JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Concurrent Exercise on a Gravity-Independent Device during Simulated Microgravity.
Med Sci Sports Exerc
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
To examine the effect of a high-intensity concurrent training program utilizing a single gravity-independent device on maintaining skeletal muscle function and aerobic capacity during short-term unilateral lower limb suspension (ULLS).
Related JoVE Video
The spatiotemporal dynamics of chromatin protein HP1? is essential for accurate chromosome segregation during cell division.
J. Biol. Chem.
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
Heterochromatin protein 1? (HP1?) is involved in regulation of chromatin plasticity, DNA damage repair, and centromere dynamics. HP1? detects histone dimethylation and trimethylation of Lys-9 via its chromodomain. HP1? localizes to heterochromatin in interphase cells but is liberated from chromosomal arms at the onset of mitosis. However, the structural determinants required for HP1? localization in interphase and the regulation of HP1? dynamics have remained elusive. Here we show that centromeric localization of HP1? depends on histone H3 Lys-9 trimethyltransferase SUV39H1 activity in interphase but not in mitotic cells. Surprisingly, HP1? liberates from chromosome arms in early mitosis. To test the role of this dissociation, we engineered an HP1? construct that persistently localizes to chromosome arms. Interestingly, persistent localization of HP1? to chromosome arms perturbs accurate kinetochore-microtubule attachment due to an aberrant distribution of chromosome passenger complex and Sgo1 from centromeres to chromosome arms that prevents resolution of sister chromatids. Further analyses showed that Mis14 and perhaps other PXVXL-containing proteins are involved in directing localization of HP1? to the centromere in mitosis. Taken together, our data suggest a model in which spatiotemporal dynamics of HP1? localization to centromere is governed by two distinct structural determinants. These findings reveal a previously unrecognized but essential link between HP1?-interacting molecular dynamics and chromosome plasticity in promoting accurate cell division.
Related JoVE Video
Suction-modified needle biopsy technique for the human soleus muscle.
Aviat Space Environ Med
PUBLISHED: 11-23-2013
Show Abstract
Hide Abstract
The needle biopsy technique for the soleus muscle is of particular interest because of the muscles unique fiber type distribution, contractile properties, and sensitivity to unloading. Unlike other commonly biopsied muscles, the soleus is not fully superficial and is in close proximity to neurovascular structures, resulting in a more challenging biopsy. Because of this, a standardized protocol for performing needle biopsies on the human soleus muscle that is safe, reliable, and repeatable is presented.
Related JoVE Video
Phosphorylation of the Bin, Amphiphysin, and RSV161/167 (BAR) domain of ACAP4 regulates membrane tubulation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-17-2013
Show Abstract
Hide Abstract
ArfGAP With Coiled-Coil, Ankyrin Repeat And PH Domains 4 (ACAP4) is an ADP-ribosylation factor 6 (ARF6) GTPase-activating protein essential for EGF-elicited cell migration. However, how ACAP4 regulates membrane dynamics and curvature in response to EGF stimulation is unknown. Here, we show that phosphorylation of the N-terminal region of ACAP4, named the Bin, Amphiphysin, and RSV161/167 (BAR) domain, at Tyr34 is necessary for EGF-elicited membrane remodeling. Domain structure analysis demonstrates that the BAR domain regulates membrane curvature. EGF stimulation of cells causes phosphorylation of ACAP4 at Tyr34, which subsequently promotes ACAP4 homodimer curvature. The phospho-mimicking mutant of ACAP4 demonstrates lipid-binding activity and tubulation in vitro, and ARF6 enrichment at the membrane is associated with ruffles of EGF-stimulated cells. Expression of the phospho-mimicking ACAP4 mutant promotes ARF6-dependent cell migration. Thus, the results present a previously undefined mechanism by which EGF-elicited phosphorylation of the BAR domain controls ACAP4 molecular plasticity and plasma membrane dynamics during cell migration.
Related JoVE Video
Frequencies of mtDNA mutations in primary tissues of colorectal adenopolyps.
Front Biosci (Elite Ed)
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
To investigate the potential role of mtDNA alterations during the onset of colorectal cancer, the occurrence of mtDNA variants in colorectal adenomatous (Tubular, Tubulovillous, and Villous) polyps, were studied. High resolution endonucleases and PCR-based sequence were applied to examine mtDNA variants in the ND and ATPase genes of 64 primary tissues of colorectal adeno-polyps and their matched normal controls. Forty-two variants were observed and 57% (24/42) were not previously reported in the MITODAT reference. Fifty-eight percent of these variants were germline and homoplasmic transitions. The distribution of observed mtDNA variants includes: 31% (13/42) tubular, 52% (22/42) tubulovillous, 45% (19/42) villous, and 45% (19/42) cancer (including FAP and JVP). Notably, an unreported germline variant in the ATPase 8 gene at nucleotide position (np) G8573A was observed in tubulovillous adenomas tissues. The results suggest that some specific mtDNA variants may serve as a potential biomarker for colorectal adenomatous polyps.
Related JoVE Video
Prolylcarboxypeptidase promotes angiogenesis and vascular repair.
Blood
PUBLISHED: 06-06-2013
Show Abstract
Hide Abstract
Prolylcarboxypeptidase (PRCP) is associated with leanness, hypertension, and thrombosis. PRCP-depleted mice have injured vessels with reduced Kruppel-like factor (KLF)2, KLF4, endothelial nitric oxide synthase (eNOS), and thrombomodulin. Does PRCP influence vessel growth, angiogenesis, and injury repair? PRCP depletion reduced endothelial cell growth, whereas transfection of hPRCP cDNA enhanced cell proliferation. Transfection of hPRCP cDNA, or an active site mutant (hPRCPmut) rescued reduced cell growth after PRCP siRNA knockdown. PRCP-depleted cells migrated less on scratch assay and murine PRCP(gt/gt) aortic segments had reduced sprouting. Matrigel plugs in PRCP(gt/gt) mice had reduced hemoglobin content and angiogenic capillaries by platelet endothelial cell adhesion molecule (PECAM) and NG2 immunohistochemistry. Skin wounds on PRCP(gt/gt) mice had delayed closure and reepithelialization with reduced PECAM staining, but increased macrophage infiltration. After limb ischemia, PRCP(gt/gt) mice also had reduced reperfusion of the femoral artery and angiogenesis. On femoral artery wire injury, PRCP(gt/gt) mice had increased neointimal formation, CD45 staining, and Ki-67 expression. Alternatively, combined PRCP(gt/gt) and MRP-14(-/-) mice were protected from wire injury with less neointimal thickening, leukocyte infiltration, and cellular proliferation. PRCP regulates cell growth, angiogenesis, and the response to vascular injury. Combined with its known roles in blood pressure and thrombosis control, PRCP is positioned as a key regulator of vascular homeostasis.
Related JoVE Video
Growth inhibition and compensation in response to neonatal hypoxia in rats.
Pediatr. Res.
PUBLISHED: 05-22-2013
Show Abstract
Hide Abstract
Hypoxia (Hx) is an important disease mechanism in prematurity, childhood asthma, and obesity. In children, Hx results in chronic inflammation.
Related JoVE Video
Interferon-?-induced necrosis: an antitumor biotherapeutic perspective.
J. Interferon Cytokine Res.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Interferon (IFN)-?-like the well-known antitumor biotherapeutic IFN-?-is a powerful antiproliferative and immune modulatory cytokine, but mixed results from clinical trials, together with issues of systemic toxicity, have dampened enthusiasm for its use in the treatment of cancer. We suggest that at least 2 factors reduce the antitumor efficacy of IFN-?: (1) poorly understood survival mechanisms that protect most tumor cells from IFN-?-induced direct cytotoxicity, and (2) the short half-life of IFN-? in serum. In this review, we outline avenues to overcome both these limitations. First, we have identified the transcription factor nuclear factor-kappa B (NF-?B) as a protective mechanism against IFN-?-induced necrosis, and disabling NF-?B allows IFN-? to trigger RIP1 kinase-dependent programmed necrosis (or necroptosis) in otherwise resistant cells. Second, we propose that fusing IFN-? to tumor-specific antibodies will stabilize IFN-? in serum and target this cytokine to tumor cells. We expect that such IFN-?-antibody chimeras (called immunocytokines), when combined with agents that neutralize tumor-intrinsic survival signals such as NF-?B, will exert potent tumoricidal activity with minimized systemic side effects. Although this review will focus on exploiting IFN-?-induced necrosis for treatment of renal cell carcinoma, these approaches are also directly applicable to several human cancers in which IFNs have shown therapeutic potential.
Related JoVE Video
Angiotensin 1-7 and Mas decrease thrombosis in Bdkrb2-/- mice by increasing NO and prostacyclin to reduce platelet spreading and glycoprotein VI activation.
Blood
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Bradykinin B2 receptor-deleted mice (Bdkrb2(-/-)) have delayed carotid artery thrombosis times and prolonged tail bleeding time resulting from elevated angiotensin II (AngII) and angiotensin receptor 2 (AT2R) producing increased plasma nitric oxide (NO) and prostacyclin. Bdkrb2(-/-) also have elevated plasma angiotensin-(1-7) and messenger RNA and protein for its receptor Mas. Blockade of Mas with its antagonist A-779 in Bdkrb2(-/-) shortens thrombosis times (58 ± 4 minutes to 38 ± 4 minutes) and bleeding times (170 ± 13 seconds to 88 ± 8 seconds) and lowers plasma nitrate (22 ± 4 ?M to 15 ± 5 ?M), and 6-keto-PGF1? (259 ± 103 pg/mL to 132 ± 58 pg/mL). Bdkrb2(-/-) platelets express increased NO, guanosine 3,5-cyclic monophosphate, and cyclic adenosine monophosphate with reduced spreading on collagen, collagen peptide GFOGER, or fibrinogen. In vivo A-779 or combined L-NAME and nimesulide treatment corrects it. Bdkrb2(-/-) platelets have reduced collagen-related peptide-induced integrin ?2b?3 activation and P-selectin expression that are partially corrected by in vivo A-779, nimesulide, or L-NAME. Bone marrow transplantations show that the platelet phenotype and thrombosis time depends on the host rather than donor bone marrow progenitors. Transplantation of wild-type bone marrow into Bdkrb2(-/-) hosts produces platelets with a spreading defect and delayed thrombosis times. In Bdkrb2(-/-), combined AT2R and Mas overexpression produce elevated plasma prostacyclin and NO leading to acquired platelet function defects and thrombosis delay.
Related JoVE Video
Anti-CD70 immunocytokines for exploitation of interferon-?-induced RIP1-dependent necrosis in renal cell carcinoma.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Metastatic renal cell carcinoma (RCC) is an incurable disease in clear need of new therapeutic interventions. In early-phase clinical trials, the cytokine IFN-? showed promise as a biotherapeutic for advanced RCC, but subsequent trials were less promising. These trials, however, focused on the indirect immunomodulatory properties of IFN-?, and its direct anti-tumor effects, including its ability to kill tumor cells, remains mostly unexploited. We have previously shown that IFN-? induces RIP1 kinase-dependent necrosis in cells lacking NF-?B survival signaling. RCC cells display basally-elevated NF-?B activity, and inhibiting NF-?B in these cells, for example by using the small-molecule proteasome blocker bortezomib, sensitizes them to RIP1-dependent necrotic death following exposure to IFN-?. While these observations suggest that IFN-?-mediated direct tumoricidal activity will have therapeutic benefit in RCC, they cannot be effectively exploited unless IFN-? is targeted to tumor cells in vivo. Here, we describe the generation and characterization of two novel immunocytokine chimeric proteins, in which either human or murine IFN-? is fused to an antibody targeting the putative metastatic RCC biomarker CD70. These immunocytokines display high levels of species-specific IFN-? activity and selective binding to CD70 on human RCC cells. Importantly, the IFN-? immunocytokines function as well as native IFN-? in inducing RIP1-dependent necrosis in RCC cells, when deployed in the presence of bortezomib. These results provide a foundation for the in vivo exploitation of IFN-?-driven tumoricidal activity in RCC.
Related JoVE Video
Single-chain antibody-based immunotoxins targeting Her2/neu: design optimization and impact of affinity on antitumor efficacy and off-target toxicity.
Mol. Cancer Ther.
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
Recombinant immunotoxins, consisting of single-chain variable fragments (scFv) genetically fused to polypeptide toxins, represent potentially effective candidates for cancer therapeutics. We evaluated the affinity of various anti-Her2/neu scFv fused to recombinant gelonin (rGel) and its effect on antitumor efficacy and off-target toxicity. A series of rGel-based immunotoxins were created from the human anti-Her2/neu scFv C6.5 and various affinity mutants (designated ML3-9, MH3-B1, and B1D3) with affinities ranging from 10(-8) to 10(-11) mol/L. Against Her2/neu-overexpressing tumor cells, immunotoxins with increasing affinity displayed improved internalization and enhanced autophagic cytotoxicity. Targeting indices were highest for the highest affinity B1D3/rGel construct. However, the addition of free Her2/neu extracellular domain (ECD) significantly reduced the cytotoxicity of B1D3/rGel because of immune complex formation. In contrast, ECD addition had little impact on the lower affinity constructs in vitro. In vivo studies against established BT474 M1 xenografts showed growth suppression by all immunotoxins. Surprisingly, therapy with the B1D3-rGel induced significant liver toxicity because of immune complex formation with shed Her2/neu antigen in circulation. The MH3-B1/rGel construct with intermediate affinity showed effective tumor growth inhibition without inducing hepatotoxicity or complex formation. These findings show that while high-affinity constructs can be potent antitumor agents, they may also be associated with mistargeting through the facile formation of complexes with soluble antigen leading to significant off-target toxicity. Constructs composed of intermediate-affinity antibodies are also potent agents that are more resistant to immune complex formation. Therefore, affinity is an exceptionally important consideration when evaluating the design and efficacy of targeted therapeutics.
Related JoVE Video
ACAP4 protein cooperates with Grb2 protein to orchestrate epidermal growth factor-stimulated integrin ?1 recycling in cell migration.
J. Biol. Chem.
PUBLISHED: 10-25-2011
Show Abstract
Hide Abstract
ARF6 GTPase is an important regulator of membrane trafficking and actin-based cytoskeleton dynamics active at the leading edge of migrating cells. The integrin family heterodimeric transmembrane proteins serve as major receptors for extracellular matrix proteins, which play essential roles in cell adhesion and migration. Our recent proteomic analyses of ARF6 effectors have identified a novel ARF6 GTPase-activating protein, ACAP4, essential for EGF-induced cell migration. However, molecular mechanisms underlying ACAP4-mediated cell migration have remained elusive. Here, we show that ACAP4 regulates integrin ?1 dynamics during EGF-stimulated cell migration by interaction with Grb2. Our biochemical study shows that EGF stimulation induces phosphorylation of tyrosine 733, which enables ACAP4 to bind Grb2. This interaction of ACAP4 with Grb2 regulates integrin ?1 recycling to the plasma membrane. Importantly, knockdown of ACAP4 by siRNA or overexpression of ACAP4 decreased recycling of integrin ?1 to the plasma membrane and reduced integrin-mediated cell migration. Taken together, these results suggest a novel function for ACAP4 in the regulation of cell migration through controlling integrin ?1 dynamics.
Related JoVE Video
Label-free Growth Receptor-2 Detection and Dissociation Constant Assessment in Diluted Human Serum Using a Longitudinal Extension Mode of a Piezoelectric Microcantilever Sensor.
Sens Actuators B Chem
PUBLISHED: 07-27-2011
Show Abstract
Hide Abstract
We have investigated real-time, label-free, in-situ detection of human epidermal growth factor receptor 2 (Her2) in diluted serum using the first longitudinal extension mode of a lead zirconate-lead titanate (PZT)/glass piezoelectric microcantilever sensor (PEMS) with H3 single-chain variable fragment (scFv) immobilized on the 3-mercaptopropyltrimethoxysilane (MPS) insulation layer of the PEMS surface. We showed that with the longitudinal extension mode, the PZT/glass PEMS consisting of a 1 mm long and 127 ?m thick PZT layer bonded with a 75 ?m thick glass layer with a 1.8 mm long glass tip could detect Her2 at a concentration of 6-60 ng/ml (or 0.06-0.6 nM) in diluted human serum, about 100 times lower than the concentration limit obtained using the lower-frequency flexural mode of a similar PZT/glass PEMS. We further showed that with the longitudinal mode, the PZT/glass PEMS determined the equilibrium H3-Her2 dissociation constant K(d) to be 3.3±0.3 × 10(-8) M consistent with the value, 3.2±0.28 ×10(-8) M deduced by the surface plasmon resonance method (BIAcore).
Related JoVE Video
Highly sensitive detection of HER2 extracellular domain in the serum of breast cancer patients by piezoelectric microcantilevers.
Anal. Chem.
PUBLISHED: 03-30-2011
Show Abstract
Hide Abstract
Rapid and sensitive detection of serum tumor biomarkers are needed to monitor cancer patients for disease progression. Highly sensitive piezoelectric microcantilever sensors (PEMS) offer an attractive tool for biomarker detection; however, their utility in the complex environment encountered in serum has yet to be determined. As a proof of concept, we have functionalized PEMS with antibodies that specifically bind to HER2, a biomarker (antigen) that is commonly overexpressed in the blood of breast cancer patients. The function and sensitivity of these anti-HER2 PEMS biosensors was initially assessed using recombinant HER2 spiked into human serum. Their ability to detect native HER2 present in the serum of breast cancer patients was then determined. We have found that the anti-HER2 PEMS were able to accurately detect both recombinant and naturally occurring HER2 at clinically relevant levels (>2 ng/mL). This indicates that PEMS-based biosensors provide a potentially effective tool for biomarker detection.
Related JoVE Video
Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors.
Cancer Res.
PUBLISHED: 03-17-2011
Show Abstract
Hide Abstract
Antibody drugs are widely used in cancer therapy, but conditions to maximize tumor penetration and efficacy have yet to be fully elucidated. In this study, we investigated the impact of antibody binding affinity on tumor targeting and penetration with affinity variants that recognize the same epitope. Specifically, we compared four derivatives of the C6.5 monoclonal antibody (mAb), which recognizes the same HER2 epitope (monovalent K(D) values ranging from 270 to 0.56 nmol/L). Moderate affinity was associated with the highest tumor accumulation at 24 and 120 hours after intravenous injection, whereas high affinity was found to produce the lowest tumor accumulation. Highest affinity mAbs were confined to the perivascular space of tumors with an average penetration of 20.4 ± 7.5 ?m from tumor blood vessels. Conversely, lowest affinity mAbs exhibited a broader distribution pattern with an average penetration of 84.8 ± 12.8 ?m. In vitro internalization assays revealed that antibody internalization and catabolism generally increased with affinity, plateauing once the rate of HER2 internalization exceeded the rate of antibody dissociation. Effects of internalization and catabolism on tumor targeting were further examined using antibodies of moderate (C6.5) or high-affinity (trastuzumab), labeled with residualizing ((111)In-labeled) or nonresidualizing ((125)I-labeled) radioisotopes. Significant amounts of antibody of both affinities were degraded by tumors in vivo. Furthermore, moderate- to high-affinity mAbs targeting the same HER2 epitope with monovalent affinity above 23 nmol/L had equal tumor accumulation of residualizing radiolabel over 120 hours. Results indicated equal tumor exposure, suggesting that mAb penetration and retention in tumors reflected affinity-based differences in tumor catabolism. Together, these results suggest that high-density, rapidly internalizing antigens subject high-affinity antibodies to greater internalization and degradation, thereby limiting their penetration of tumors. In contrast, lower-affinity antibodies penetrate tumors more effectively when rates of antibody-antigen dissociation are higher than those of antigen internalization. Together, our findings offer insights into how to optimize the ability of therapeutic antibodies to penetrate tumors.
Related JoVE Video
Murine prolylcarboxypeptidase depletion induces vascular dysfunction with hypertension and faster arterial thrombosis.
Blood
PUBLISHED: 02-04-2011
Show Abstract
Hide Abstract
Prolylcarboxypeptidase (PRCP) activates prekallikrein to plasma kallikrein, leading to bradykinin liberation, and degrades angiotensin II. We now identify PRCP as a regulator of blood vessel homeostasis. ?-Galactosidase staining in PRCP(gt/gt) mice reveals expression in kidney and vasculature. Invasive telemetric monitorings show that PRCP(gt/gt) mice have significantly elevated blood pressure. PRCP(gt/gt) mice demonstrate shorter carotid artery occlusion times in 2 models, and their plasmas have increased thrombin generation times. Pharmacologic inhibition of PRCP with Z-Pro-Prolinal or plasma kallikrein with soybean trypsin inhibitor, Pro-Phe-Arg-chloromethylketone or PKSI 527 also shortens carotid artery occlusion times. Aortic and renal tissues have uncoupled eNOS and increased reactive oxygen species (ROS) in PRCP(gt/gt) mice as detected by dihydroethidium or Amplex Red fluorescence or lucigenin luminescence. The importance of ROS is evidenced by the fact that treatment of PRCP(gt/gt) mice with antioxidants (mitoTEMPO, apocynin, Tempol) abrogates the hypertensive, prothrombotic phenotype. Mechanistically, our studies reveal that PRCP(gt/gt) aortas express reduced levels of Kruppel-like factors 2 and 4, thrombomodulin, and eNOS mRNA, suggesting endothelial cell dysfunction. Further, PRCP siRNA treatment of endothelial cells shows increased ROS and uncoupled eNOS and decreased protein C activation because of thrombomodulin inactivation. Collectively, our studies identify PRCP as a novel regulator of vascular ROS and homeostasis.
Related JoVE Video
A rat model of exercise-induced asthma: a nonspecific response to a specific immunogen.
Am. J. Physiol. Regul. Integr. Comp. Physiol.
PUBLISHED: 01-12-2011
Show Abstract
Hide Abstract
Exercise-induced bronchoconstriction (EIB) is common; however, key aspects of its pathogenesis are still unclear. We investigated the feasibility of adapting an established animal model of asthma to investigate the earliest stages of EIB. The hypothesis was that a single exposure to a normally innocuous, and brief, exercise challenge could trigger EIB symptoms in rats previously sensitized to ovalbumin (OVA) but otherwise unchallenged. Brown-Norway rats were sensitized by intraperitoneal injection of OVA at 0 and 2 wk. At week 3, animals were exposed to either aerosolized OVA (SS) or exercise (EXS). A trained, blinded, clinical observer graded EIB by respiratory sounds. Plasma and lung cytokine levels were analyzed. No control rats with or without exercise (EX, CON) showed evidence of EIB. Eighty percent of the SS group demonstrated abnormal breath sounds upon exposure to aerosolized OVA. Approximately 30% of EXS rats sensitized to OVA but exposed only to exercise had abnormal breath sounds. Lung tissue levels of TNF-?, IL-1?, growth-related oncogene/keratinocyte/chemoattractant, and IFN-? were significantly higher (P < 0.001) in the SS group, relative to all other groups. Changes in most of these cytokines were not notable in the EXS rats, suggesting a different mechanism of EIB. Remarkably, IFN-?, but not the other cytokines measured, was significantly elevated following brief exercise in both sensitized and unsensitized rats. Exercise led to detectable breathing sound abnormalities in sensitized rats, but less severe than those observed following classical OVA challenge. Precisely how this immune crossover occurs is not known, but this model may be useful in elucidating essential mechanisms of EIB.
Related JoVE Video
Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle.
Brain Behav. Immun.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Circulating leukocytes increase rapidly with exercise then quickly decrease when the exercise ends. We tested whether exercise acutely led to bidirectional interchange of leukocytes between the circulation and the lung, spleen, and active skeletal muscle. To accomplish this it was necessary to label a large number of immune cells (granulocytes, monocytes, and lymphocytes) in a way that resulted in minimal perturbation of cell function. Rats were injected intravenously with a single bolus of carboxyfluorescein diacetate succinamidyl ester (CFSE) dye which is rapidly and irreversibly taken up by circulating cells. The time course of the disappearance of labeled cells and their reappearance in the circulation following exercise was determined via flow cytometry. The majority of circulating leukocytes were labeled at 4h. post-injection and this proportion slowly declined out to 120 h. At both 24 and 120 h, running resulted in an increase in the proportion of labeled leukocytes in the circulation. Analysis of the skeletal muscle, spleen and lung indicated that labeled leukocytes had accumulated in those tissues and were mobilized to the circulation in response to exercise. This indicates that there is an ongoing exchange of leukocytes between the circulation and tissues and that exercise can stimulate their redistribution. Exchange was slower with muscle than with spleen and lung, but in all cases, influenced by exercise. Exercise bouts redistribute leukocytes between the circulation and the lung, spleen and muscle. The modulatory effects of exercise on the immune system may be regulated in part by the systemic redistribution of immune cells.
Related JoVE Video
A rapid method to regenerate piezoelectric microcantilever sensors (PEMS).
Sensors (Basel)
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
Piezoelectric microcantilever sensors (PEMS) can be sensitive tools for the detection of proteins and cells in biological fluids. However, currently available PEMS can only be used a single time or must be completely stripped and refunctionalized prior to subsequent uses. Here we report the successful use of an alternative regeneration protocol employing high salt concentrations to remove the target, leaving the functional probe immobilized on the microcantilever surface. Our model system employed the extracellular domain (ECD) of recombinant human Epidermal Growth Factor Receptor (EGFR) as the probe and anti-human EGFR polyclonal antibodies as the target. We report that high concentrations of MgCl2 dissociated polyclonal antibodies specifically bound to EGFR ECD immobilized on the sensor surface without affecting its bioactivity. This simple regeneration protocol both minimized the time required to re-conjugate the probe and preserved the density of probe immobilized on PEMS surface, yielding identical biosensor sensitivity over a series of assays.
Related JoVE Video
Analysis of mtDNA sequence variants in colorectal adenomatous polyps.
Diagn Pathol
PUBLISHED: 08-13-2010
Show Abstract
Hide Abstract
Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues) obtained from the southern regional Cooperative Human Tissue Network (CHTN) and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57%) variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17) in tubular and 57% (13/23) in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was observed at frequency of 57% (13/23) in villous adenomas only. Interestingly, variants A9006G and G9055A were absent in the villous tissue samples that were clinicopathological designated as "polyvillous adenomas". Our current data provide a basis for continued investigation of certain mtDNA variants as predictors of the three adenomatous polyps in a larger number of clinicopathological specimens.
Related JoVE Video
Increased rat neonatal activity influences adult cytokine levels and relative muscle mass.
Pediatr. Res.
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
Little is known about the effect of physical activity in early life on subsequent growth and regulation of inflammation. We previously reported that exposure of muscles in growing rats to IL-6 results in decreased muscle growth apparently because of a state of resistance to growth factors such IGF-I and that running exercise could ameliorate this growth defect. Herein, we hypothesized that increased activity, for a brief period during neonatal life, would pattern the adult rat toward a less inflammatory phenotype. Neonatal rats were induced to move about their cage for brief periods from d 5 to d 15 postpartum. Additional groups were undisturbed controls (CONs) and handled (HAND). Subgroups of rats were sampled at the age of 30 and 65 d. Relative to CON and HAND groups, the neonatal exercise (EX) group demonstrated a decrease in circulating levels of TNF?, IL-6, and IL-1? in adulthood, primarily in male rats. In addition, adult male EX rats had lower body mass and increased skeletal muscle mass suggesting a leaner phenotype. The results of this study suggest that moderate increases in activity early in life can influence the adult toward a more healthy phenotype with regard to inflammatory mediators and relative muscle mass.
Related JoVE Video
Factor XII stimulates ERK1/2 and Akt through uPAR, integrins, and the EGFR to initiate angiogenesis.
Blood
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Factor XII (FXII) and high molecular weight kininogen (HK) mutually block each others binding to the urokinase plasminogen activator receptor (uPAR). We investigated if FXII stimulates cells by interacting with uPAR. FXII (3-62nM) with 0.05mM Zn(2+) induces extracellular signal-related kinase 1/2 (ERK1/2; mitogen-activated protein kinase 44 [MAPK44] and MAPK42) and Akt (Ser473) phosphorylation in endothelial cells. FXII-induced phosphorylation of ERK1/2 or Akt is a zymogen activity, not an enzymatic event. ERK1/2 or Akt phosphorylation is blocked upstream by PD98059 or Wortmannin or LY294002, respectively. An uPAR signaling region for FXII is on domain 2 adjacent to uPARs integrin binding site. Cleaved HK or peptides from HKs domain 5 blocks FXII-induced ERK1/2 and Akt phosphorylation. A beta(1) integrin peptide that binds uPAR, antibody 6S6 to beta(1) integrin, or the epidermal growth factor receptor (EGFR) inhibitor AG1478 blocks FXII-induced phosphorylation of ERK1/2 and Akt. FXII induces endothelial cell proliferation and 5-bromo-2deoxy-uridine incorporation. FXII stimulates aortic sprouting in normal but not uPAR-deficient mouse aorta. FXII produces angiogenesis in matrigel plugs in normal but not uPAR-deficient mice. FXII knockout mice have reduced constitutive and wound-induced blood vessel number. In sum, FXII initiates signaling mediated by uPAR, beta(1) integrin, and the EGFR to induce human umbilical vein endothelial cell proliferation, growth, and angiogenesis.
Related JoVE Video
Affinity and avidity in antibody-based tumor targeting.
Cancer Biother. Radiopharm.
PUBLISHED: 05-05-2009
Show Abstract
Hide Abstract
Many factors contribute to successful tumor targeting by antibodies. Besides properties of the tumor tissue and general antibody pharmacology, a relationship exists between an antibody and its antigen that can shape penetration, catabolism, specificity, and efficacy. The affinity and avidity of the binding interactions play critical roles in these dynamics. In this work, we review the principles that guide models predicting tumor penetration and cellular internalization while providing a critical overview of studies aimed at experimentally determining the specific role of affinity and avidity in these processes. One should gain the perspective that binding affinity can, in part, dictate the localization of antibodies in tumors, leading to high concentrations in the perivascular space or low concentrations diffused throughout the tumor. These patterns can be simply due to the diminution of available dose by binding antigen and are complicated by internalization and degradation stemming from slow rates of dissociation. As opposed to the trend of simply increasing affinity to increase efficacy, novel strategies that increase avidity and broaden specificity have made significant progress in tumor targeting.
Related JoVE Video
Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging.
Small
PUBLISHED: 04-25-2009
Show Abstract
Hide Abstract
Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single-chain anti-EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that specifically bind to and are internalized by EGFR-expressing cancer cells, thereby producing a fluorescent signal or magnetic resonance imaging (MRI) contrast. In vivo tumor targeting and uptake of the nanoparticles in human cancer cells is demonstrated after systemic delivery of ScFvEGFR-QDs or ScFvEGFR-IO nanoparticles into an orthotopic pancreatic cancer model. Therefore, ScFvEGFR nanoparticles have potential to be used as a molecular-targeted in vivo tumor imaging agent. Efficient internalization of ScFvEGFR nanoparticles into tumor cells after systemic delivery suggests that the EGFR-targeted nanoparticles can also be used for the targeted delivery of therapeutic agents.
Related JoVE Video
Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy.
Compr Physiol
Show Abstract
Hide Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Related JoVE Video
Access to the akuammiline family of alkaloids: total synthesis of (+)-scholarisine A.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
The planning and implementation of an enantioselective total synthesis of (+)-scholarisine A is presented. Key tactics employed include a novel cyclization, consisting of a nitrile reduction coupled with concomitant addition of the resultant amine to an epoxide; a modified Fischer indolization; an oxidative lactonization of a diol in the presence of an indole ring; and a late-stage cyclization to complete the caged ring scaffold. The development of a possible "retro-biosynthetic" approach to other members of the akuammiline alkaloid family is also described.
Related JoVE Video
Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation.
Cancer Discov
Show Abstract
Hide Abstract
Persistent signaling by the oncogenic EGF receptor (EGFR) is a major source of cancer resistance to EGFR targeting. We established that inactivation of 2 sterol biosynthesis pathway genes, SC4MOL (sterol C4-methyl oxidase-like) and its partner, NSDHL (NADP-dependent steroid dehydrogenase-like), sensitized tumor cells to EGFR inhibitors. Bioinformatics modeling of interactions for the sterol pathway genes in eukaryotes allowed us to hypothesize and then extensively validate an unexpected role for SC4MOL and NSDHL in controlling the signaling, vesicular trafficking, and degradation of EGFR and its dimerization partners, ERBB2 and ERBB3. Metabolic block upstream of SC4MOL with ketoconazole or CYP51A1 siRNA rescued cancer cell viability and EGFR degradation. Inactivation of SC4MOL markedly sensitized A431 xenografts to cetuximab, a therapeutic anti-EGFR antibody. Analysis of Nsdhl-deficient Bpa(1H/+) mice confirmed dramatic and selective loss of internalized platelet-derived growth factor receptor in fibroblasts, and reduced activation of EGFR and its effectors in regions of skin lacking NSDHL.
Related JoVE Video
Identification of inhibitory scFv antibodies targeting fibroblast activation protein utilizing phage display functional screens.
FASEB J.
Show Abstract
Hide Abstract
Fibroblast activation protein (FAP) is a serine protease selectively expressed on tumor stromal fibroblasts in epithelial carcinomas and is important in cancer growth, adhesion, and metastases. As FAP enzymatic activity is a potent therapeutic target, we aimed to identify inhibitory antibodies. Using a competitive inhibition strategy, we used phage display techniques to identify 53 single-chain variable fragments (scFvs) after three rounds of panning against FAP. These scFvs were expressed and characterized for binding to FAP by surface plasmon resonance and flow cytometry. Functional assessment of these antibodies yielded an inhibitory scFv antibody, named E3, which could attenuate 35% of FAP cleavage of the fluorescent substrate Ala-Pro-7-amido-4-trifluoromethylcoumarin compared with nonfunctional scFv control. Furthermore, a mutant E3 scFv was identified by yeast affinity maturation. It had higher affinity (4-fold) and enhanced inhibitory effect on FAP enzyme activity (3-fold) than E3. The application of both inhibitory anti-FAP scFvs significantly affected the formation of 3-dimensional FAP-positive cell matrix, as demonstrated by reducing the fibronectin fiber orientation from 41.18% (negative antibody control) to 34.06% (E3) and 36.15% (mutant E3), respectively. Thus, we have identified and affinity-maturated the first scFv antibody capable of inhibiting FAP function. This scFv antibody has the potential to disrupt the role of FAP in tumor invasion and metastasis.
Related JoVE Video
Mitotic regulator SKAP forms a link between kinetochore core complex KMN and dynamic spindle microtubules.
J. Biol. Chem.
Show Abstract
Hide Abstract
Chromosome segregation in mitosis is orchestrated by the dynamic interactions between the kinetochore and spindle microtubules. Our recent study shows that mitotic motor CENP-E cooperates with SKAP to orchestrate an accurate chromosome movement in mitosis. However, it remains elusive how kinetochore core microtubule binding activity KMN (KNL1-MIS12-NDC80) regulates microtubule plus-end dynamics. Here, we identify a novel interaction between MIS13 and SKAP that orchestrates accurate interaction between kinetochore and dynamic spindle microtubules. SKAP physically interacts with MIS13 and specifies kinetochore localization of SKAP. Suppression of MIS13 by small interfering RNA abrogates the kinetochore localization of SKAP. Total internal reflection fluorescence microscopic assays demonstrate that SKAP exhibits an EB1-dependent, microtubule plus-end loading and tracking in vitro. Importantly, SKAP is essential for kinetochore oscillations and dynamics of microtubule plus-ends during live cell mitosis. Based on those findings, we reason that SKAP constitutes a dynamic link between spindle microtubule plus-ends and mitotic chromosomes to achieve faithful cell division.
Related JoVE Video
Supracostal tubeless percutaneous nephrolithotomy: a retrospective cohort study.
J. Endourol.
Show Abstract
Hide Abstract
To evaluate the safety of tubeless percutaneous nephrolithotomy in patients undergoing supracostal percutaneous renal access. Patients and
Related JoVE Video
Impact of intrinsic affinity on functional binding and biological activity of EGFR antibodies.
Mol. Cancer Ther.
Show Abstract
Hide Abstract
Aberrant expression and activation of EGF receptor (EGFR) has been implicated in the development and progression of many human cancers. As such, targeted therapeutic inhibition of EGFR, for example by antibodies, is a promising anticancer strategy. The overall efficacy of antibody therapies results from the complex interplay between affinity, valence, tumor penetration and retention, and signaling inhibition. To gain better insight into this relationship, we studied a panel of EGFR single-chain Fv (scFv) antibodies that recognize an identical epitope on EGFR but bind with intrinsic monovalent affinities varying by 280-fold. The scFv were converted to Fab and IgG formats, and investigated for their ability to bind EGFR, compete with EGF binding, and inhibit EGF-mediated downstream signaling and proliferation. We observed that the apparent EGFR-binding affinity for bivalent IgG plateaus at intermediate values of intrinsic affinity of the cognate Fab, leading to a biphasic curve describing the ratio of IgG to Fab affinity. Mathematical modeling of antibody-receptor binding indicated that the biphasic effect results from nonequilibrium assay limitations. This was confirmed by further observation that the potency of EGF competition for antibody binding to EGFR improved with both intrinsic affinity and antibody valence. Similarly, both higher intrinsic affinity and bivalent binding improved the potency of antibodies in blocking cellular signaling and proliferation. Overall, our work indicates that higher intrinsic affinity combined with bivalent binding can achieve avidity that leads to greater in vitro potency of antibodies, which may translate into greater therapeutic efficacy.
Related JoVE Video
Effects of exercise on microRNA expression in young males peripheral blood mononuclear cells.
Clin Transl Sci
Show Abstract
Hide Abstract
MicroRNAs are increasingly seen as targets of drug discovery because they influence gene function acting both to silence and subtly modulate protein translation. Little is known about effects of dynamic physiological states on microRNA regulation in humans. We hypothesized that microRNA expression in peripheral blood mononuclear cells (PBMCs) would be affected by brief exercise. Twelve young men performed brief bouts of heavy exercise. PBMC microRNA was analyzed before and immediately after exercise using the Agilent Human microRNA V2 Microarray. Exercise altered expression level of 34 microRNAs (FDR < 0.05). Many of them play roles in inflammatory processes (e.g., miR-125b[?], down-regulated by proinflammatory factor LPS; and miR-132[?], 125b[?] and let-7e[?] involved inTLR4 signaling). Using previous exercise data in PBMCs, we linked the microRNA changes to specific gene pathways. This analysis identified 12 pathways including the TGF-? and MAPK signaling. We also compared exercise-associated microRNA changes in PBMCs with the exercise-associated microRNAs previously identified in neutrophils. Nine microRNAs were affected in both PBMCs and neutrophils, but only six changed in the same direction. A commonly occurring physiologic perturbation, brief heavy exercise, changes microRNA profiles in PBMCs, many of which are related to inflammatory processes. The pattern of change suggests that exercise differentially influences microRNAs in leukocyte subtypes.
Related JoVE Video
Transgenic overexpression of keratinocyte-specific VEGF and Ang1 in combination promotes wound healing under nondiabetic but not diabetic conditions.
Int J Clin Exp Pathol
Show Abstract
Hide Abstract
VEGF and Angiopoietin (Ang)1 are growth factors that independently improve wound healing outcomes. Using a tet-repressible mouse model coupled with streptozotocin-induced diabetes, we examined wound healing in diabetic and nondiabetic mice engineered to overexpress keratinocyte-specific (K5) VEGF, Ang1 or Ang1-VEGF combined. All nondiabetic mice healed more rapidly than their diabetic counterparts; however overexpression of VEGF, Ang1 or the combination failed to improve wound closure under diabetic conditions. Conversely, under nondiabetic conditions, combining Ang1 and VEGF resulted in rapid wound closure. Molecular analyses of diabetic and nondiabetic K5-Ang1-VEGF skin revealed no differences in VEGF expression but an 80% decrease in Ang1 under diabetic conditions, suggesting an integral role for Ang1. Nondiabetic K5-Ang1 mice healed more quickly and had significant increases in granulation tissue and a 60% decrease in re-epithelialization 7 days after wounding. Furthermore, Ang1 stimulated primary mouse keratinocytes showed significantly less migration into a wound bed in an in vitro wound healing bioassay and had decreased pMAPK, pNF?B, pAkt, and pStat3 signaling. These data suggest that combined Ang1-VEGF overexpression cannot overcome diabetes-induced delays in wound healing but is efficacious under nondiabetic conditions possibly via Ang1-mediated delays in re-epithelialization and enhancement of granulation tissue formation, thereby allowing more rapid secondary intention healing.
Related JoVE Video
Total synthesis of (+)-scholarisine A.
J. Am. Chem. Soc.
Show Abstract
Hide Abstract
An effective total synthesis and assignment of the absolute configuration of the architecturally challenging compound (+)-scholarisine A has been achieved via a 20-step sequence. Highlights include a reductive cyclization involving a nitrile and an epoxide, a modified Fischer indole protocol, a late-stage oxidative lactonization, and an intramolecular cyclization leading to the indolenine ring system of (+)-scholarisine A.
Related JoVE Video
HOXA9 methylation by PRMT5 is essential for endothelial cell expression of leukocyte adhesion molecules.
Mol. Cell. Biol.
Show Abstract
Hide Abstract
The induction of proinflammatory proteins in stimulated endothelial cells (EC) requires activation of multiple transcription programs. The homeobox transcription factor HOXA9 has an important regulatory role in cytokine induction of the EC-leukocyte adhesion molecules (ELAM) E-selectin and vascular cell adhesion molecule 1 (VCAM-1). However, the mechanism underlying stimulus-dependent activation of HOXA9 is completely unknown. Here, we elucidate the molecular mechanism of HOXA9 activation by tumor necrosis factor alpha (TNF-?) and show an unexpected requirement for arginine methylation by protein arginine methyltransferase 5 (PRMT5). PRMT5 was identified as a TNF-?-dependent binding partner of HOXA9 by mass spectrometry. Small interfering RNA (siRNA)-mediated depletion of PRMT5 abrogated stimulus-dependent HOXA9 methylation with concomitant loss in E-selectin or VCAM-1 induction. Chromatin immunoprecipitation analysis revealed that PRMT5 is recruited to the E-selectin promoter following transient HOXA9 binding to its cognate recognition sequence. PRMT5 induces symmetric dimethylation of Arg140 on HOXA9, an event essential for E-selectin induction. In summary, PRMT5 is a critical coactivator component in a newly defined, HOXA9-containing transcription complex. Moreover, stimulus-dependent methylation of HOXA9 is essential for ELAM expression during the EC inflammatory response.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.