JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Post-transcriptional silencing of the Drosophila homolog of human ZASP: a molecular and functional analysis.
Cell Tissue Res.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
In humans, mutations in ZASP (the gene for Z-band alternatively spliced PDZ-motif protein) are associated with dilated cardiomyopathy and left ventricular non-compaction. In particular, mutations in or around the Zasp motif seem to be related to myofibrillar myopathy. Thus, "zaspopathies" include symptoms such as Z-line disgregation, proximal and distal muscle weakness, cardiomyopathies, and peripheral neuropathies. In order to understand the role of ZASP in muscle structure and function, we have performed a molecular characterization of the Drosophila ortholog of human ZASP and a functional analysis following the post-transcriptional silencing of the Drosophila gene. Transcriptional analysis of dzasp has revealed six additional exons, with respect to the known 16, and multiple splice variants. We have produced transgenic lines harboring constructs that, through the use of the UAS/Gal4 binary system, have enabled us to drive dsRNA interference of dzasp in a tissue-specific manner. Knockdown individuals show locomotor defects associated with alterations of muscle structure and ultrastructure, consistent with a role of dzasp specifically in the maintenance of muscular integrity.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.