JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Synthesis of Ortho Acid Ester-Type 1,3-Dioxolanofullerenes: Radical Reaction of [60]Fullerene with Halocarboxylic Acids Promoted by Lead(IV) Acetate.
J. Org. Chem.
PUBLISHED: 11-10-2014
Show Abstract
Hide Abstract
A lead(IV) acetate-promoted radical reaction of [60]fullerene with halocarboxylic acids has been exploited to synthesize rare ortho acid ester-type 1,3-dioxolanofullerenes, the hydroxyl group of which can be further transformed to an ester or ether group. Intriguingly, an ortho acid ester-type 1,3-dioxolanofullerene can also be converted to a 1,4-dioxanonofullerene in the presence of a base or manipulated to another ortho acid ester-type 1,3-dioxolanofullerene by reaction with a stronger halocarboxylic acid. Moreover, two possible reaction pathways leading to the observed products are also proposed.
Related JoVE Video
[Autologous peripheral blood CD34+ stem cells transplanted into 100 patients with advanced cirrhosis].
Zhonghua Gan Zang Bing Za Zhi
PUBLISHED: 11-05-2014
Show Abstract
Hide Abstract
To investigate whether transplantation of autologous peripheral blood CD34+ stem cells is a viable approach for treating patients with advanced cirrhosis,which is currently hindered by a shortage in liver donors.
Related JoVE Video
Isolation and characterization of ex vivo expanded mesenchymal stem cells obtained from a surgical patient.
Mol Med Rep
PUBLISHED: 09-29-2014
Show Abstract
Hide Abstract
The aim of the present study was to investigate the morphological characteristics and pluripotent differentiation potential of human bone marrow mesenchymal stem cells (hBMMSCs) in vitro and in vivo. Bone marrow cells were isolated from a rib fragment of an adult surgical patient, hBMMSCs were isolated based on plastic adherence and expanded ex vivo and phenotyping was performed. Pluripotent differentiation assays for adipogenesis, myogenesis and osteogenesis were conducted. Hematopoietic reconstruction of sublethally irradiated nude mice was performed by infusion of hBMMSCs. The gene expression profiles of early and late hBMMSCs were examined. The rate of CD31?positive cells was 31.1% in passage (P)4 hBMMSCs and 18.6% in P10 hBMMSCs. CD105 and CD106 were expressed in 99 and 95% of P25 hBMMSCs, respectively. Lipid droplets appeared at day 18 post induction. For osteogenesis, palpable masses were grossly observed from day 35 post inoculation of hBMMSCs. Hematoxylin and eosin staining further revealed chondrocytes and bone tissues. For myogenesis, at day six post subcutaneous inoculation, hBMMSCs differentiated into myocytes and were positive for myoglobin and MyoD1. In irradiated nude mice reconstituted by hBMMSCs, the white blood cell count briefly decreased following irradiation; however, it gradually recovered. In the irradiated nude mice reconstituted with hBMMSCs, CD45? and CD34?positive cells were detected 72 h post induction. Gene microarray analysis of P7 and P57 hBMMSCs demonstrated that 20 genes were upregulated >2 fold and 40 genes were downregulated >2 fold in P57 hBMMSCs. In conclusion, the isolated HBMMSCs possessed pluripotent differentiation potential and it was feasible and safe to use hBMMSCs within 30 passages.
Related JoVE Video
The effect of clopidogrel on pharmacokinetics of ivabradine and its metabolite in rats.
Drug Dev Ind Pharm
PUBLISHED: 09-25-2014
Show Abstract
Hide Abstract
Abstract The present study aimed to investigate the effect of clopidogrel (CLO) on pharmacokinetics of ivabradine (IVA) and its metabolite in rats and develop a reliable method to determine IVA and its metabolite N-demethyl ivabradine in serum. Healthy male SD rats were randomized to be given 0.8?mg/kg IVA or IVA combined with 8?mg/kg CLO. Blood samples were collected at 0.083, 0.16, 0.25, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 12, 24?h after administration. The serum concentrations of IVA and N-demethyl ivabradine were determined by ultra-performance liquid chromatography-mass spectrometry and pharmacokinetic parameters were calculated using DASver3.0 software. The parameters of AUC(0?-?t), AUC(0?-??), and Cmax for IVA in the group of IVA?+?CLO were significantly higher than those in the group of IVA (p?
Related JoVE Video
ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.
Apoptosis
PUBLISHED: 09-15-2014
Show Abstract
Hide Abstract
Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2? protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.
Related JoVE Video
Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
J. Biomol. Struct. Dyn.
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
-1 programmed ribosomal frameshifting (PRF) in viruses is often stimulated by a pseudoknot downstream from the slippery sequence. At the PRF junction of HIV-1, transmissible gastroenteritis virus (TGEV), Barmah Forest virus (BFV), Fort Morgan virus (FMV), and Equine arteritis virus (EAV), we identified potential double pseudoknots in either a tandem mode or embedded mode. In viruses with tandem pseudoknots (5'PK & 3'PK), the slippery sequence is encompassed in the 5'PK. The ribosome needs to unwind the 5'PK to get to the slippery sequence. In HIV-1, the 3'PK and several alternative structures are mutually exclusive. Disruption of the tandem pseudoknots may enable one of the alternative structures to form as the effective frameshift stimulator. In TGEV/BFV/FMV, the 3'PK is a conventional frameshift stimulator. In all cases, the tandem pseudoknots may slow down the ribosome before it reaches the conventional PRF signals. In EAV, a compact pseudoknot is embedded within loop2 of the otherwise conventional frameshift-stimulating pseudoknot. All double pseudoknots have the potential to stack their stems coaxially. We built structural models of the HIV-1 and EAV double pseudoknots to show that both the tandem and embedded modes are feasible and reasonable. We hypothesize that the fundamental reason for the viruses to utilize coaxially stacked double pseudoknots is to increase the overall stability of the frameshift regulating structure, and avoid an ultra-stable single pseudoknot which may become a ribosomal roadblock. Our results significantly expand the repertoire of RNA structures and dynamics that may potentially involve in -1 PRF regulation.
Related JoVE Video
Crystallographic and modelling studies suggest that the SKICH domains from different protein families share a common Ig-like fold but harbour substantial structural variations.
J. Biomol. Struct. Dyn.
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
TAX1BP1 is a pleiotropic multi-domain protein involved in many important biological processes such as signal transduction, cell growth and apoptosis, transcriptional coactivation, membrane trafficking, neurotransmission and autophagy. The N-terminus of TAX1BP1 contains a SKICH domain implicated in autophagy. SKICH domains are also present in four other proteins including NDP52, CALCOCO1, SKIP and PIPP. The SKICH domains of SKIP and PIPP mediate plasma membrane localisation. The functions of the SKICH domains of NDP52 and CALCOCO1 are not known. Here we report the crystal structure of the TAX1BP1 SKICH domain, which has an Ig-like fold similar to the NDP52 SKICH domain. Extensive pairwise and clustered aromatic ?-stacking interactions are present in the TAX1BP1 SKICH domain. The aromatic residues mediating these interactions can be classified into four groups with varying degrees of conservation among different protein families. The interactions mediated by highly conserved residues are found in the interior and one outward face of the Ig-like ?-barrel, representing common structural features of the SKICH domains. Three TAX1BP1-specific pairwise interactions locate in the loop regions, each augmented by a proline-aromatic interaction. The three proline-aromatic clusters are linked together by more generic hydrophobic interactions, forming a unique hydrophobic surface at one end of the TAX1BP1 SKICH domain. The structures and homologous models of SKICH domains from different proteins reveal substantial differences in electrostatic surface properties of the domains. Together with existing biochemical data, results from the structural study suggest that an intact SKICH domain is required for the autophagy function of TAX1BP1.
Related JoVE Video
A genome-wide association study of the maize hypersensitive defense response identifies genes that cluster in related pathways.
PLoS Genet.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Much remains unknown of molecular events controlling the plant hypersensitive defense response (HR), a rapid localized cell death that limits pathogen spread and is mediated by resistance (R-) genes. Genetic control of the HR is hard to quantify due to its microscopic and rapid nature. Natural modifiers of the ectopic HR phenotype induced by an aberrant auto-active R-gene (Rp1-D21), were mapped in a population of 3,381 recombinant inbred lines from the maize nested association mapping population. Joint linkage analysis was conducted to identify 32 additive but no epistatic quantitative trait loci (QTL) using a linkage map based on more than 7000 single nucleotide polymorphisms (SNPs). Genome-wide association (GWA) analysis of 26.5 million SNPs was conducted after adjusting for background QTL. GWA identified associated SNPs that colocalized with 44 candidate genes. Thirty-six of these genes colocalized within 23 of the 32 QTL identified by joint linkage analysis. The candidate genes included genes predicted to be in involved programmed cell death, defense response, ubiquitination, redox homeostasis, autophagy, calcium signalling, lignin biosynthesis and cell wall modification. Twelve of the candidate genes showed significant differential expression between isogenic lines differing for the presence of Rp1-D21. Low but significant correlations between HR-related traits and several previously-measured disease resistance traits suggested that the genetic control of these traits was substantially, though not entirely, independent. This study provides the first system-wide analysis of natural variation that modulates the HR response in plants.
Related JoVE Video
Type-II core-shell Si-CdS nanocrystals: synthesis and spectroscopic and electrical properties.
Chem. Commun. (Camb.)
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Type-II Si-CdS core-shell colloidal nanocrystals (NCs) are synthesized with the spectroscopic and electronic properties tuned by the thickness of the CdS shell.
Related JoVE Video
Fluorescent carbon dot (C-dot) nanoclusters.
Nanotechnology
PUBLISHED: 08-22-2014
Show Abstract
Hide Abstract
Fluorescent carbon dot (C-dot) nanoclusters composed of C-dot-loaded hollow silica spheres are obtained via the dehydration of mannose, which is adsorbed onto hollow silica spheres or poly(ethylene glycol)-graft-hollow silica spheres (PEG-g-hollow silica). The structure of C-dot nanoclusters are confirmed using 1H NMR, FTIR, TEM and TGA. C-dot nanoclusters show a redshifted fluorescence emission with an increased excitation wavelength. Passivation with PEG diamines improve the quantum yields to ?2%. Confocal laser scanning microscopy (CLSM) results reflect the fact that C-dot nanoclusters can provide good cytoplasm imaging of live Hep G2 cells and live MCF-7 cells, and the imaging obtained is brighter and more even than those from free C-dots. With their combination of good photostability and low cytotoxicity, C-dot nanoclusters are promising for the production of higher quality bioimaging.
Related JoVE Video
Carboxymethyl-?-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid.
Int J Pharm
PUBLISHED: 08-19-2014
Show Abstract
Hide Abstract
Currently, clinical operation treatments, chemotherapy and radiotherapy just could eliminate local tumor cells. However, chemotherapy and radiotherapy also injury normal cells and lead to serious side effects and toxicities. So, it is necessary to find an effective target cancer carrier that delivers the anticancer agents into tumor cells and reduces normal cells' injury. Folic acid (FA) is a classical targeting agent mediates internalization of chemical drugs into tumor cells which over-express folate receptor (FR) on their surface. We herein report that based on host-guest interaction, NPs decorated by novel folate enhance antitumor drug delivery. BSA-NPs were prepared by desolvation method and carboxymethyl-?-cyclodextrin (CM-?-CD) was conjugated to the surface of NPs by carbodiimide coupling to hold FA. From in vitro cytotoxicity assay, cell apoptosis study, intracellular ATP level assay and western blot, we can see that FA-CM-?-CD-BSA NPs as good monodispersity, negative charge, and homogenous particle size have a high encapsulation efficiency. The results showed that MTT and cell apoptosis demonstrated that FA-decorated NPs exhibit stronger inhibition rate and induce obvious apoptosis in FR positive Hela cells as compared to free drug and FA undecorated NPs. Moreover, 5-fluorouracil (5-Fu) loaded FA-CM-?-CD-BSA NPs down-regulate ATP levels and increase the expression of caspase-3. Taken together, FA-CM-?-CD-BSA NPs enhance FR receptor-mediated endocytosis and lead to more intracellular uptake of drug, inducing the higher apoptosis ratio of cells than free 5-Fu.
Related JoVE Video
Functionalized silicon quantum dots by N-vinylcarbazole: synthesis and spectroscopic properties.
Nanoscale Res Lett
PUBLISHED: 08-07-2014
Show Abstract
Hide Abstract
Silicon quantum dots (Si QDs) attract increasing interest nowadays due to their excellent optical and electronic properties. However, only a few optoelectronic organic molecules were reported as ligands of colloidal Si QDs. In this report, N-vinylcarbazole - a material widely used in the optoelectronics industry - was used for the modification of Si QDs as ligands. This hybrid nanomaterial exhibits different spectroscopic properties from either free ligands or Si QDs alone. Possible mechanisms were discussed. This type of new functional Si QDs may find application potentials in bioimaging, photovoltaic, or optoelectronic devices.
Related JoVE Video
Combination of chloroquine and GX15-070 (obatoclax) results in synergistic cytotoxicity against pancreatic cancer cells.
Oncol. Rep.
PUBLISHED: 07-09-2014
Show Abstract
Hide Abstract
Pancreatic cancer is an aggressive disease with a poor prognosis. Therefore, new treatment is urgently required. GX15-070 is a pan-Bcl-2 inhibitor which has shown promising antitumor activity in different malignancies. We previously demonstrated that clinically achievable concentrations of GX15-070 caused growth arrest in pancreatic cancer cell lines. However, they only induced minimal levels of apoptosis. We hypothesized that GX15-070 induced autophagy in pancreatic cancer cells which blocked apoptosis. In this study, we investigated the effects of GX15-070 on autophagy and the antitumor activities of the combination of GX15-070 and chloroquine (CQ), an autophagy inhibitor, in six pancreatic cancer cell lines. We found that GX15-070 treatment indeed induced autophagy in 5 of the 6 pancreatic cancer cell lines, reflected by the conversion of LC3B-I to LC3B-II and detection of autophagosomes by transmission electron microscopy. Furthermore, we found additive to synergistic antitumor interactions in all six cell lines by MTT assays. CQ significantly enhanced GX15-070-induced apoptosis in the cell line models, possibly due to downregulation of Bcl-2, Bcl-xL and Mcl-1 in the cells by the two agents. These results provide compelling evidence for the further development of the combination of GX15-070 and CQ in pancreatic cancer.
Related JoVE Video
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells.
Apoptosis
PUBLISHED: 07-08-2014
Show Abstract
Hide Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.
Related JoVE Video
The protective effect of microRNA-320 on left ventricular remodeling after myocardial ischemia-reperfusion injury in the rat model.
Int J Mol Sci
PUBLISHED: 07-04-2014
Show Abstract
Hide Abstract
The primary objective of this study investigated the role of microRNA-320 (miR-320) on left ventricular remodeling in the rat model of myocardial ischemia-reperfusion (I/R) injury, and we intended to explore the myocardial mechanism of miR-320-mediated myocardium protection. We collected 120 male Wistar rats (240-280 g) in this study and then randomly divided them into three groups: (1) sham surgery group (sham group: n=40); (2) ischemia-reperfusion model group (I/R group: n=40); and (3) I/R model with antagomir-320 group (I/R+antagomir-320 group: n=40). Value changes of heart function in transesophageal echocardiography were recorded at various time points (day 1, day 3, day 7, day 15 and day 30) after surgery in each group. Myocardial sections were stained with hematoxylin and eosin (H&E) and examined with optical microscope. The degree of myocardial fibrosis was assessed by Sirius Red staining. Terminal dUTP nick end-labeling (TUNEL) and qRT-PCR methods were used to measure the apoptosis rate and to determine the miR-320 expression levels in myocardial tissues. Transesophageal echocardiography showed that the values of left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular systolic pressure (LVSP) and ±dp/dtmax in the I/R group were obviously lower than those in the sham group, while the left ventricular end-diastolic pressure (LVEDP) value was higher than that in the sham group. The values of LVEF, LVFS, LVSP and ±dp/dtmax showed a gradual decrease in the I/R group, while the LVEDP value showed an up tendency along with the extension of reperfusion time. The H&E staining revealed that rat myocardial tissue in the I/R group presented extensive myocardial damage; for the I/R+antagomir-320 group, however, the degree of damage in myocardial cells was obviously better than that of the I/R group. The Sirius Red staining results showed that the degree of myocardial fibrosis in the I/R group was more severe along with the extension of the time of reperfusion. For the I/R+antagomir-320 group, the degree of myocardial fibrosis was less severe than that in the I/R group. Tissues samples in both the sham and I/R+antagomir-320 groups showed a lower apoptosis rate compared to I/R group. The qRT-PCR results indicated that miR-320 expression in the I/R group was significantly higher than that in both the sham and I/R+antagomir-320 groups. The expression level of miR-320 is significantly up-regulated in the rat model of myocardial I/R injury, and it may be implicated in the prevention of myocardial I/R injury-triggered left ventricular remodeling.
Related JoVE Video
Thiolate-protected Ni39 and Ni41 nanoclusters: synthesis, self-assembly and magnetic properties.
Nanoscale
PUBLISHED: 07-02-2014
Show Abstract
Hide Abstract
Thiolate-protected soluble nickel clusters, Ni(39)(SC(2)H(4)Ph)24 and Ni(41)(SC(2)H(4)Ph)25, were synthesized via a wet chemical method. The cluster formulae were identified by MALDI-TOF. Possible structures of the clusters were discussed. These clusters exhibit ferromagnetism with hysteresis loops in the 1.8-300 K range. By solvent evaporation, the clusters can self-assemble into simple cubic structured crystals with a width in the range of 1-10 ?m and length up to 300 ?m. These properties shed light on their application potentials in nanomagnetics working at room temperature.
Related JoVE Video
Evaluation of surgical and non-surgical interventions for clavicle fractures.
Acta Orthop Traumatol Turc
PUBLISHED: 06-06-2014
Show Abstract
Hide Abstract
The aim of this study was to review all systematic reviews and meta-analyses and provide an overview of the evidence of efficacy of interventions for clavicle fractures.
Related JoVE Video
Large proportion of genes in one cryptic WO prophage genome are actively and sex-specifically transcribed in a fig wasp species.
BMC Genomics
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Cryptic prophages are genetically defective in their induction and propagation, and are simply regarded as genetic remnants. There are several putative cryptic WO prophages in the sequenced Wolbachia genomes. Whether they are lytic is unclear and their functions are poorly understood. Only three open reading frames (ORFs) in cryptic WO prophages have been reported to be actively transcribed.
Related JoVE Video
The effect of borneol on the concentration of meropenem in rat brain and blood.
J Asian Nat Prod Res
PUBLISHED: 05-14-2014
Show Abstract
Hide Abstract
Meropenem is a carbapenem antibiotic with a wide spectrum of activity against both Gram-positive and Gram-negative bacteria. Because of its clinical efficacy, meropenem is an excellent choice for the treatment of serious infections in both adults and children. The knowledge of tissue concentrations of antibiotic in an infection site is valuable for the prediction of treatment outcome. The aim of the present study is to investigate the effect of borneol on the concentration of meropenem in rat brain and blood and to find the potential relationships of the combined use of medicine and traditional Chinese medicine. Analysis of meropenem in the dialysates was achieved using the microdialysis technique and HPLC. At 40 min after the administration of an intraperitoneal injection of meropenem, the concentration of meropenem in brain in borneol+meropenem group was 2.25 (0.35) ?g ml(-1), which was significantly higher than that in meropenem group [1.20 (0.12) ?g ml(-1); P < 0.01]. Within 80 min of drug administration, the AUCbrain/AUCblood (area under the curve, AUC) in the borneol+meropenem group was 1.2 times that of the meropenem group. Borneol can increase the concentration of meropenem in the cerebrospinal fluid, but has no influence on its blood concentration. This study represents a successful application of the microdialysis technique, which is an effective method for the study of pharmacokinetics of meropenem.
Related JoVE Video
Colloidal nanocrystals fluoresced by surface coordination complexes.
Sci Rep
PUBLISHED: 05-07-2014
Show Abstract
Hide Abstract
Colloidal Nanocrystals (NCs) with fluorescence originating from surface complexes are successfully prepared. The components of these NCs range from insulator, semiconductor to metal, with either pure phase, doped or core/shell structures. The photoluminescence of these NCs can be reversibly tuned across the visible to infrared spectrum, and even allow multi-color emission. A light emitting device is fabricated and a new in vivo cell imaging method is performed to demonstrate the power of this technology for emerging applications.
Related JoVE Video
Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage.
Mol Oncol
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.
Related JoVE Video
Thermodynamic and structural characterization of halogen bonding in protein-ligand interactions: a case study of PDE5 and its inhibitors.
J. Med. Chem.
PUBLISHED: 04-15-2014
Show Abstract
Hide Abstract
The significance of halogen bonding in protein-ligand interactions has been recognized recently. We present here the first comprehensive thermodynamic and structural characterization of halogen bonding in PDE5-inhibitor interactions. ITC studies reveal that binding strength of the halogen bonding between chlorine, bromine, and iodine of inhibitor and the protein is -1.57, -3.09, and -5.59 kJ/mol, respectively. The halogens interact with the designed residue Y612 and an unexpected buried water molecule.
Related JoVE Video
Improvement of pulmonary absorptions of poorly absorbable drugs using Gelucire 44/14 as an absorption enhancer.
J. Pharm. Pharmacol.
PUBLISHED: 04-13-2014
Show Abstract
Hide Abstract
This study aims to evaluate the absorption-enhancing effects of Gelucire 44/14 on the pulmonary absorption of different poorly absorbable drugs and relative mechanism of action.
Related JoVE Video
Identification and Characterization of Maize floury4 as a Novel Semidominant Opaque Mutant That Disrupts Protein Body Assembly.
Plant Physiol.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
Zeins are the major seed storage proteins in maize (Zea mays). They are synthesized on the endoplasmic reticulum (ER) and deposited into protein bodies. Failure of signal peptide cleavage from zeins can cause an opaque endosperm in the mature kernel; however, the cellular and molecular mechanisms responsible for this phenotype are not fully understood. In this study, we report the cloning and characterization of a novel, semidominant opaque mutant, floury4 (fl4). fl4 is caused by a mutated z1A 19-kD ?-zein with defective signal peptide cleavage. Zein protein bodies in fl4 endosperm are misshapen and aggregated. Immunolabeling analysis indicated that fl4 participates in the assembly of zeins into protein bodies, disrupting their proper spatial distribution. ER stress is stimulated in fl4 endosperm, as illustrated by dilated rough ER and markedly up-regulated binding protein content. Further analysis confirmed that several ER stress pathways are induced in fl4 endosperm, including ER-associated degradation, the unfolded protein response, and translational suppression by the phosphorylation of eukaryotic translational initiation factor2 ?-subunit. Programmed cell death is also elevated, corroborating the intensity of ER stress in fl4. These results provide new insights into cellular responses caused by storage proteins with defective signal peptides.
Related JoVE Video
Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting.
RNA
PUBLISHED: 03-26-2014
Show Abstract
Hide Abstract
-1 programmed ribosomal frameshifting (PRF) is utilized by many viruses to synthesize their enzymatic (Pol) and structural (Gag) proteins at a defined ratio. For efficient -1 PRF, two cis-acting elements are required: a heptanucleotide frameshift site and a downstream stimulator such as a pseudoknot. We have analyzed the gag-pol junction sequences from 4254 HIV-1 strains. Approximately ninety-five percent of the sequences can form four pseudoknots PK1-PK4 (? 97% contain PK1, PK3, and PK4), covering ? 72 nt including the frameshift site. Some pseudoknots are mutually excluded due to sequence overlap. PK1 and PK3 arrange tandemly. Their stems form a quasi-continuous helix of ? 22 bp. We propose a novel mechanism for possible roles of these pseudoknots. Multiple alternative structures may exist at the gag-pol junction. In most strains, the PK1-PK3 tandem pseudoknots may dominate the structurally heterogeneous pool of RNA due to their greater overall stability. The tandem pseudoknots may function as a breaking system to slow down the ribosome. The ribosome unwinds PK1 and stem 1 of PK3 before it can reach the frameshift site. Then, PK4 can form rapidly because the intact stem 2 of PK3 makes up a large part of the stem 1 of PK4. The newly formed PK4 jams the entrance of the mRNA tunnel. The process then proceeds as in a typical case of -1 PRF. This mechanism incorporates several exquisite new features while still being consistent with the current paradigm of pseudoknot-dependent -1 PRF.
Related JoVE Video
Expression, purification and crystallization of the SKICH domain of human TAX1BP1.
Acta Crystallogr F Struct Biol Commun
PUBLISHED: 03-22-2014
Show Abstract
Hide Abstract
TAX1BP1 is a highly conserved, pleiotropic protein that plays many essential functions in human cells, including negative regulation of inflammatory and antimicrobial responses mediated by NF-?B and IRF3 signaling, inhibition of apoptosis, transcriptional coactivation and autophagy etc. TAX1BP1 contains a SKICH domain at the N-terminus, three coiled-coil domains in the middle and two ubiquitin-binding zinc-finger motifs at the C-terminus. The SKICH domain and the linker sequence between the SKICH domain and the coiled-coil region mediate interaction with ubiquitin-like proteins of the LC3/GABARAP family, which are autophagosome markers. For structure determination of the SKICH domain of TAX1BP1, a protein construct (amino acids 15-148) corresponding to the SKICH domain plus the linker region was expressed, purified and crystallized. A native diffraction data set has been collected to 1.9 Å resolution. A molecular-replacement solution has been found by using the structure of the SKICH domain of NDP52, a paralog of TAX1BP1.
Related JoVE Video
Exciton coupling of surface complexes on a nanocrystal surface.
Chemphyschem
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Exciton coupling may arise when chromophores are brought into close spatial proximity. Herein the intra-nanocrystal exciton coupling of the surface complexes formed by coordination of 8-hydroxyquinoline to ZnS nanocrystals (NCs) is reported. It is studied by absorption, photoluminescence (PL), PL excitation (PLE), and PL lifetime measurements. The exciton coupling of the surface complexes tunes the PL color and broadens the absorption and PLE windows of the NCs, and thus is a potential strategy for improving the light-harvesting efficiency of NC solar cells and photocatalysts.
Related JoVE Video
Targeting histone deacetylases (HDACs) and Wee1 for treating high-risk neuroblastoma.
Pediatr Blood Cancer
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Despite advances in treatment regimens, patients with high-risk neuroblastoma have long-term survival rates of
Related JoVE Video
Prognostic value of serum AFP, AFP-L3, and GP73 in monitoring short-term treatment response and recurrence of hepatocellular carcinoma after radiofrequency ablation.
Asian Pac. J. Cancer Prev.
PUBLISHED: 03-20-2014
Show Abstract
Hide Abstract
Alpha-fetoprotein (AFP), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3), and Golgi protein 73 (GP73) levels have been widely used as tumor markers for the diagnosis of hepatocellular carcinoma (HCC). The aim of this study was to investigate whether these tumor markers could be used to monitor short-term treatment response and recurrence of HCC in patients undergoing radiofrequency ablation (RFA).
Related JoVE Video
Ras-induced epigenetic inactivation of the RRAD (Ras-related associated with diabetes) gene promotes glucose uptake in a human ovarian cancer model.
J. Biol. Chem.
PUBLISHED: 03-19-2014
Show Abstract
Hide Abstract
RRAD (Ras-related associated with diabetes) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras-regulated transcriptome and epigenome were profiled by comparing T29H (a Ras(V12)-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through reduced representation bisulfite sequencing and digital gene expression. We found that Ras(V12)-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated, and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine resulted in demethylation in the RRAD promoter and restored RRAD expression in T29H cells. Additionally, treatment with farnesyltransferase inhibitor FTI277 resulted in restored RRAD expression and inhibited DNA methytransferase expression and activity in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting that RRAD is a tumor suppressor gene. Our results indicate that Ras(V12)-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis.
Related JoVE Video
Synthesis of [60]fullerene-fused tetrahydrobenzooxepine and isochroman derivatives via hydroxyl-directed C-H activation/C-O cyclization.
Org. Lett.
PUBLISHED: 03-05-2014
Show Abstract
Hide Abstract
The palladium-catalyzed hydroxyl-directed C-H activation/C-O cyclization reaction of [60]fullerene with 2-phenylethyl alcohols and benzyl alcohols afforded [60]fullerene-fused tetrahydrobenzooxepine and isochroman derivatives in up to 43% yield. A plausible reaction mechanism is proposed, and the electrochemistry was also investigated.
Related JoVE Video
Synthesis and Anti-cancer Activities of Apigenin Derivatives.
Med Chem
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
A novel series of apigenin derivatives with phloroglucinol or resorcinol as raw materials were synthesized according to Baker-Venaktaraman reaction and their in vitro inhibitory activities on colorectal adenocarcinoma (HT-29) and leucocythemia (HL-60) cell lines were evaluated by the standard methyl thiazole tetrazolium (MTT) method. The results of biological test showed that some of apigenin derivatives possessed stronger anti-cancer activities than apigenin. Compound 6 showed the strongest activity against colorectal adenocarcinoma (HT-29) and leucocythemia (HL-60) cell lines with IC50 valure of 2.03±0.22 µM, 2.25±0.42 µM, it was better than 5-FU (12.92±0.61 µM, 9.56±0.16 µM), which shows a potential compound for colorectal adenocarcinoma and leucocythemia.
Related JoVE Video
The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin.
Diabetes Res. Clin. Pract.
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
To investigate the changes of serum anti-aging protein Klotho and neutrophil gelatinase-associated lipocalin (NGAL) levels and their correlation in type 2 diabetes mellitus (T2DM) patients at different stages of diabetic kidney disease (DKD) determined by urinary albuminuria.
Related JoVE Video
Cellular mechanisms of a new pyrazinone compound that induces apoptosis in SKOV-3 cells.
Asian Pac. J. Cancer Prev.
PUBLISHED: 02-27-2014
Show Abstract
Hide Abstract
We screened a small molecular library that was designed and independently synthesized in vitro and found a new drug (MY-03-01) that is active against ovarian cancer. We established that MY-03-01 effectively inhibited SKOV-3 cell survival in a dose-dependent manner, based on cell viability rates, and that it not only induced SKOV-3 apoptosis by itself, but also did so synergistically with paclitaxel. Secondly, when MY-03-01 was applied at 40 ?M, its hemolytic activity was less than 10%, compared with the control, and there was almost no damage to normal cells at this concentration. In addition, we used DAPI staining and flow cytometry to show that MY- 03-01 could significantly induce apoptosis of SKOV-3 cells. Finally, we found that MY-03-01 likely induced SKOV-3 apoptosis by activating caspase3 and caspase9 through the mitochondrial pathway.
Related JoVE Video
Cationic micellar nanoparticles for DNA and doxorubicin co-delivery.
Mater Sci Eng C Mater Biol Appl
PUBLISHED: 02-16-2014
Show Abstract
Hide Abstract
Cationic micellar nanoparticles for chemotherapeutic drugs and therapeutic gene co-delivery were prepared based on a poly-(N-?-carbobenzyloxy-l-lysine) (PZLL) and dendritic polyamidoamine (PAMAM) block copolymer (PZLL-D3). PZLL-D3 was synthesized by a copper-catalyzed azide alkyne cyclization (click) reaction between ?-alkyne-PZLL and azide focal point PAMAM dendrons. Its structure was characterized by (1)H NMR and FTIR, and its buffering capability was determined by acid-base titration. MTT, agarose gel electrophoresis and flow cytometry studies showed that PZLL-D3 revealed low in vitro cytotoxicity, strong pDNA condensation ability, protection of pDNA against deoxyribonuclease I degradation and high gene transfection efficiency in 293T and HeLa cells. In addition, the micellar nanoparticles delivered pDNA and anticancer drug doxorubicin (DOX) simultaneously and efficiently to tumor cells, and the DOX loaded nanoparticles showed sustained in vitro release at pH=7.4 and 5.8.
Related JoVE Video
Minimum acquisition methods for simultaneously imaging T(1), T(2), and proton density with B(1) correction and no spin-echoes.
J. Magn. Reson.
PUBLISHED: 02-10-2014
Show Abstract
Hide Abstract
The spin lattice (T(1)) and spin-spin (T(2)) relaxation times, along with the proton density (PD) contain almost all of the information that (1)H MRI routinely uses in clinical diagnosis and research, but are seldom imaged directly. Here, three methods for directly imaging T(1), T(2), and PD with the least possible number of acquisitions - three, are presented. All methods utilize long 0° self-refocusing adiabatic pre-pulses instead of spin-echoes to encode the T(2) information prior to a conventional gradient-echo MRI sequence. T(1) information is encoded by varying the flip-angle (FA) in the 'Dual-? Dual-FA' and 'Four-FA' methods, or the sequence repetition period, TR, in the 'Dual-? Dual-TR' method. Inhomogeneity in the FA distribution and slice-selection profile are recognized as the main error sources for T(1) measurements. The former is remedied by integrating an extra FA-dependent acquisition into the 'Four-FA' method to provide self-corrected T(1), T(2), PD, and FA in just four acquisitions - again, the minimum possible. Slice profile errors - which manifest as differences between 2D and 3D T(1) measurements, can be addressed by Bloch equation analysis and experimental calibration. All three methods are validated in phantom studies, and the 'Dual-? Dual-FA' and 'Four-FA' methods are validated in human brain studies using standard partial saturation and spin-echo methods for reference. The new methods offer a minimum-acquisition option for imaging single-component T(1), T(2), and PD. 'Four-FA' performs best overall in accuracy, with high efficiency per unit accuracy vs. existing methods when B(1)-inhomogeneity is appropriately addressed.
Related JoVE Video
Redox-responsive nanoparticles with Aggregation-Induced Emission (AIE) characteristic for fluorescence imaging.
Macromol Biosci
PUBLISHED: 02-09-2014
Show Abstract
Hide Abstract
The redox environment between intracellular compartments and extracellular matrix is significantly different, and the cellular redox homeostasis determines many physiological functions. Here, redox-responsive nanoparticles with aggregation-induced emission (AIE) characteristic for fluorescence imaging are developed by encapsulation of fluorophore with redox "turn-on" AIE characteristic, TPE-MI, into the micelles of poly(ethylene glycol) (PEG)- and cholesterol (CE)-conjugated disulfide containing poly(amido amine)s. The redox-responsive fluorescence profiles of the nanoparticles are investigated after reaction with glutathione (GSH). The encapsulation of TPE-MI in micelles leads to a higher efficiency and red shift in emission, and the fluorescence intensity of the nanoparticles increases with the concentration of GSH. Confocal microscopy imaging shows that the nanoparticles can provide obvious contrast between the intracellular compartments and the extracellular matrix in MCF-7 and HepG2 cells. So the nanoparticles with PEG shells and low cytotoxicity are promising to provide fluorescence bioimaging with a high contrast and for differentiation of cellular redox environment.
Related JoVE Video
Indole alkaloids from the roots of Isatis indigotica and their inhibitory effects on nitric oxide production.
Fitoterapia
PUBLISHED: 02-08-2014
Show Abstract
Hide Abstract
Three rare indole-2-S-glycosides, indole-3-acetonitrile-2-S-?-D-glucopyranoside (1), indole-3-acetonitrile-4-methoxy-2-S-?-D-glucopyranoside (2) and N-methoxy-indole-3-acetonitrile-2-S-?-D-glucopyranoside (3), together with 11 known indole alkaloids were isolated from the roots of Isatis indigotica Fort. (Cruciferae). The structures of 1-3 were elucidated on the basis of mass spectrometry and extensive 1D and 2D NMR spectroscopy. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. A plausible biosynthesis pathway of 1-3 is also proposed.
Related JoVE Video
Regioselective electrosynthesis of rare 1,2,3,16-functionalized [60]fullerene derivatives.
Angew. Chem. Int. Ed. Engl.
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
Fullerene derivatives with different addition patterns exhibit different physical, chemical, and biological properties, which are important for fullerene applications. Novel and rare 1,2,3,16-functionalized [60]fullerene derivatives having a five-membered heterocycle fused to a [5,6]-junction were obtained with high regioselectivity by electrochemical derivatization of a [60]fulleroindoline. The product structures were determined by spectroscopic data and single-crystal X-ray analysis. The obtained high regioselectivity was rationalized using theoretical calculations.
Related JoVE Video
Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas.
Integr Zool
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
We report on the first study to track the spatial behaviors of wild giant pandas (Ailuropoda melanoleuca) using high-resolution global positioning system (GPS) telemetry. Between 2008 and 2009, 4 pandas (2 male and 2 female) were tracked in Foping Reserve, China for an average of 305 days (± 54.8 SE). Panda home ranges were larger than those of previous very high frequency tracking studies, with a bimodal distribution of space-use and distinct winter and summer centers of activity. Home range sizes were larger in winter than in summer, although there was considerable individual variability. All tracked pandas exhibited individualistic, unoriented and multiphasic movement paths, with a high level of tortuosity within seasonal core habitats and directed, linear, large-scale movements between habitats. Pandas moved from low elevation winter habitats to high elevation (>2000 m) summer habitats in May, when temperatures averaged 17.5 °C (± 0.3 SE), and these large-scale movements took <1 month to complete. The peak in panda mean elevation occurred in Jul, after which they began slow, large-scale movements back to winter habitats that were completed in Nov. An adult female panda made 2 longdistance movements during the mating season. Pandas remain close to rivers and streams during winter, possibly reflecting the elevated water requirements to digest their high-fiber food. Panda movement path tortuosity and first-passage-time as a function of spatial scale indicated a mean peak in habitat search effort and patch use of approximately 700 m. Despite a high degree of spatial overlap between panda home ranges, particularly in winter, we detected neither avoidance nor attraction behavior between conspecifics.
Related JoVE Video
Combination of AZD2281 (Olaparib) and GX15-070 (Obatoclax) results in synergistic antitumor activities in preclinical models of pancreatic cancer.
Cancer Lett.
PUBLISHED: 01-21-2014
Show Abstract
Hide Abstract
In this study, we explored the antitumor activities of the PARP inhibitor AZD2281 (Olaparib) and the pan-Bcl-2 inhibitor GX15-070 (Obatoclax) in six pancreatic cancer cell lines. While both agents were able to cause growth arrest and limited apoptosis, the combination of the two was able to synergistically cause growth arrest and non-apoptotic cell death. Furthermore, in an in vivo xenograft model, the combination caused substantially increased tumor necrosis compared to either treatment alone. Our results support further investigation of the combination of Bcl-2 and PARP inhibitors for the treatment of pancreatic cancer.
Related JoVE Video
Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis.
Environ Sci Pollut Res Int
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Azo dyes are recalcitrant and refractory pollutants that constitute a significant menace to the environment. The present study is focused on exploring the capability of Bacillus sp. strain UN2 for application in methyl red (MR) degradation. Effects of physicochemical parameters (pH of medium, temperature, initial concentration of dye, and composition of the medium) were studied in detail. The suitable pH and temperature range for MR degradation by strain UN2 were respectively 7.0-9.0 and 30-40 °C, and the optimal pH value and temperature were respectively 8.0 and 35 °C. Mg(2+) and Mn(2+) (1 mM) were found to significantly accelerate the MR removal rate, while the enhancement by either Fe(3+) or Fe(2+) was slight. Under the optimal degradation conditions, strain UN2 exhibited greater than 98 % degradation of the toxic azo dye MR (100 ppm) within 30 min. Analysis of samples from decolorized culture flasks confirmed biodegradation of MR into two prime metabolites: N,N'dimethyl-p-phenyle-nediamine and 2-aminobenzoic acid. A study of the enzymes responsible for the biodegradation of MR, in the control and cells obtained during (10 min) and after (30 min) degradation, showed a significant increase in the activities of azoreductase, laccase, and NADH-DCIP reductase. Furthermore, a phytotoxicity analysis demonstrated that the germination inhibition was almost eliminated for both the plants Triticum aestivum and Sorghum bicolor by MR metabolites at 100 mg/L concentration, yet the germination inhibition of parent dye was significant. Consequently, the high efficiency of MR degradation enables this strain to be a potential candidate for bioremediation of wastewater containing MR.
Related JoVE Video
Abnormal expression of an ADAR2 alternative splicing variant in gliomas downregulates adenosine-to-inosine RNA editing.
Acta Neurochir (Wien)
PUBLISHED: 01-18-2014
Show Abstract
Hide Abstract
RNA editing is catalyzed by adenosine deaminases acting on RNA (ADARs). ADAR2 is the main enzyme responsible for recoding editing in humans. Adenosine-to-inosine (A-to-I) editing at the Q/R site is reported to be decreased in gliomas; however, the expression of ADAR2 mRNA was not greatly affected.
Related JoVE Video
Structure of the FP domain of Fbxo7 reveals a novel mode of protein-protein interaction.
Acta Crystallogr. D Biol. Crystallogr.
PUBLISHED: 01-15-2014
Show Abstract
Hide Abstract
The FP (Fbxo7/PI31) domains found in the F-box protein Fbxo7 and the proteasome inhibitor PI31 mediate the homodimerization and heterodimerization of Fbxo7 and PI31. Fbxo7 is the substrate-recognition subunit of the SCF(Fbxo7) (Skp1-Cul1-F-box protein) E3 ubiquitin ligase that catalyzes the ubiquitination of hepatoma up-regulated protein (HURP) and inhibitor of apoptosis protein (IAP). Fbxo7 also interacts with proteins that are not substrates of the ubiquitin proteasome system, such as Cdk6 and PI31. Here, the crystal structure of the Fbxo7 FP domain is reported at 2.0?Å resolution. The Fbxo7 FP domain adopts an ?/?-fold similar to that of the PI31 FP domain. However, an ?-helix and three ?-strands in the Fbxo7 FP domain are longer than their counterparts in the PI31 FP domain. The differences in these secondary-structural elements are spatially clustered to define a more structured and extended C-terminal end of the Fbxo7 FP domain. The two FP domains also differ substantially in the length and conformation of the longest connecting loop. More importantly, structural differences between the two FP domains lead to drastically different modes of inter-domain protein-protein interaction. The inter-domain interface of the Fbxo7 FP domain is defined by the ?-helical surface in one protomer and the ?-sheet surface in the other protomer, whereas for the PI31 domain it is defined by either the ?-helical surfaces or the ?-sheet surfaces in both protomers. The inter-domain interaction of the Fbxo7 FP domain is much more extensive, featuring a larger contact surface area, better shape complementarity and more hydrophobic and hydrogen-bonding interactions. The Fbxo7 FP domain also has the potential to bind two protein partners simultaneously using the ?-helical and ?-sheet surfaces. The results of this structural study provide critical insights into how Fbxo7 may dimerize (or multimerize) and interact with other regulatory proteins via the FP domain.
Related JoVE Video
Prelude to rational scale-up of penicillin production: a scale-down study.
Appl. Microbiol. Biotechnol.
PUBLISHED: 01-12-2014
Show Abstract
Hide Abstract
Penicillin is one of the best known pharmaceuticals and is also an important member of the ?-lactam antibiotics. Over the years, ambitious yields, titers, productivities, and low costs in the production of the ?-lactam antibiotics have been stepwise realized through successive rounds of strain improvement and process optimization. Penicillium chrysogenum was proven to be an ideal cell factory for the production of penicillin, and successful approaches were exploited to elevate the production titer. However, the industrial production of penicillin faces the serious challenge that environmental gradients, which are caused by insufficient mixing and mass transfer limitations, exert a considerably negative impact on the ultimate productivity and yield. Scale-down studies regarding diverse environmental gradients have been carried out on bacteria, yeasts, and filamentous fungi as well as animal cells. In accordance, a variety of scale-down devices combined with fast sampling and quenching protocols have been established to acquire the true snapshots of the perturbed cellular conditions. The perturbed metabolome information stemming from scale-down studies contributed to the comprehension of the production process and the identification of improvement approaches. However, little is known about the influence of the flow field and the mechanisms of intracellular metabolism. Consequently, it is still rather difficult to realize a fully rational scale-up. In the future, developing a computer framework to simulate the flow field of the large-scale fermenters is highly recommended. Furthermore, a metabolically structured kinetic model directly related to the production of penicillin will be further coupled to the fluid flow dynamics. A mathematical model including the information from both computational fluid dynamics and chemical reaction dynamics will then be established for the prediction of detailed information over the entire period of the fermentation process and thereby for the optimization of penicillin production, and subsequently also benefiting other fermentation products.
Related JoVE Video
A high through-put screen for small molecules modulating MCM2 phosphorylation identifies Ryuvidine as an inducer of the DNA damage response.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
DNA replication is an essential process for cell division and as such it is a process that is directly targeted by several anticancer drugs. CDC7 plays an essential role in the activation of replication origins and has recently been proposed as a novel target for drug discovery. The MCM DNA helicase complex (MCM2-7) is a key target of the CDC7 kinase, and MCM phosphorylation status at specific sites is a reliable biomarker of CDC7 cellular activity. In this work we describe a cell-based assay that utilizes the "In Cell Western Technique" (ICW) to identify compounds that affect cellular CDC7 activity. By screening a library of approved drugs and kinase inhibitors we found several compounds that can affect CDC7-dependent phosphorylation of MCM2 in HeLa cells. Among these, Mitoxantrone, a topoisomerase inhibitor, and Ryuvidine, previously described as a CDK4 inhibitor, cause a reduction in phosphorylated MCM2 levels and a sudden blockade of DNA synthesis that is accompanied by an ATM-dependent checkpoint response. This study sheds light on the previously observed cytotoxity of Ryuvidine, strongly suggesting that it is related to its effect of causing DNA damage.
Related JoVE Video
Optimizing online social networks for information propagation.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Online users nowadays are facing serious information overload problem. In recent years, recommender systems have been widely studied to help people find relevant information. Adaptive social recommendation is one of these systems in which the connections in the online social networks are optimized for the information propagation so that users can receive interesting news or stories from their leaders. Validation of such adaptive social recommendation methods in the literature assumes uniform distribution of users' activity frequency. In this paper, our empirical analysis shows that the distribution of online users' activity is actually heterogenous. Accordingly, we propose a more realistic multi-agent model in which users' activity frequency are drawn from a power-law distribution. We find that previous social recommendation methods lead to serious delay of information propagation since many users are connected to inactive leaders. To solve this problem, we design a new similarity measure which takes into account users' activity frequencies. With this similarity measure, the average delay is significantly shortened and the recommendation accuracy is largely improved.
Related JoVE Video
Detection and analysis of human papillomavirus (HPV) DNA in breast cancer patients by an effective method of HPV capture.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Despite an increase in the number of molecular epidemiological studies conducted in recent years to evaluate the association between human papillomavirus (HPV) and the risk of breast carcinoma, these studies remain inconclusive. Here we aim to detect HPV DNA in various tissues from patients with breast carcinoma using the method of HPV capture combined with massive paralleled sequencing (MPS). To validate the confidence of our methods, 15 cervical cancer samples were tested by PCR and the new method. Results showed that there was 100% consistence between the two methods.DNA from peripheral blood, tumor tissue, adjacent lymph nodes and adjacent normal tissue were collected from seven malignant breast cancer patients, and HPV type 16 (HPV16) was detected in 1/7, 1/7, 1/7 and 1/7 of patients respectively. Peripheral blood, tumor tissue and adjacent normal tissue were also collected from two patients with benign breast tumor, and 1/2, 2/2 and 2/2 was detected to have HPV16 DNA respectively. MPS metrics including mapping ratio, coverage, depth and SNVs were provided to characterize HPV in samples. The average coverage was 69% and 61.2% for malignant and benign samples respectively. 126 SNVs were identified in all 9 samples. The maximum number of SNVs was located in the gene of E2 and E4 among all samples. Our study not only provided an efficient method to capture HPV DNA, but detected the SNVS, coverage, SNV type and depth. The finding has provided further clue of association between HPV16 and breast cancer.
Related JoVE Video
Ferric Chloride-Catalyzed Reaction of [60]Fullerene with tert-Butyl N-Substituted Carbamates: Synthesis of Oxazolidino[4,5:1,2][60]fullerenes.
J. Org. Chem.
PUBLISHED: 12-19-2013
Show Abstract
Hide Abstract
The rare oxazolidinofullerenes have been prepared by the ferric chloride-catalyzed reaction of [60]fullerene with various tert-butyl N-substituted carbamates via t-Bu-O bond cleavage and heteroannulation under mild conditions. A possible mechanism for the formation of oxazolidinofullerenes is proposed.
Related JoVE Video
Genomics of Elite Sporting Performance: What little We Know and Necessary Advances.
Adv. Genet.
PUBLISHED: 11-23-2013
Show Abstract
Hide Abstract
Numerous reports of genetic associations with performance- and injury-related phenotypes have been published over the past three decades; these studies have employed primarily the candidate gene approach to identify genes that associate with elite performance or with variation in performance-and/or injury-related traits. Although generally with small effect sizes and heavily prone to type I statistic error, the number of candidate genetic variants that can potentially explain elite athletic status, injury predisposition, or indeed response to training will be much higher than that examined by numerous biotechnology companies. Priority should therefore be given to applying whole genome technology to sufficiently large study cohorts of world-class athletes with adequately measured phenotypes where it is possible to increase statistical power. Some of the elite athlete cohorts described in the literature might suffice, and collectively, these cohorts could be used for replication purposes. Genome-wide association studies are ongoing in some of these cohorts (i.e., Genathlete, Russian, Spanish, Japanese, United States, and Jamaican cohorts), and preliminary findings include the identification of one single nucleotide polymorphism (SNP; among more than a million SNPs analyzed) that associates with sprint performance in Japanese, American (i.e., African American), and Jamaican cohorts with a combined effect size of ~2.6 (P-value <5×10(-7)) and good concordance with endurance performance between select cohorts. Further replications of these signals in independent cohorts will be required, and any replicated SNPs will be taken forward for fine-mapping/targeted resequencing and functional studies to uncover the underlying biological mechanisms. Only after this lengthy and costly process will the true potential of genetic testing in sport be determined.
Related JoVE Video
Biotransformation of baicalin to baicalein significantly strengthens the inhibition potential towards UDP-glucuronosyltransferases (UGTs) isoforms.
Pharmazie
PUBLISHED: 10-24-2013
Show Abstract
Hide Abstract
The aim of the present study was to investigate the influence of biotransformation of baicalin into baicalein towards the inhibition potential towards one of the most important drug-metabolizing enzymes (DMEs) UDP-glucuronosyltransferases (UGTs). in vitro incubation method using recombinant UGTs-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used to evaluate the inhibition towards important UGT isoforms in the liver, including UGT1A1, 1A3, 1A6, 1A9, and 2B7. At the same concentration (100 microM), baicalein showed stronger inhibition potential than baicalin towards all the tested UGT isoforms. Data fitting using Dixon plot and Lineweaver-Burk plot was carried out to determine the inhibition type, and the second plot with the slopes from Lineweaver-Burk plot towards baicaleins concentrations was used to calculate the inhibition kinetic parameters (K(i)). Competitive inhibition type was observed for UGT1A1, 1A6, 1A9 and 2B7, and noncompetitive inhibition was detected for UGT1A3. The inhibition kinetic parameters (K(i)) were calculated to be 1.2, 5.1, 15.3, 26.3, and 48.9 microM for UGT1A1, 1A3, 1A6, 1A9, and 2B7, respectively. All these information reminds us of the necessary monitoring when oral administration of baicalin or baicalin-containing herbs.
Related JoVE Video
Self-decoupled porphyrin with a tripodal anchor for molecular-scale electroluminescence.
J. Am. Chem. Soc.
PUBLISHED: 10-10-2013
Show Abstract
Hide Abstract
A self-decoupled porphyrin with a tripodal anchor has been synthesized and deposited on Au(111) using different wet-chemistry methods. Nanoscale electroluminescence from single porphyrin molecules or aggregates on Au(111) has been realized by tunneling electron excitation. The molecular origin of the luminescence is established by the vibrationally resolved fluorescence spectra observed. The rigid tripodal anchor not only acts as a decoupling spacer but also controls the orientation of the molecule. Intense molecular electroluminescence can be obtained from the emission enhancement provided by a good coupling between the molecular transition dipole and the axial nanocavity plasmon. The unipolar performance of the electroluminescence from the designed tripodal molecule suggests that the porphyrin molecule is likely to be excited by the injection of hot electrons, and then the excited state decays radiatively through Franck-Condon ?*-? transitions. These results open up a new route to generating electrically driven nanoscale light sources.
Related JoVE Video
Palladium-catalyzed decarboxylative ortho acylation of azobenzenes with ?-oxocarboxylic acids.
J. Org. Chem.
PUBLISHED: 10-08-2013
Show Abstract
Hide Abstract
A palladium-catalyzed decarboxylative ortho acylation of azobenzenes with ?-oxocarboxylic acids via ligand-directed C-H activation has been explored. The reaction proceeded smoothly with potassium persulfate as the oxidant to afford acylated unsymmetrical azobenzenes in moderate to good yields and tolerated chloro, bromo, iodo, and methoxy groups. Para, ortho, and disubstituted as well as unsymmetrical azobenzenes could be used.
Related JoVE Video
Toxoplasma gondii : Immune response and protective efficacy induced by ROP16/GRA7 multicomponent DNA vaccine with a genetic adjuvant B7-2.
Hum Vaccin Immunother
PUBLISHED: 10-07-2013
Show Abstract
Hide Abstract
Toxoplasma gondii infection occurs commonly in humans and other warm-blooded animals. Its serious impact on public health and livestock sectors makes the development of an effective vaccine particularly important. In the current study, we constructed a multiantigenic DNA vaccine expressing ROP16 and GRA7 of T. gondii and evaluated the protective efficacy of these two fragments with or without a plasmid encoding murine costimulatory molecule B7-2. These recombinant eukaryotic expression plasmids were termed pROP16, pGRA7, pROP16-GRA7 and pB7-2, respectively. After intramuscular immunization in Kunming mice, we assessed the immune response using cytokine and antibody determinations, T lymphocyte subsets analysis, and the survival times of mice post acute T. gondii challenge. The results showed that mice immunized with the multiantigenic DNA vaccine pROP16-GRA7 gained higher levels of IgG titers and IgG2a subclass titers, production of IFN-?, percentage of CD8+ T cells and median survival times against the acute infection of T. gondii compared with those of mice administered with pROP16 or pGRA7 and those in control groups. Moreover, the adjuvant pB7-2 formulated with DNA vaccine boosted these humoral and cellular (Th1, CD8+ T cell) immune responses. Therefore, it might be a promising genetic adjuvant to DNA vaccine against T. gondii for further investigation.
Related JoVE Video
The Cell Surface GRP78 Facilitates the Invasion of Hepatocellular Carcinoma Cells.
Biomed Res Int
PUBLISHED: 10-06-2013
Show Abstract
Hide Abstract
Invasion is a major characteristic of hepatocellular carcinoma and one of the main causes of refractory to treatment. We have previously reported that GRP78 promotes the invasion of hepatocellular carcinoma although the mechanism underlying this change remains uncertain. In this paper, we explored the role of the cell surface GRP78 in the regulation of cancer cell invasion in hepatocellular carcinoma cells. We found that neutralization of the endogenous cell surface GRP78 with the anti-GRP78 antibody inhibited the adhesion and invasion in hepatocellular carcinoma cell lines Mahlavu and SMMC7721. However, forced expression of the cell surface GRP78 facilitated the adhesion and invasion in SMMC7721. We further demonstrated that inhibition of the endogenous cell surface GRP78 specifically inhibited the secretion and activity of MMP-2 but did not affect the secretion and activity of MMP-9. We also found that inhibition of the cell surface GRP78 increased E-Cadherin expression and decreased N-Cadherin level. On the contrary, forced expression of the cell surface GRP78 increased N-Cadherin expression and decreased E-Cadherin level, suggesting that the cell surface GRP78 plays critical role in the regulation of EMT process. These findings suggest that the cell surface GRP78 plays a stimulatory role in the invasion process and may be a potential anti-invasion target for the treatment of hepatocellular carcinoma.
Related JoVE Video
High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) for determination of a highly degenerated prophage WO genome in a Wolbachia strain infecting a fig wasp species.
Appl. Environ. Microbiol.
PUBLISHED: 09-27-2013
Show Abstract
Hide Abstract
Temperate bacteriophage WO is a model system for studying tripartite interactions among viruses, bacteria, and eukaryotes, especially investigations of the genomic stability of obligate intracellular bacteria. Few WO genomes exist because of the difficulty in isolating viral DNA from eukaryotic hosts, and most reports are by-products of Wolbachia sequencing. Only one partial genome of a WO phage has been determined directly from isolated particles. We determine the complete genome sequence of prophage WO (WOSol) in Wolbachia strain wSol, which infects the fig wasp Ceratosolen solmsi (Hymenoptera: Chalcidoidea), by high-efficiency thermal asymmetric interlaced PCR. The genome of WOSol is highly degenerated and disrupted by a large region (14,267 bp) from Wolbachia. Consistent with previous molecular studies of multiple WO genomes, the genome of WOSol appears to have evolved by single nucleotide mutations and recombinations.
Related JoVE Video
Urinary excretion of ginkgolide terpene lactones following acute consumption of Ginkgo biloba extract.
Biofactors
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
Urinary biomarkers of plant food supplement (PFS) exposure/intake represent an accurate, objective tool for determining PFS consumption in humans with applications ranging from epidemiology to subject compliance in clinical trials. Ginkgo biloba remains one of the worlds most popular PFS, yet few studies have investigated the uptake and metabolism of its primary unique bioactives: the terpene lactones. To this end, we conducted a dual-dose, acute crossover intervention using G. biloba supplements in healthy participants (n?=?12). Pooled 24-H urine samples were analyzed by triple quadrupole LC-MS-MS. We observed that bilobalide and ginkgolides A and B were passed into urine intact and in a dose-dependent manner. Low levels of intact ginkgolides C and J were also excreted. To our knowledge, this is the first study to report intact ginkgolide J in urine following oral consumption of ginkgo supplements and is also the first to account for excreted terpene lactones as a proportion of dose. © 2013 BioFactors, 2013.
Related JoVE Video
Alantolactone induces cell apoptosis partially through down-regulation of testes-specific protease 50 expression.
Toxicol. Lett.
PUBLISHED: 09-20-2013
Show Abstract
Hide Abstract
Testes-specific protease 50 (TSP50) is aberrantly expressed in many cancer biopsies and plays a crucial role in tumorigenesis, which make it a potential cancer therapeutic target for drug discovery. Here, we constructed a firefly luciferase reporter driven by the TSP50 gene promoter to screen natural compounds capable of inhibiting the expression of TSP50. Then we identified alantolactone, a sesquiterpene lactone, could efficiently inhibit the promoter activity of TSP50 gene, further results revealed that alantolactone also efficiently inhibited the expression of TSP50 in both mRNA and protein levels. Moreover, we found alantolactone could increase the ratio of Bax/Bcl-2, and activate caspase-9 and caspase-3 in the cancer cells with high expression of TSP50, surprisingly, the same effects can also be observed in the same cells just by knockdown of TSP50 gene expression. Furthermore, our results suggested that overexpression of TSP50 decreased the cell sensitivity to alantolactone-induced apoptosis in those cancer cells. Taken together, these results suggest that alantolactone induces mitochondrial-dependent apoptosis at least partially via down-regulation of TSP50 expression.
Related JoVE Video
Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.
Genome Biol.
PUBLISHED: 09-12-2013
Show Abstract
Hide Abstract
Fig pollinating wasps form obligate symbioses with their fig hosts. This mutualism arose approximately 75 million years ago. Unlike many other intimate symbioses, which involve vertical transmission of symbionts to host offspring, female fig wasps fly great distances to transfer horizontally between hosts. In contrast, male wasps are wingless and cannot disperse. Symbionts that keep intimate contact with their hosts often show genome reduction, but it is not clear if the wide dispersal of female fig wasps will counteract this general tendency. We sequenced the genome of the fig wasp Ceratosolen solmsi to address this question.
Related JoVE Video
[Identification of serum biomarkers for assessing minimal residual disease in acute leukemia by serum peptide pattern].
Zhonghua Xue Ye Xue Za Zhi
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
To screen serum biomarkers for minimal residual disease (MRD) monitoring according to differential peptidomic profile in the serum from the patients with acute leukemia (AL) and healthy controls.
Related JoVE Video
[A meta-analysis on the efficacy of stem cells transplantation therapy on the prevention of cardiac remodeling and main adverse cardiovascular event in patients with chronic heart failure].
Zhonghua Xin Xue Guan Bing Za Zhi
PUBLISHED: 08-03-2013
Show Abstract
Hide Abstract
Stem cells transplantation is a promising strategy in cardiology. This meta-analysis summarizes the efficacy and safety of stem cells transplantation on top of standard medication on chronic heart failure patients.
Related JoVE Video
Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats.
J. Neurotrauma
PUBLISHED: 07-17-2013
Show Abstract
Hide Abstract
Multiple cellular, molecular, and biochemical changes contribute to the etiology and treatment outcome of contusion spinal cord injury (SCI). Dysregulation of microRNAs (miRNAs) has been found following SCI in recent studies. However, little is known about the functional significance of the unique role of miRNAs in SCI. We analyzed the miRNA expression patterns 1 and 3 days following rat SCI using miRNA microarray. Microarray data revealed that nine miRNAs were upregulated and five miRNAs were downregulated 1 day post-injury, and that three miRNAs were upregulated and five miRNAs were downregulated 3 days post-injury, in the sites of contused when compared with sham rat spinal cords. Because miR-21 was one of the miRNAs being most significantly upregulated, we investigated its function. Knockdown of miR-21 by antagomir-21 led to attenuated recovery in hindlimb motor function, increased lesion size, and decreased tissue sparing in rats. Compared with the negative control group, treatment with antagomir-21 significantly increased apoptosis following SCI. Pro-apoptosis genes Fas ligand (FasL), phosphatase and tensin homolog (PTEN), and programmed cell death protein 4 (PDCD4) were proved to be direct targets of miR-21 in many diseases and cell types. In vivo treatment with antagomir-21 increased the expression of FasL and PTEN, but did not affect PDCD4. These results suggested that miR-21 played an important role in limiting secondary cell death following SCI, and that the protective effects of miR-21 might have been the result of its regulation on pro-apoptotic genes. Thus, miR-21 may play an important role in the pathophysiology of SCI.
Related JoVE Video
Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene.
BMC Plant Biol.
PUBLISHED: 07-12-2013
Show Abstract
Hide Abstract
Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the "Hypersensitive response" (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background.
Related JoVE Video
Microwave-Accelerated Pd-Catalyzed Desulfitative Direct C2-Arylation of Free (NH)-Indoles with Arylsulfinic Acids.
Chem Asian J
PUBLISHED: 07-10-2013
Show Abstract
Hide Abstract
The rapid and efficient direct C2-arylation of free (NH)-indoles with arylsulfinic acids proceeded through a microwave-accelerated palladium-catalyzed desulfitation reaction. By using PdCl2 as a catalyst, silver acetate as an oxidant, and H2 SO4 as an additive, arylsulfinic acids with both electron-donating and electron-withdrawing groups underwent desulfitative coupling with an array of free (NH)-indoles, thereby selectively providing C2-arylindoles in good yields.
Related JoVE Video
Electroreductive transformation of [60]fullerosultones into fullerosulfonic acids.
J. Org. Chem.
PUBLISHED: 07-08-2013
Show Abstract
Hide Abstract
Novel C60 derivatives of a singly bonded dimer and a 1,4-adduct bearing a sulfonic acid functionality have been prepared via the electroreductive transformation of a [60]fullerosultone. It has been shown that the reaction of the in situ formed dianion with benzyl bromide is initiated by a ring-opening of the [60]fullerosultone via the C60-O bond cleavage upon receiving one electron. The [60]fullerosultone dianion is electrooxidized at 0.40 V to afford the singly bonded dimer species, which can be further electrooxidized at 1.30 V to restore the starting material [60]fullerosultone. The reaction mechanism is studied with the cyclic voltammetry and vis-NIR spectroscopy.
Related JoVE Video
Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma.
Genome Res.
PUBLISHED: 06-20-2013
Show Abstract
Hide Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease.
Related JoVE Video
Expression, purification and crystallization of the FP domain of the human F-box protein Fbxo7.
Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Fbxo7 is a conserved protein in higher eukaryotes that belongs to the F-box protein family. Fbxo7 is the substrate-recognition component of the SCFFbxo7 (Skp1-Cul1-Fbox protein) E3 ubiquitin ligase. Besides the F-box motif, Fbxo7 also contains a C-terminal proline-rich region, an N-terminal ubiquitin-like domain and a novel FP (Fbxo7/PI31) domain preceding the F-box motif. The FP domains of Fbxo7 and the PI31 proteasome inhibitor mediate interaction between the two proteins. For structure determination of the FP domain of Fxbo7, a protein construct (amino acids 181-335) corresponding to the FP domain was expressed, purified and crystallized. The native and selenomethionine-labeled proteins crystallized in different crystal forms. Native and single-wavelength anomalous dispersion data sets with diffraction to 2.1 and 2.0?Å resolution, respectively, have been collected and structure determination is in progress.
Related JoVE Video
Deficiency of volume-regulated ClC-3 chloride channel attenuates cerebrovascular remodelling in DOCA-salt hypertension.
Cardiovasc. Res.
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
We have previously demonstrated that ClC-3 chloride channel activity and expression are significantly increased in remodelled cerebral vessels of hypertensive rats. This study aims to examine whether this channel directly regulates cerebrovascular remodelling during hypertension by using ClC-3(-/-) mice.
Related JoVE Video
Association analysis of ACE and ACTN3 in elite Caucasian and East Asian swimmers.
Med Sci Sports Exerc
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Polymorphic variation in the angiotensin-converting enzyme (ACE) and ?-actinin-3 (ACTN3) genes has been reported to be associated with endurance and/or power-related human performance. Our aim was to investigate whether polymorphisms in ACE and ACTN3 are associated with elite swimmer status in Caucasian and East Asian populations.
Related JoVE Video
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.