in the DKOs, displayed proliferation defects in late radial glial progenitors within the ventricular zone, and a severe disruption of lamination in the cerebral cortex. Immunohistochemical analyses revealed that late-generated cortical neurons were misplaced and failed to migrate the upper cortical layers in DKO mice. Moreover, these mice displayed fewer radial glial fibers, which provide architectural guides for radially migrating neurons. These results suggest that extracellular signal-regulated kinase signaling is essential for the expansion of the radial glial population and for the maintenance of radial glial scaffolding. Tangential migration of interneurons and oligodendrocytes from the ganglionic eminences (GE) to the dorsal cortex was more severely impaired in DKO mice than in mice deficient for Erk2 alone, because of reduced progenitor proliferation in the GE of the ventral telencephalon. These data demonstrate functional overlaps between ERK1 and ERK2 and indicate that extracellular signal-regulated kinase signaling plays a crucial role in cortical development.
Related JoVE Video
Implication of the ERK pathway on the post-transcriptional regulation of VEGF mRNA stability.
Methods Mol. Biol.
PUBLISHED: 09-03-2010
Show Abstract
Hide Abstract
Vascular Endothelial Growth Factor-A (VEGF-A) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the ERK pathway and over-expression of VEGF-A are common denominators of tumours of different origins. Understanding VEGF-A regulation is of primary importance to better comprehend pathological angiogenesis. VEGF-A expression is regulated at all steps of its synthesis including transcription, mRNA stability, an under estimated way of VEGF regulation and translation. In this chapter, we present the link between VEGF mRNA stability through AU-rich sequences present in its 3-untranslated region (3-UTR) and the ERK pathway. We present several methods that have been used to demonstrate that ERKs increase VEGF mRNA half-life. This mRNA-stabilising effect is partly due to reduction of the mRNA destabilising effects of Tristetraprolin (TTP), an AU-Rich binding protein which binds to VEGF-A mRNA 3-UTR.
Related JoVE Video
Bevacizumab/docetaxel association is more efficient than docetaxel alone in reducing breast and prostate cancer cell growth: a new paradigm for understanding the therapeutic effect of combined treatment.
Eur. J. Cancer
PUBLISHED: 04-30-2010
Show Abstract
Hide Abstract
Bevacizumab (Bvz), a Vascular Endothelial Growth Factor (VEGF)-targeted humanised monoclonal antibody, provides clinical benefit in combination with docetaxel (DXL), a microtubule-stabilising agent, in the treatment of metastatic breast and prostate cancers. Since VEGF and their receptors are expressed by tumour cells, we hypothesised that Bvz, in addition to its impact on neo-vascularisation, could have an impact on tumour cells and enhance the DXL activity. Hence, we studied the effect of DXL and Bvz on metastatic breast (MDA MB-231) and prostate (PC3) cancer cells lines. Bvz alone did not decrease cell proliferation but in combination with DXL, Bvz enhanced the anti-proliferative activity of DXL. Other anti-angiogenic factors Sunitinib, Sorafenib and Gefitinib enhanced the anti-proliferative effect of DXL. qPCR experiments showed that DXL significantly increased the VEGF and VEGF receptor 2 (VEGF-R2) mRNA levels. Activation of VEGF and VEGF-R2 promoters demonstrated that enhanced mRNA levels are partly due to transcriptional activation. ELISA assays showed that DXL induced accumulation of cytoplasmic VEGF but decreased extracellular levels by 39% (MDA) and 48% (PC3). Cell surface localisation of VEGF-R2 was increased by DXL alone, but decreased after combined treatment of DXL plus Bvz. Abnormal expression of VEGF-R2 was also shown on breast and prostate tumour samples reinforcing the results obtained on cellular models. In conclusion, DXL and Bvz in combination decreased extracellular VEGF and VEGF-R2 levels at the plasma membrane thereby blocking an important growth/survival loop. Thus, the combined therapeutic impact of Bvz and DXL observed in clinical trials is associated with enhanced anti-proliferative activity and inhibition of the vascular network.
Related JoVE Video
Insulin-like growth factor-I activates extracellularly regulated kinase to regulate the p450 side-chain cleavage insulin-like response element in granulosa cells.
Endocrinology
PUBLISHED: 04-06-2010
Show Abstract
Hide Abstract
IGF regulates steroidogenesis in granulosa cells through expression of the cytochrome P450 side-chain cleavage enzyme (P450scc) (CYP11A1), the rate-limiting enzyme in this biosynthetic process. We showed previously that the polypyrimidine tract-binding protein-associated splicing factor (PSF) acts as a repressor, whereas Sp1 is an activator, of P450 gene expression. The aim of the present study was to investigate IGF-stimulated ERK signaling regulating P450scc gene expression in the immortalized porcine granulosa cell line JC-410. We used a reporter gene under control of the IGF response element from the P450scc promoter. Inhibition of ERK phosphorylation with U0126 [1,4-diamino-2,3-dicyano-1,4-bis(o-aminophenylmercapto)butadiene] blocked IGF-I induction of IGF response element reporter gene activity. Western blotting revealed that IGF-I treatment resulted in phosphorylation of ERK that was specifically inhibited by U0126. ERK activation led to phosphorylation of T739 (an ERK site) on Sp1 that was diminished by U0126 or overexpression of PSF. Coimmunoprecipitation and Western blotting of nuclear extracts showed that phosphorylated ERK (pERK) bound PSF under basal conditions. IGF-I caused dissociation of pERK from PSF. Finally, chromatin immunoprecipitation analysis showed that PSF and Sp1 constitutively occupy the P450scc promoter independent of IGF-I treatment. These events provide a potential molecular mechanism for release of PSF repression of P450scc expression by dissociation of pERK and subsequent pERK-mediated phosphorylation of Sp1 to drive transcriptional induction of the P450scc gene in the absence of altered binding of PSF or Sp1 to the promoter. Understanding IGF-I regulation of these critical ovarian signaling pathways is the first step to delineating ovarian hyperstimulation syndromes such as polycystic ovarian syndrome.
Related JoVE Video
The MAPK ERK1 is a negative regulator of the adult steady-state splenic erythropoiesis.
Blood
PUBLISHED: 03-11-2010
Show Abstract
Hide Abstract
The mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase 1 (ERK1) and ERK2 are among the main signal transduction molecules, but little is known about their isoform-specific functions in vivo. We have examined the role of ERK1 in adult hematopoiesis with ERK1(-/-) mice. Loss of ERK1 resulted in an enhanced splenic erythropoiesis, characterized by an accumulation of erythroid progenitors in the spleen, without any effect on the other lineages or on bone marrow erythropoiesis. This result suggests that the ablation of ERK1 induces a splenic stress erythropoiesis phenotype. However, the mice display no anemia. Deletion of ERK1 did not affect erythropoietin (EPO) serum levels or EPO/EPO receptor signaling and was not compensated by ERK2. Splenic stress erythropoiesis response has been shown to require bone morphogenetic protein 4 (BMP4)-dependent signaling in vivo and to rely on the expansion of a resident specialized population of erythroid progenitors, termed stress erythroid burst-forming units (BFU-Es). A great expansion of stress BFU-Es and increased levels of BMP4 mRNA were found in ERK1(-/-) spleens. The ERK1(-/-) phenotype can be transferred by bone marrow cells. These findings show that ERK1 controls a BMP4-dependent step, regulating the steady state of splenic erythropoiesis.
Related JoVE Video
12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells.
Exp. Cell Res.
PUBLISHED: 03-05-2010
Show Abstract
Hide Abstract
12-Lipoxygenase, an arachidonic acid metabolizing enzyme of the lipoxygenase pathway, has been implicated as a major factor in promoting prostate cancer progression and metastasis. The ability of 12-LOX to aggravate the disease was linked to its proangiogenic role. Recent studies clearly demonstrated that 12-LOX enhances the expression and secretion of the angiogenic factor, vascular endothelial growth factor (VEGF) thus providing a direct link between this enzyme and its angiogenic properties. In the present study we have investigated the relationship between 12-LOX and hypoxia inducible factor-1alpha (HIF-1alpha), a transcription factor involved in the regulation of VEGF expression under hypoxic conditions in solid tumors. Our findings have revealed that HIF-1 is one of the target transcription factors regulated by 12-LOX and 12(S)-HETE, in hypoxic tumor cells of the prostate. Regulation of HIF-1alpha by 12-LOX adds to the complexity of pathways mediated by this enzyme in promoting prostate cancer angiogenesis and metastasis. We have evidence that 12-LOX increases the protein level, mRNA, and functional activity of HIF-1alpha under hypoxic conditions, one of the mechanisms by which it upregulates VEGF secretion and activity.
Related JoVE Video
Molecular mechanisms of resistance to tumour anti-angiogenic strategies.
J Oncol
PUBLISHED: 01-05-2010
Show Abstract
Hide Abstract
Tumour angiogenesis, described by Folkman in the early seventies, is an essential, complex, and dynamic process necessary for the growth of all solid tumours. Among the angiogenic factors secreted by the tumour cells, the Vascular Endothelial Growth Factor (VEGF) is one of the most important. Most types of human cancer cells express elevated levels of this proangiogenic factor and its receptors. New molecules, called anti-angiogenic, are developed to impair VEGF pathway and tumour vasculature. Despite important results, the clinical benefits of anti-VEGF therapy are relatively modest and usually measured in weeks or months. Why following anti-angiogenic therapy do some patients respond transiently and then why does tumour grow again and disease progress and which compensatory mechanisms could explain the anti-angiogenic treatment failure?
Related JoVE Video
A functional role for the p62-ERK1 axis in the control of energy homeostasis and adipogenesis.
EMBO Rep.
PUBLISHED: 01-04-2010
Show Abstract
Hide Abstract
In vivo genetic inactivation of the signalling adapter p62 leads to mature-onset obesity and insulin resistance, which correlate with reduced energy expenditure (EE) and increased adipogenesis, without alterations in feeding or locomotor functions. Enhanced extracellular signal-regulated kinase (ERK) activity in adipose tissue from p62-knockout (p62(-/-)) mice, and differentiating fibroblasts, suggested an important role for this kinase in the metabolic alterations of p62(-/-) mice. Here, we show that genetic inactivation of ERK1 in p62(-/-) mice reverses their increased adiposity and adipogenesis, lower EE and insulin resistance. These results establish genetically that p62 is a crucial regulator of ERK1 in metabolism.
Related JoVE Video
Cutting edge: Extracellular signal-related kinase is not required for negative selection of developing T cells.
J. Immunol.
PUBLISHED: 10-06-2009
Show Abstract
Hide Abstract
Signals initiated through the TCR during development can result in either survival and differentiation or cell death. High affinity signals that induce death elicit a robust yet transient activation of signaling pathways, including Erk, whereas low affinity ligands, which promote survival, generate a gradual and weaker activation of the same pathways. It was recently demonstrated that Erk localizes to distinct cellular locations in response to high and low affinity ligands. Although a requirement for Erk in positive selection is well established, its role in negative selection is controversial and, thus, the importance of Erk relocalization during development is not understood. In this study, we examined the role of Erk in negative selection using mice that are genetically deficient in both Erk1 and Erk2 in T cells. Results from three different models reveal that thymocyte deletion remains intact in the absence of Erk.
Related JoVE Video
Influence of the VEGF-A 936C>T germinal polymorphism on tumoral VEGF expression in head and neck cancer.
Pharmacogenomics
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
Elevated tumoral vascular endothelial growth factor A (VEGF-A) expression is linked to poor survival in head and neck cancer patients. The aim of the present study was to analyze the influence of VEGF-A gene polymorphisms on tumoral VEGF-A expression and to test their prognostic value in head and neck cancer patients.
Related JoVE Video
[The vascular endothelial growth factor (VEGF): a model of gene regulation and a marker of tumour aggressiveness. An obvious therapeutic target?].
J. Soc. Biol.
PUBLISHED: 06-16-2009
Show Abstract
Hide Abstract
VEGF represents a model of gene expression regulation. RAS/RAF/MEK/ERK and PI3 Kinase pathways, activated in response to growth factors stimulation or by oncogenes, contribute to its expression by activating transcription factors or inactivating proteins implicated in degradation of its mRNA. These factors (Sp1/Sp3, HIF-1 and TTP) constitute molecular markers of tumor aggressiveness. VEGF is overexpressed in solid or hematologic tumors. Thus, numerous compounds regulating angiogenesis by targeting VEGF have been developed. However, their effects are not as spectacular as expected. The existence of anti-angiogenic isoforms of VEGF could be a cause of their less potent activity. These different points are discussed in this review article.
Related JoVE Video
Multiple division cycles and long-term survival of hepatocytes are distinctly regulated by extracellular signal-regulated kinases ERK1 and ERK2.
Hepatology
PUBLISHED: 01-30-2009
Show Abstract
Hide Abstract
We investigated the specific role of the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 1 (ERK1)/ERK2 pathway in the regulation of multiple cell cycles and long-term survival of normal hepatocytes. An early and sustained epidermal growth factor (EGF)-dependent MAPK activation greatly improved the potential of cell proliferation. In this condition, almost 100% of the hepatocytes proliferated, and targeting ERK1 or ERK2 via RNA interference revealed the specific involvement of ERK2 in this regulation. However, once their first cell cycle was performed, hepatocytes failed to undergo a second round of replication and stayed blocked in G1 phase. We demonstrated that sustained EGF-dependent activation of the MAPK/ERK kinase (MEK)/ERK pathway was involved in this blockage as specific transient inhibition of the cascade repotentiated hepatocytes to perform a new wave of replication and multiple cell cycles. We identified this mechanism by showing that this blockage was in part supported by ERK2-dependent p21 expression. Moreover, continuous MEK inhibition was associated with a lower apoptotic engagement, leading to an improvement of survival up to 3 weeks. Using RNA interference and ERK1 knockout mice, we extended these results by showing that this improved survival was due to the specific inhibition of ERK1 expression/phosphorylation and did not involve ERK2.
Related JoVE Video
Dual role of Sp3 transcription factor as an inducer of apoptosis and a marker of tumour aggressiveness.
PLoS ONE
PUBLISHED: 01-08-2009
Show Abstract
Hide Abstract
The ambiguous role of transcription factor Sp3 for tumour progression is still debated since it was described as a transcriptional repressor or activator. Here we tried to decipher the molecular mechanisms implicated in Sp3 accumulation observed in aggressive tumours.
Related JoVE Video
Six1 regulates stem cell repair potential and self-renewal during skeletal muscle regeneration.
J. Cell Biol.
Show Abstract
Hide Abstract
Satellite cells (SCs) are stem cells that mediate skeletal muscle growth and regeneration. Here, we observe that adult quiescent SCs and their activated descendants expressed the homeodomain transcription factor Six1. Genetic disruption of Six1 specifically in adult SCs impaired myogenic cell differentiation, impaired myofiber repair during regeneration, and perturbed homeostasis of the stem cell niche, as indicated by an increase in SC self-renewal. Six1 regulated the expression of the myogenic regulatory factors MyoD and Myogenin, but not Myf5, which suggests that Six1 acts on divergent genetic networks in the embryo and in the adult. Moreover, we demonstrate that Six1 regulates the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway during regeneration via direct control of Dusp6 transcription. Muscles lacking Dusp6 were able to regenerate properly but showed a marked increase in SC number after regeneration. We conclude that Six1 homeoproteins act as a rheostat system to ensure proper regeneration of the tissue and replenishment of the stem cell pool during the events that follow skeletal muscle trauma.
Related JoVE Video
Mechanical allodynia but not thermal hyperalgesia is impaired in mice deficient for ERK2 in the central nervous system.
Pain
Show Abstract
Hide Abstract
Extracellular signal-regulated kinase (ERK) plays critical roles in pain plasticity. However, the specific contribution of ERK2 isoforms to pain plasticity is not necessarily elucidated. Here we investigate the function of ERK2 in mouse pain models. We used the Cre-loxP system to cause a conditional, region-specific, genetic deletion of Erk2. To induce recombination in the central nervous system, Erk2-floxed mice were crossed with nestin promoter-driven cre transgenic mice. In the spinal cord of resultant Erk2 conditional knockout (CKO) mice, ERK2 expression was abrogated in neurons and astrocytes, but indistinguishable in microglia compared to controls. Although Erk2 CKO mice showed a normal baseline paw withdrawal threshold to mechanical stimuli, these mice had a reduced nociceptive response following a formalin injection to the hind paw. In a partial sciatic nerve ligation model, Erk2 CKO mice showed partially restored mechanical allodynia compared to control mice. Interestingly, thermal hyperalgesia was indistinguishable between Erk2 CKO and control mice in this model. In contrast to Erk2 CKO mice, mice with a targeted deletion of ERK1 did not exhibit prominent anomalies in these pain models. In Erk2 CKO mice, compensatory hyperphosphorylation of ERK1 was detected in the spinal cord. However, ERK1 did not appear to influence nociceptive processing because the additional inhibition of ERK1 phosphorylation using MEK (MAPK/ERK kinase) inhibitor SL327 did not produce additional changes in formalin-induced spontaneous behaviors in Erk2 CKO mice. Together, these results indicate that ERK2 plays a predominant and/or specific role in pain plasticity, while the contribution of ERK1 is limited.
Related JoVE Video
Polar opposites: Erk direction of CD4 T cell subsets.
J. Immunol.
Show Abstract
Hide Abstract
Effective immune responses depend upon appropriate T cell differentiation in accord with the nature of an infectious agent, and the contingency of differentiation depends minimally on TCR, coreceptor, and cytokine signals. In this reverse genetic study, we show that the MAPK Erk2 is not essential for T cell proliferation in the presence of optimum costimulation. Instead, it has opposite effects on T-bet and Gata3 expression and, hence, on Th1 and Th2 differentiation. Alternatively, in the presence of TGF-?, the Erk pathway suppresses a large program of gene expression, effectively limiting the differentiation of Foxp3(+) regulatory T cells. In the latter case, the mechanisms involved include suppression of Gata3 and Foxp3, induction of Tbx21, phosphorylation of Smad2,3, and possibly suppression of Socs2, a positive inducer of Stat5 signaling. Consequently, loss of Erk2 severely impeded Th1 differentiation while enhancing the development of Foxp3(+)-induced T regulatory cells. Selected profiles of gene expression under multiple conditions of T cell activation illustrate the opposing consequences of Erk pathway signaling.
Related JoVE Video
Contrasted effects of the multitarget TKi vandetanib on docetaxel-sensitive and docetaxel-resistant prostate cancer cell lines.
Urol. Oncol.
Show Abstract
Hide Abstract
Overexpression of epidermal growth factor receptor (EGFR) and angiogenic factors is associated with the progression of androgen-independent prostate cancer (AIPC). We examined the effects of vandetanib, an inhibitor of vascular endothelial growth factor (VEGFR), EGFR, and rearranged during transfection (RET) tyrosine-kinase activities, alone or combined with docetaxel, on PC3 docetaxel-sensitive (PC3wt) or docetaxel-resistant (PC3R) AIPC cell growth in vivo and in vitro.
Related JoVE Video
ERK1 regulates the hematopoietic stem cell niches.
PLoS ONE
Show Abstract
Hide Abstract
The mitogen-activated protein kinases (MAPK) ERK1 and ERK2 are among the major signal transduction molecules but little is known about their specific functions in vivo. ERK activity is provided by two isoforms, ERK1 and ERK2, which are ubiquitously expressed and share activators and substrates. However, there are not in vivo studies which have reported a role for ERK1 or ERK2 in HSCs and the bone marrow microenvironment. The present study shows that the ERK1-deficient mice present a mild osteopetrosis phenotype. The lodging and the homing abilities of the ERK1(-/-) HSC are impaired, suggesting that the ERK1(-/-)-defective environment may affect the engrafment of HSCs. Serial transplantations demonstrate that ERK1 is involved in the maintenance of an appropriate medullar microenvironment, but that the intrinsic properties of HSCs are not altered by the ERK1(-/-) defective microenvironment. Deletion of ERK1 impaired in vitro and in vivo osteoclastogenesis while osteoblasts were unaffected. As osteoclasts derive from precursors of the monocyte/macrophage lineage, investigation of the monocytic compartment was performed. In vivo analysis of the myeloid lineage progenitors revealed that the frequency of CMPs increased by approximately 1.3-fold, while the frequency of GMPs significantly decreased by almost 2-fold, compared with the respective WT compartments. The overall mononuclear-phagocyte lineage development was compromised in these mice due to a reduced expression of the M-CSF receptor on myeloid progenitors. These results show that the cellular targets of ERK1 are M-CSFR-responsive cells, upstream to osteoclasts. While ERK1 is well known to be activated by M-CSF, the present results are the first to point out an ERK1-dependent M-CSFR regulation on hematopoietic progenitors. This study reinforces the hypothesis of an active cross-talk between HSCs, their progeny and bone cells in the maintenance of the homeostasis of these compartments.
Related JoVE Video
ERK1 is important for Th2 differentiation and development of experimental asthma.
FASEB J.
Show Abstract
Hide Abstract
The ERK1/2 signaling pathway regulates a variety of T-cell functions. We observed dynamic changes in the expression of ERK1/2 during T-helper cell differentiation. Specifically, the expression of ERK1/2 was decreased and increased by IL-12 and IL-4, respectively. To address this subject further, we examined the specific role of ERK1 in Th2 differentiation and development of experimental asthma using ERK1(-/-) mice. ERK1(-/-) mice were unable to mount airway inflammation and hyperreactivity in two different models of asthma, acute and chronic. ERK1(-/-) mice had reduced expression of Th2 cytokines IL-4 and IL-5 but not IL-17A or IFN-?. They had reduced levels of allergen-specific IgE and blood eosinophils. T cells from immunized ERK1(-/-) mice manifested reduced proliferation in response to the sensitizing allergen. ERK1(-/-) T cells had reduced and short-lived expression of JunB following TCR stimulation, which likely contributed to their impaired Th2 differentiation. Immunized ERK1(-/-) mice showed reduced numbers of CD44(high) CD4 T cells in the spleen. In vitro studies demonstrated that Th2 but not Th1 cells from ERK1(-/-) mice had reduced numbers of CD44(high) cells. Finally, CD4 T cells form ERK1(-/-) mice expressed higher levels of BIM under growth factor-deprived conditions and reduced Mcl-1 on stimulation. As a result, the survival of CD4 T cells, especially CD44(high) Th2 cells, was much reduced in ERK1(-/-) mice. We conclude that ERK1 plays a nonredundant role in Th2 differentiation and development of experimental asthma. ERK1 controls Th2 differentiation and survival through its effect on JunB and BIM, respectively.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.