JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Preclinical investigations reveal the broad-spectrum neutralizing activity of peptide Pep19-2.5 on bacterial pathogenicity factors.
Antimicrob. Agents Chemother.
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Bacterial infections are known to cause severe health-threatening conditions, including sepsis. All attempts to get this disease under control failed in the past, and especially in times of increasing antibiotic resistance, this leads to one of the most urgent medical challenges of our times. We designed a peptide to bind with high affinity to endotoxins, one of the most potent pathogenicity factors involved in triggering sepsis. The peptide Pep19-2.5 reveals high endotoxin neutralization efficiency in vitro, and here, we demonstrate its antiseptic/anti-inflammatory effects in vivo in the mouse models of endotoxemia, bacteremia, and cecal ligation and puncture, as well as in an ex vivo model of human tissue. Furthermore, we show that Pep19-2.5 can bind and neutralize not only endotoxins but also other bacterial pathogenicity factors, such as those from the Gram-positive bacterium Staphylococcus aureus. This broad neutralization efficiency and the additive action of the peptide with common antibiotics makes it an exceptionally appropriate drug candidate against bacterial sepsis and also offers multiple other medication opportunities.
Related JoVE Video
Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides.
Biophys. J.
PUBLISHED: 01-15-2011
Show Abstract
Hide Abstract
Bacterial endotoxins (lipopolysaccharides (LPS)) are strong elicitors of the human immune system by interacting with serum and membrane proteins such as lipopolysaccharide-binding protein (LBP) and CD14 with high specificity. At LPS concentrations as low as 0.3 ng/ml, such interactions may lead to severe pathophysiological effects, including sepsis and septic shock. One approach to inhibit an uncontrolled inflammatory reaction is the use of appropriate polycationic and amphiphilic antimicrobial peptides, here called synthetic anti-LPS peptides (SALPs). We designed various SALP structures and investigated their ability to inhibit LPS-induced cytokine secretion in vitro, their protective effect in a mouse model of sepsis, and their cytotoxicity in physiological human cells. Using a variety of biophysical techniques, we investigated selected SALPs with considerable differences in their biological responses to characterize and understand the mechanism of LPS inactivation by SALPs. Our investigations show that neutralization of LPS by peptides is associated with a fluidization of the LPS acyl chains, a strong exothermic Coulomb interaction between the two compounds, and a drastic change of the LPS aggregate type from cubic into multilamellar, with an increase in the aggregate sizes, inhibiting the binding of LBP and other mammalian proteins to the endotoxin. At the same time, peptide binding to phospholipids of human origin (e.g., phosphatidylcholine) does not cause essential structural changes, such as changes in membrane fluidity and bilayer structure. The absence of cytotoxicity is explained by the high specificity of the interaction of the peptides with LPS.
Related JoVE Video
Structural features governing the activity of lactoferricin-derived peptides that act in synergy with antibiotics against Pseudomonas aeruginosa in vitro and in vivo.
Antimicrob. Agents Chemother.
PUBLISHED: 10-18-2010
Show Abstract
Hide Abstract
Pseudomonas aeruginosa is naturally resistant to many antibiotics, and infections caused by this organism are a serious threat, especially to hospitalized patients. The intrinsic low permeability of P. aeruginosa to antibiotics results from the coordinated action of several mechanisms, such as the presence of restrictive porins and the expression of multidrug efflux pump systems. Our goal was to develop antimicrobial peptides with an improved bacterial membrane-permeabilizing ability, so that they enhance the antibacterial activity of antibiotics. We carried out a structure activity relationship analysis to investigate the parameters that govern the permeabilizing activity of short (8- to 12-amino-acid) lactoferricin-derived peptides. We used a new class of constitutional and sequence-dependent descriptors called PEDES (peptide descriptors from sequence) that allowed us to predict (Spearmans ? = 0.74; P < 0.001) the permeabilizing activity of a new peptide generation. To study if peptide-mediated permeabilization could neutralize antibiotic resistance mechanisms, the most potent peptides were combined with antibiotics, and the antimicrobial activities of the combinations were determined on P. aeruginosa strains whose mechanisms of resistance to those antibiotics had been previously characterized. A subinhibitory concentration of compound P2-15 or P2-27 sensitized P. aeruginosa to most classes of antibiotics tested and counteracted several mechanisms of antibiotic resistance, including loss of the OprD porin and overexpression of several multidrug efflux pump systems. Using a mouse model of lethal infection, we demonstrated that whereas P2-15 and erythromycin were unable to protect mice when administered separately, concomitant administration of the compounds afforded long-lasting protection to one-third of the animals.
Related JoVE Video
New antiseptic peptides to protect against endotoxin-mediated shock.
Antimicrob. Agents Chemother.
PUBLISHED: 07-06-2010
Show Abstract
Hide Abstract
Systemic bacterial infections are associated with high mortality. The access of bacteria or constituents thereof to systemic circulation induces the massive release of immunomodulatory mediators, ultimately causing tissue hypoperfusion and multiple-organ failure despite adequate antibiotic treatment. Lipid A, the "endotoxic principle" of bacterial lipopolysaccharide (LPS), is one of the major bacterial immunostimuli. Here we demonstrate the biological efficacy of rationally designed new synthetic antilipopolysaccharide peptides (SALPs) based on the Limulus anti-LPS factor for systemic application. We show efficient inhibition of LPS-induced cytokine release and protection from lethal septic shock in vivo, whereas cytotoxicity was not observed under physiologically relevant conditions and concentrations. The molecular mechanism of LPS neutralization was elucidated by biophysical techniques. The lipid A part of LPS is converted from its "endotoxic conformation," the cubic aggregate structure, into an inactive multilamellar structure, and the binding affinity of the peptide to LPS exceeds those of known LPS-binding proteins, such as LPS-binding protein (LBP). Our results thus delineate a novel therapeutic strategy for the clinical management of patients with septic shock.
Related JoVE Video
Physicochemical and biological characterization of anti-endotoxin peptides and their influence on lipid properties.
Protein Pept. Lett.
PUBLISHED: 02-17-2010
Show Abstract
Hide Abstract
We have synthesized a series of short peptides (17 to 20 amino acids), originally derived from Limulus anti-lipopolysaccharide factor LALF, which were primarily designed to act as antimicrobial agents as well as neutralizers of bacterial endotoxin (lipopolysaccharide, LPS), Here, two selected peptides, a 17- and a 19-mer, were characterized physicochemically and in biological test systems. The secondary structure of the peptides indicates essentially a ?-sheet including antiparallel strands, the latter being reduced when the peptides bind to LPS. A very strong exothermic binding due to attractive Coulomb interactions governs the LPS-peptide reaction, which additionally leads to a fluidization of the acyl chains of LPS. A comparison of the interaction of the peptide with negatively charged phosphatidylserine shows in contrast a rigidification of the acyl chains of the lipid. Finally, the biological assays reveal a diverging behaviour of the two peptides, with higher antibacterial activity of the 17-mer, but a much higher activity of the 19-mer in its ability to inhibit the LPS-induced cytokine production in human mononuclear cells.
Related JoVE Video
Candida albicans enhances experimental hepatic melanoma metastasis.
Clin. Exp. Metastasis
PUBLISHED: 07-30-2009
Show Abstract
Hide Abstract
Candida albicans infections are very frequent in cancer patients, whose immune system is often compromised, but whether this fungal pathogen affects cancer progression is unknown. C. albicans infection involves endogenous production of inflammatory cytokines such as tumour necrosis factor alpha (TNF-alpha) and interleukin-18 (IL-18). Increased levels of these cytokines have already been correlated with metastasis of most common cancer types. In this study, a well-established model of IL-18-dependent hepatic melanoma metastasis was used to study whether C. albicans can alter the ability of murine B16 melanoma (B16M) cells to colonize the liver. First, we determined the ability of intrasplenically (IS) injected B16M cells to metastasize into the liver of mice challenged with 5 x 10(4) C. albicans cells by three different routes (intravenous, IV; intrasplenic, IS; or intraperitoneal, IP) 12 h prior to injection of B16M cells. We demonstrated that C. albicans significantly increased metastasis of B16M cells with all three fungal injection routes. Pro-metastatic effects occurred when hepatic colonization with B16M cells place after the peak of TNF-alpha and IL-18 levels had been reached in the hepatic blood of fungal challenged mice. In a second set of experiments, mice were fungal challenged 4 days after injection of B16M cells. In these mice, C. albicans also potentiated the growth of established micro-metastases. Significantly, the fungal challenge had pro-metastatic effects without the C. albicans being able to reach the liver, suggesting that soluble factors can promote metastasis in remote sites. Mouse treatment with antifungal ketoconazol abrogated hepatic TNF-alpha stimulation by C. albicans and prevented the enhancement of hepatic metastasis in fungal challenged-mice. Therefore, the pro-inflammatory microenvironment generated by the hosts systemic response to C. albicans stimulates circulating cancer cells to metastasize in the liver.
Related JoVE Video
Free thiol group of MD-2 as the target for inhibition of the lipopolysaccharide-induced cell activation.
J. Biol. Chem.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
MD-2 is a part of the Toll-like 4 signaling complex with an indispensable role in activation of the lipopolysaccharide (LPS) signaling pathway and thus a suitable target for the therapeutic inhibition of TLR4 signaling. Elucidation of MD-2 structure provides a foundation for rational design of inhibitors that bind to MD-2 and inhibit LPS signaling. Since the hydrophobic binding pocket of MD-2 provides little specificity for inhibitors, we have investigated targeting the solvent-accessible cysteine residue within the hydrophobic binding pocket of MD-2. Compounds with affinity for the hydrophobic pocket that contain a thiol-reactive group, which mediates covalent bond formation with the free cysteine residue of MD-2, were tested. Fluorescent compounds 2-(4-(iodoacetamido)anilino)naphthalene-6-sulfonic acid and N-pyrene maleimide formed a covalent bond with MD-2 through Cys(133) and inhibited LPS signaling. Cell activation was also inhibited by thiol-reactive compounds JTT-705 originally targeted against cholesterol ester transfer protein and antirheumatic compound auranofin. Oral intake of JTT-705 significantly inhibited endotoxin-triggered tumor necrosis factor alpha production in mice. The thiol group of MD-2 also represents the target of environmental or endogenous thiol-reactive compounds that are produced in inflammation.
Related JoVE Video
Bacterial cell wall compounds as promising targets of antimicrobial agents II. Immunological and clinical aspects.
Curr Drug Targets
Show Abstract
Hide Abstract
The bacterial cell wall represents the primary target for antimicrobial agents. Microbial destruction is accompanied by the release of potent immunostimulatory membrane constituents. Both Gram-positive and Gram-negative bacteria release a variety of lipoproteins and peptidoglycan fragments. Gram-positive bacteria additionally provide lipoteichoic acids, whereas Gram-negative bacteria also release lipopolysaccharide (LPS, endotoxin), essential component of the outer leaflet of the bacterial cell wall and one of the most potent immunostimulatory molecules known. Immune activation therefore can be considered as an adverse effect of antimicrobial destruction and killing during anti-infective treatment. In contrast to antibiotics, the use of cationic amphiphilic antimicrobial peptides allows both effective bacterial killing and inhibition of the immunostimulatory effect of the released bacterial membrane constituents. The administration of antimicrobial peptides alone or in combination with antibiotic agents thus represents a novel strategy in the antiinfective treatment with potentially important beneficial aspects. Here, data are presented which describe immunological and clinical aspects of the use of antimicrobial peptides (AMPs) as therapeutic agents to treat bacterial infection and neutralize the immunostimulatory activity of released cell wall constituents.
Related JoVE Video
Bacterial cell wall compounds as promising targets of antimicrobial agents I. Antimicrobial peptides and lipopolyamines.
Curr Drug Targets
Show Abstract
Hide Abstract
The first barrier that an antimicrobial agent must overcome when interacting with its target is the microbial cell wall. In the case of Gram-negative bacteria, additional to the cytoplasmic membrane and the peptidoglycan layer, an outer membrane (OM) is the outermost barrier. The OM has an asymmetric distribution of the lipids with phospholipids and lipopolysaccharide (LPS) located in the inner and outer leaflets, respectively. In contrast, Gram-positive bacteria lack OM and possess a much thicker peptidoglycan layer compared to their Gram-negative counterparts. An additional class of amphiphiles exists in Gram-positives, the lipoteichoic acids (LTA), which may represent important structural components. These long molecules cross-bridge the entire cell envelope with their lipid component inserting into the outer leaflet of the cytoplasmic membrane and the teichoic acid portion penetrating into the peptidoglycan layer. Furthermore, both classes of bacteria have other important amphiphiles, such as lipoproteins, whose importance has become evident only recently. It is not known yet whether any of these amphiphilic components are able to stimulate the immune system under physiological conditions as constituents of intact bacteria. However, all of them have a very high pro-inflammatory activity when released from the cell. Such a release may take place through the interaction with the immune system, or with antibiotics (particularly with those targeting cell wall components), or simply by the bacterial division. Therefore, a given antimicrobial agent must ideally have a double character, namely, it must overcome the bacterial cell wall barrier, without inducing the liberation of the pro-inflammatory amphiphiles. Here, new data are presented which describe the development and use of membrane-active antimicrobial agents, in particular antimicrobial peptides (AMPs) and lipopolyamines. In this way, essential progress was achieved, in particular with respect to the inhibition of deleterious consequences of bacterial infections such as severe sepsis and septic shock.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.