JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Metabolic asthma: is there a link between obesity, diabetes, and asthma?
Immunol Allergy Clin North Am
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Childhood asthma and obesity have reached epidemic proportions worldwide, and the latter is also contributing to increasing rates of related metabolic disorders, such as diabetes. However, the relationship between asthma, obesity, and abnormal metabolism is not well understood nor has it been adequately explored in children. This article discusses the concept of metabolic asthma and the recent hypothesis that early derangement in lipid and glucose metabolism is independently associated with increased risk for asthma.
Related JoVE Video
Alternative mechanisms for respiratory syncytial virus (RSV) infection and persistence: could RSV be transmitted through the placenta and persist into developing fetal lungs?
Curr Opin Pharmacol
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
Respiratory syncytial virus (RSV) represents the most common respiratory pathogen observed worldwide in infants and young children and may play a role in the inception of recurrent wheezing and asthma in childhood. We discuss herein the recent hypothesis that RSV vertically transmitted from the mother to the fetus in utero causes persistent structural and functional changes in the developing lungs of the offspring, thereby predisposing to postnatal airway obstruction.
Related JoVE Video
Respiratory syncytial virus and asthma: speed-dating or long-term relationship?
Curr. Opin. Pediatr.
PUBLISHED: 05-10-2013
Show Abstract
Hide Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children worldwide. Furthermore, epidemiological evidence has been accumulating that RSV lower respiratory tract infection in infants may be linked to subsequent development of recurrent wheezing and asthma in childhood. This article reviews the epidemiological evidence linking RSV and asthma and some new hypotheses of the cellular and molecular mechanisms of postviral airway inflammation and hyperreactivity that have been proposed to explain the epidemiological link.
Related JoVE Video
Vertical transmission of respiratory syncytial virus modulates pre- and postnatal innervation and reactivity of rat airways.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Environmental exposure to respiratory syncytial virus (RSV) is a leading cause of respiratory infections in infants, but it remains unknown whether this infection is transmitted transplacentally from the lungs of infected mothers to the offspring. We sought to test the hypothesis that RSV travels from the respiratory tract during pregnancy, crosses the placenta to the fetus, persists in the lung tissues of the offspring, and modulates pre- and postnatal expression of growth factors, thereby predisposing to airway hyperreactivity.
Related JoVE Video
Pulmonary effects after acute inhalation of oil dispersant (COREXIT EC9500A) in rats.
J. Toxicol. Environ. Health Part A
PUBLISHED: 09-16-2011
Show Abstract
Hide Abstract
COREXIT EC9500A (COREXIT) was used to disperse crude oil during the 2010 Deepwater Horizon oil spill. While the environmental impact of COREXIT has been examined, the pulmonary effects are unknown. Investigations were undertaken to determine whether inhaled COREXIT elicits airway inflammation, alters pulmonary function or airway reactivity, or exerts pharmacological effects. Male rats were exposed to COREXIT (mean 27 mg/m(3), 5 h). Bronchoalveolar lavage was performed on d 1 and 7 postexposure. Lactate dehydrogenase (LDH) and albumin were measured as indices of lung injury; macrophages, neutrophils, lymphocytes, and eosinophils were quantified to evaluate inflammation; and oxidant production by macrophages and neutrophils was measured. There were no significant effects of COREXIT on LDH, albumin, inflammatory cell levels or oxidant production at either time point. In conscious animals, neither breathing frequency nor specific airway resistance were altered at 1 hr, 1 d and 7 d postexposure. Airway resistance responses to methacholine (MCh) aerosol in anesthetized animals were unaffected at 1 and 7 d postexposure, while dynamic compliance responses were decreased after 1 d but not 7 d. In tracheal strips, in the presence or absence of MCh, low concentrations of COREXIT (0.001% v/v) elicited relaxation; contraction occurred at 0.003-0.1% v/v. In isolated, perfused trachea, intraluminally applied COREXIT produced similar effects but at higher concentrations. COREXIT inhibited neurogenic contractile responses of strips to electrical field stimulation. Our findings suggest that COREXIT inhalation did not initiate lung inflammation, but may transiently increase the difficulty of breathing.
Related JoVE Video
Respiratory syncytial virus infection in human bone marrow stromal cells.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 10-22-2010
Show Abstract
Hide Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children. The pathophysiology of this infection in the respiratory system has been studied extensively, but little is known about its consequences in other systems. We studied whether RSV infects human bone marrow stromal cells (BMSCs) in vitro and in vivo, and investigated whether and how this infection affects BMSC structure and hematopoietic support function. Primary human BMSCs were infected in vitro with recombinant RSV expressing green fluorescent protein. In addition, RNA from naive BMSCs was amplified by PCR, and the products were sequenced to confirm homology with the RSV genome. The BMSC cytoskeleton was visualized by immunostaining for actin. Finally, we analyzed infected BMSCs for the expression of multiple cytokines and chemokines, evaluated their hematopoietic support capacity, and measured their chemotactic activity for both lymphoid and myeloid cells. We found that BMSCs support RSV replication in vitro with efficiency that varies among cell lines derived from different donors; furthermore, RNA sequences homologous to the RSV genome were found in naive primary human BMSCs. RSV infection disrupted cytoskeletal actin microfilaments, altered cytokine/chemokine expression patterns, decreased the ability of BMSCs to support B cell maturation, and modulated local chemotaxis. Our data indicate that RSV infects human BMSCs in vitro, and this infection has important structural and functional consequences that might affect hematopoietic and immune functions. Furthermore, we have amplified viral RNA from naive primary BMSCs, suggesting that in vivo these cells provide RSV with an extrapulmonary target.
Related JoVE Video
Metabolic abnormalities in children with asthma.
Am. J. Respir. Crit. Care Med.
PUBLISHED: 09-17-2010
Show Abstract
Hide Abstract
Childhood asthma and obesity have reached epidemic proportions worldwide, and the latter is also contributing to increasing rates of related metabolic disorders, such as diabetes. Yet, the relationship between asthma, obesity, and abnormal lipid and glucose metabolism is not well understood, nor has it been adequately explored in children.
Related JoVE Video
Effects of titanium dioxide nanoparticle exposure on neuroimmune responses in rat airways.
J. Toxicol. Environ. Health Part A
PUBLISHED: 09-07-2010
Show Abstract
Hide Abstract
Exposure to ambient nanoparticles (defined as particulate matter [PM] having one dimension <100 nm) is associated with increased risk of childhood and adult asthma. Nanomaterials feature a smaller aerodynamic diameter and a higher surface area per unit mass ratio compared to fine or coarse-sized particles, resulting in greater lung deposition efficiency and an increased potential for biological interaction. The neurotrophins nerve growth factor and brain-derived neurotrophic factor are key regulatory elements of neuronal development and responsiveness of airway sensory neurons. Changes in their expression are associated with bronchoconstriction, airway hyperresponsiveness, and airway inflammation. The neurogenic-mediated control of airway responses is a key pathophysiological mechanism of childhood asthma. However, the effects of nanoparticle exposure on neurotrophin-driven airway responses and their potential role as a predisposing factor for developing asthma have not been clearly elucidated. In this study, in vivo inhalation exposure to titanium dioxide nanoparticles (12 mg/m(3); 5.6 h/d for 3 d) produced upregulation of lung neurotrophins in weanling (2-wk-old) and newborn (2-d-old) rats but not in adult (12-wk-old) animals compared to controls. This effect was associated with increased airway responsiveness and upregulation of growth-related oncogene/keratine-derived chemokine (GRO/KC; CXCL1, rat equivalent of human interleukin [IL]-8) in bronchoalveolar lavage fluid. These data show for the first time that exposure to nanoparticulate upregulates the expression of lung neurotrophins in an age-dependent fashion and that this effect is associated with airway hyperresponsiveness and inflammation. These results suggest the presence of a critical window of vulnerability in earlier stages of lung development, which may lead to a higher risk of developing asthma.
Related JoVE Video
Neurotrophic and neuroimmune responses to early-life Pseudomonas aeruginosa infection in rat lungs.
Am. J. Physiol. Lung Cell Mol. Physiol.
PUBLISHED: 06-11-2010
Show Abstract
Hide Abstract
Early-life respiratory infection with Pseudomonas aeruginosa is common in children with cystic fibrosis or immune deficits. Although many of its clinical manifestations involve neural reflexes, little information is available on the peripheral nervous system of infected airways. This study sought to determine whether early-life infection triggers a neurogenic-mediated immunoinflammatory response, the mechanisms of this response, and its relationship with other immunoinflammatory pathways. Weanling and adult rats were inoculated with suspensions containing P. aeruginosa (PAO1) coated on alginate microspheres suspended in Tris-CaCl(2) buffer. Five days after infection, rats were injected with capsaicin to stimulate nociceptive nerves in the airway mucosa, and microvascular permeability was measured using Evans blue as a tracer. PAO1 increased neurogenic inflammation in the extra- and intrapulmonary compartments of weanlings but not in adults. The mechanism involves selective overexpression of NGF, which is critical for the local increase in microvascular permeability and for the infiltration of polymorphonuclear leukocytes into infected lung parenchyma. These effects are mediated in part by induction of downstream inflammatory cytokines and chemokines, especially IL-1beta, IL-18, and leptin. Our data suggest that neurogenic-mediated immunoinflammatory mechanisms play important roles in airway inflammation and hyperreactivity associated with P. aeruginosa when infection occurs early in life.
Related JoVE Video
The role of neurotrophins in inflammation and allergy.
Inflamm Allergy Drug Targets
PUBLISHED: 05-25-2010
Show Abstract
Hide Abstract
Allergic inflammation is the result of a specific pattern of cellular and humoral responses leading to the activation of the innate and adaptive immune system which, in turn, results in physiological and structural changes affecting target tissues such as the airways and the skin. Eosinophils activation and production of soluble mediators such as IgE antibodies is a pivotal feature in the pathophysiology of allergic diseases. In the past few years, however, convincing evidence has shown that neurons and other neurosensory structures are not only a target of the inflammatory process but also participate in the regulation of immune responses by actively releasing soluble mediators. The main products of these activated sensory neurons are a family of protein growth factors called neurotrophins. They were first isolated in the central nervous system and identified as important factors for the survival and differentiation of neurons during fetal and post-natal development as well as neuronal maintenance later in life. Four members of this family have been identified and well defined: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT-3), and neurotrophin 4/5 (NT-4/5). Neurotrophins play a critical role in the bidirectional signaling mechanisms between immune cells and the neurosensory network structures in the airways and the skin. Pruritus and airway hyperresponsiveness (AHR), two major features of atopic dermatitis and asthma, respectively, are associated with the disruption of the neurosensory network activities. In this review we provide a comprehensive description of the neuroimmune interactions underlying the pathophysiological mechanisms of allergic and inflammatory diseases.
Related JoVE Video
Neurotrophins regulate bone marrow stromal cell IL-6 expression through the MAPK pathway.
PLoS ONE
PUBLISHED: 02-06-2010
Show Abstract
Hide Abstract
The hosts response to infection is characterized by altered levels of neurotrophins and an influx of inflammatory cells to sites of injured tissue. Progenitor cells that give rise to the differentiated cellular mediators of inflammation are derived from bone marrow progenitor cells where their development is regulated, in part, by cues from bone marrow stromal cells (BMSC). As such, alteration of BMSC function in response to elevated systemic mediators has the potential to alter their function in biologically relevant ways, including downstream alteration of cytokine production that influences hematopoietic development.
Related JoVE Video
Respiratory syncytial virus prevention and therapy: past, present, and future.
Pediatr. Pulmonol.
PUBLISHED: 01-29-2010
Show Abstract
Hide Abstract
Respiratory syncytial virus (RSV) is the most common respiratory pathogen in infants and young children worldwide. More than 50 years after its discovery, and despite relentless attempts to identify pharmacological therapies to improve the clinical course and outcomes of this disease, the most effective therapy remains supportive care. Although the quest for a safe and effective vaccine remains unsuccessful, pediatricians practicing during the past decade have been able to protect at least the more vulnerable patients with safe and effective passive prophylaxis. This review summarizes the history, microbiology, epidemiology, pathophysiology, and clinical manifestations of this infection in order to provide the reader with the background information necessary to fully appreciate the many challenges presented by the clinical management of young children with bronchiolitis. The last part of this article attempts an evidence-based review of the pharmacologic strategies currently available and those being evaluated, intentionally omitting highly experimental approaches not yet tested in clinical trials and, therefore, not likely to become available in the foreseeable future.
Related JoVE Video
Combined effects of chronic nicotine and acute virus exposure on neurotrophin expression in rat lung.
Pediatr. Pulmonol.
PUBLISHED: 10-14-2009
Show Abstract
Hide Abstract
Strong epidemiologic evidence indicates that tobacco smoke influences frequency and severity of respiratory infections. Previously, we have shown that infection with respiratory syncytial virus upregulates expression of neurotrophic factors and receptors in the lungs, but the effect of tobacco exposure on neurotrophins is unknown. Therefore, we first sought to determine the expression of neurotrophic pathways in lungs of rats chronically exposed to nicotine, and then we studied the interactions between pollution and infection by inoculating virus after nicotine exposure. Expression of the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor, of their high-affinity tyrosine kinase receptors (trkA and trkB, respectively), and of the low-affinity receptor p75(NTR) was measured in the lungs of nicotine-exposed rats both at the mRNA level by reverse-transcription polymerase chain reaction and at the protein level by enzyme-linked immunoassay. Nicotine increased NGF expression both at the mRNA and protein level and also created a receptor imbalance deriving from increased expression of the pro-inflammatory p75(NTR) receptor without any concomitant change in the high-affinity trkA receptor. Viral infection after chronic nicotine exposure exerted an additive effect on NGF expression, and resulted in exaggerated neurogenic airway inflammation that was abolished by selective inhibition. In conclusion, nicotine levels comparable to those found in smokers are per se able to upregulate the expression of critical neurotrophic molecules in the respiratory tract, and combination of an acute infection following chronic nicotine exposure produces more severe neurotrophic dysregulation and neurogenic-mediated inflammation compared to either infection or nicotine alone.
Related JoVE Video
Less air pollution leads to rapid reduction of airway inflammation and improved airway function in asthmatic children.
Pediatrics
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Air pollution can promote airway inflammation, posing significant health risks for children with chronic respiratory problems. However, it is unknown whether this process is reversible, so that limiting pollution will benefit these children. We measured the short-term response of allergic asthmatic children exposed to a real-life reduction in outdoor air pollution by using noninvasive biomarkers of airway inflammation and function.
Related JoVE Video
NGF is an essential survival factor for bronchial epithelial cells during respiratory syncytial virus infection.
PLoS ONE
PUBLISHED: 02-09-2009
Show Abstract
Hide Abstract
Overall expression of neurotrophins in the respiratory tract is upregulated in infants infected by the respiratory syncytial virus (RSV), but it is unclear where (structural vs. inflammatory cells, upper vs. lower airways) and why, these changes occur. We analyzed systematically the expression of neurotrophic factors and receptors following RSV infection of human nasal, tracheal, and bronchial epithelial cells, and tested the hypothesis that neurotrophins work as innate survival factors for infected respiratory epithelia.
Related JoVE Video
Nerve growth factor modulates human rhinovirus infection in airway epithelial cells by controlling ICAM-1 expression.
Am. J. Physiol. Lung Cell Mol. Physiol.
Show Abstract
Hide Abstract
Human rhinoviruses (HRV) are the most common agent of upper respiratory infections and an important cause of lower respiratory tract symptoms. Our previous research with other viral pathogens has shown that virus-induced airway inflammation and hyperreactivity involve neurotrophic pathways that also affect tropism and severity of the infection. The goals of this study were to analyze systematically the expression of key neurotrophic factors and receptors during HRV-16 infection of human airway epithelial cells and to test the hypothesis that neurotrophins modulate HRV infection by controlling the expression of a major cellular receptor for this virus, the intercellular adhesion molecule 1 (ICAM-1). Neurotrophins and ICAM-1 expression were analyzed at the mRNA level by real-time PCR and at the protein level by flow cytometry and immunocytochemistry. A small inhibitory RNA (siRNA) or a specific blocking antibody was utilized to suppress nerve growth factor (NGF) expression and measure its effects on viral replication and virus-induced cell death. Nasal and bronchial epithelial cells were most susceptible to HRV-16 infection at 33°C and 37°C, respectively, and a significant positive relationship was noted between expression of NGF and tropomyosin-related kinase A (TrkA) and virus copy number. ICAM-1 expression was dose dependently upregulated by exogenous NGF and significantly downregulated by NGF inhibition with corresponding decrease in HRV-16 replication. NGF inhibition also increased apoptotic death of infected cells. Our results suggest that HRV upregulates the NGF-TrkA pathway in airway epithelial cells, which in turn amplifies viral replication by increasing HRV entry via ICAM-1 receptors and by limiting apoptosis.
Related JoVE Video
MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression.
PLoS ONE
Show Abstract
Hide Abstract
Early-life infection by respiratory syncytial virus (RSV) is associated with aberrant expression of the prototypical neurotrophin nerve growth factor (NGF) and its cognate receptors in human bronchial epithelium. However, the chain of events leading to this outcome, and its functional implications for the progression of the viral infection, has not been elucidated. This study sought to test the hypothesis that RSV infection modulates neurotrophic pathways in human airways by silencing the expression of specific microRNAs (miRNAs), and that this effect favors viral growth by interfering with programmed death of infected cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.