JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Urbanization Increases Aedes albopictus Larval Habitats and Accelerates Mosquito Development and Survivorship.
PLoS Negl Trop Dis
PUBLISHED: 11-01-2014
Show Abstract
Hide Abstract
Aedes albopictus is a very invasive and aggressive insect vector that causes outbreaks of dengue fever, chikungunya disease, and yellow fever in many countries. Vector ecology and disease epidemiology are strongly affected by environmental changes. Urbanization is a worldwide trend and is one of the most ecologically modifying phenomena. The purpose of this study is to determine how environmental changes due to urbanization affect the ecology of Aedes albopictus.
Related JoVE Video
Evaluation of universal coverage of insecticide-treated nets in western Kenya: field surveys.
Malar. J.
PUBLISHED: 09-03-2014
Show Abstract
Hide Abstract
Mass distribution of insecticide-treated nets (ITNs) is a cost-effective way to achieve universal coverage, but maintaining this coverage is more difficult. In addition to commonly used indicators, evaluation of universal coverage should include coverage of effective nets and changes in coverage over time.
Related JoVE Video
Transcriptome profiling of pyrethroid resistant and susceptible mosquitoes in the malaria vector, Anopheles sinensis.
BMC Genomics
PUBLISHED: 05-28-2014
Show Abstract
Hide Abstract
Anopheles sinensis is a major malaria vector in China and other Southeast Asian countries, and it is becoming increasingly resistant to the insecticides used for agriculture, net impregnation, and indoor residual spray. Very limited genomic information on this species is available, which has hindered the development of new tools for resistance surveillance and vector control. We used the 454 GS FLX system and generated expressed sequence tag (EST) databases of various life stages of An. sinensis, and we determined the transcriptional differences between deltamethrin resistant and susceptible mosquitoes.
Related JoVE Video
Multiple resistances and complex mechanisms of Anopheles sinensis mosquito: a major obstacle to mosquito-borne diseases control and elimination in China.
PLoS Negl Trop Dis
PUBLISHED: 05-01-2014
Show Abstract
Hide Abstract
Malaria, dengue fever, and filariasis are three of the most common mosquito-borne diseases worldwide. Malaria and lymphatic filariasis can occur as concomitant human infections while also sharing common mosquito vectors. The overall prevalence and health significance of malaria and filariasis have made them top priorities for global elimination and control programmes. Pyrethroid resistance in anopheline mosquito vectors represents a highly significant problem to malaria control worldwide. Several methods have been proposed to mitigate insecticide resistance, including rotational use of insecticides with different modes of action. Anopheles sinensis, an important malaria and filariasis vector in Southeast Asia, represents an interesting mosquito species for examining the consequences of long-term insecticide rotation use on resistance. We examined insecticide resistance in two An. Sinensis populations from central and southern China against pyrethroids, organochlorines, organophosphates, and carbamates, which are the major classes of insecticides recommended for indoor residual spray. We found that the mosquito populations were highly resistant to the four classes of insecticides. High frequency of kdr mutation was revealed in the central population, whereas no kdr mutation was detected in the southern population. The frequency of G119S mutation in the ace-1 gene was moderate in both populations. The classification and regression trees (CART) statistical analysis found that metabolic detoxification was the most important resistance mechanism, whereas target site insensitivity of L1014 kdr mutation played a less important role. Our results indicate that metabolic detoxification was the dominant mechanism of resistance compared to target site insensitivity, and suggests that long-term rotational use of various insecticides has led An. sinensis to evolve a high insecticide resistance. This study highlights the complex network of mechanisms conferring multiple resistances to chemical insecticides in mosquito vectors and it has important implication for designing and implementing vector resistance management strategies.
Related JoVE Video
Clinical malaria along the China-Myanmar border, Yunnan Province, China, January 2011-August 2012.
Emerging Infect. Dis.
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
Passive surveillance for malaria cases was conducted in Yunnan Province, China, along the China-Myanmar border. Infection with Plasmodium vivax and P. falciparum protozoa accounted for 69% and 28% of the cases, respectively. Most patients were adult men. Cross-border travel into Myanmar was a key risk factor for P. falciparum malaria in China.
Related JoVE Video
Nested PCR detection of malaria directly using blood filter paper samples from epidemiological surveys.
Malar. J.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Nested PCR is considered a sensitive and specific method for detecting malaria parasites and is especially useful in epidemiological surveys. However, the preparation of DNA templates for PCR is often time-consuming and costly.
Related JoVE Video
Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya.
Malar. J.
PUBLISHED: 03-03-2014
Show Abstract
Hide Abstract
In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups.
Related JoVE Video
Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China.
Parasit Vectors
PUBLISHED: 02-02-2014
Show Abstract
Hide Abstract
Malaria is one of the most important public health problems in Southeast Asia, including Hainan Island, China. Vector control is the main malaria control measure, and insecticide resistance is a major concern for the effectiveness of chemical insecticide control programs. The objective of this study is to determine the resistance status of the main malaria vector species to pyrethroids and other insecticides recommended by the World Health Organization (WHO) for indoor residual sprays.
Related JoVE Video
Anopheles sinensis mosquito insecticide resistance: comparison of three mosquito sample collection and preparation methods and mosquito age in resistance measurements.
Parasit Vectors
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Insecticide resistance monitoring in malaria mosquitoes is essential for guiding the rational use of insecticides in vector control programs. Resistance bioassay is the first step for insecticide monitoring and it lays an important foundation for molecular examination of resistance mechanisms. In the literature, various mosquito sample collection and preparation methods have been used, but how mosquito sample collection and preparation methods affect insecticide susceptibility bioassay results is largely unknown. The objectives of this study were to determine whether mosquito sample collection and preparation methods affected bioassay results, which may cause incorrect classification of mosquito resistance status.
Related JoVE Video
Spatiotemporal characterizations of dengue virus in mainland China: insights into the whole genome from 1978 to 2011.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Temporal-Spatial of dengue virus (DENV) analyses have been performed in previous epidemiological studies in mainland China, but few studies have examined the whole genome of the DENV. Herein, 40 whole genome sequences of DENVs isolated from mainland China were downloaded from GenBank. Phylogenetic analyses and evolutionary distances of the dengue serotypes 1 and 2 were calculated using 14 maximum likelihood trees created from individual genes and whole genome. Amino acid variations were also analyzed in the 40 sequences that included dengue serotypes 1, 2, 3 and 4, and they were grouped according to temporal and spatial differences. The results showed that none of the phylogenetic trees created from each individual gene were similar to the trees created using the complete genome and the evolutionary distances were variable with each individual gene. The number of amino acid variations was significantly different (p?=?0.015) between DENV-1 and DENV-2 after 2001; seven mutations, the N290D, L402F and A473T mutations in the E gene region and the R101K, G105R, D340E and L349M mutations in the NS1 region of DENV-1, had significant substitutions, compared to the amino acids of DENV-2. Based on the spatial distribution using Guangzhou, including Foshan, as the indigenous area and the other regions as expanding areas, significant differences in the number of amino acid variations in the NS3 (p?=?0.03) and NS1 (p?=?0.024) regions and the NS2B (p?=?0.016) and NS3 (p?=?0.042) regions were found in DENV-1 and DENV-2. Recombination analysis showed no inter-serotype recombination events between the DENV-1 and DENV-2, while six and seven breakpoints were found in DENV-1 and DENV-2. Conclusively, the individual genes might not be suitable to analyze the evolution and selection pressure isolated in mainland China; the mutations in the amino acid residues in the E, NS1 and NS3 regions may play important roles in DENV-1 and DENV-2 epidemics.
Related JoVE Video
Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 12-02-2013
Show Abstract
Hide Abstract
The malaria parasite-resistance island (PRI) of the African mosquito vector, Anopheles gambiae, was mapped to five genomic regions containing 80 genes, using coexpression patterns of genomic blocks. High-throughput sequencing identified 347 nonsynonymous single-nucleotide polymorphisms within these genes in mosquitoes from malaria-endemic areas in Kenya. Direct association studies between nonsynonymous single-nucleotide polymorphisms and Plasmodium falciparum infection identified three naturally occurring genetic variations in each of three genes (An. gambiae adenosine deaminase, fibrinogen-related protein 30, and fibrinogen-related protein 1) that were associated significantly with parasite infection. A role for these genes in the resistance phenotype was confirmed by RNA interference knockdown assays. Silencing fibrinogen-related protein 30 increased parasite infection significantly, whereas ablation of fibrinogen-related protein 1 transcripts resulted in mosquitoes nearly free of parasites. The discovered genes and single-nucleotide polymorphisms are anticipated to be useful in the development of tools for malaria control in endemic areas in Africa.
Related JoVE Video
Validation of ELISA for quantitation of artemisinin-based antimalarial drugs.
Am. J. Trop. Med. Hyg.
PUBLISHED: 09-30-2013
Show Abstract
Hide Abstract
Abstract. The circulation of counterfeit or substandard artemisinins (ARTs) in malaria-endemic areas poses a serious threat to the long-term use of these drugs. Here, we validated an indirect competitive enzyme-linked immunosorbent assay (icELISA) for quantification of ARTs and found that 50% of inhibitory concentrations of dihydroartemisinin, artemether, and artesunate were 8.1, 207.0, and 4.7 ng/mL, respectively. We compared the icELISA with high-performance liquid chromatography (HPLC) for quantifying ART and its derivatives in 22 convenience samples of commercial antimalarial drugs. Paired t tests showed a borderline significant difference between the two methods (mean = 0.03, 95% confidence interval [CI] 0.00-0.07, P = 0.074) and the icELISA results were more variable than those of the HPLC analysis (P < 0.001), suggesting that further improvement is needed to enhance the performance of the icELISA. Our results showed that the icELISA has the potential to be improved for quality assurance of ARTs at the point of care in endemic settings.
Related JoVE Video
The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance.
Malar. J.
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
Long-lasting insecticide-treated mosquito nets (LLINs) are a primary malaria prevention strategy in sub-Saharan Africa. However, emergence of insecticide resistance threatens the effectiveness of LLINs.
Related JoVE Video
The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border.
Parasit Vectors
PUBLISHED: 06-29-2013
Show Abstract
Hide Abstract
Malaria around the China-Myanmar border is a serious health problem in the countries of South-East Asia. An. minimus is a principle malaria vector with a wide geographic distribution in this area. Malaria is endemic along the boundary between Yunnan province in China and the Kachin State of Myanmar where the local Anopheles community (species composition) and the malaria transmission vectors have never been clarified.
Related JoVE Video
Evaluating larval mosquito resource partitioning in western Kenya using stable isotopes of carbon and nitrogen.
Parasit Vectors
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
In sub-Saharan Africa, malaria, transmitted by the Anopheles mosquito, remains one of the foremost public health concerns. Anopheles gambiae, the primary malaria vector in sub-Saharan Africa, is typically associated with ephemeral, sunlit habitats; however, An. gambiae larvae often share these habitats with other anophelines along with other disease-transmitting and benign mosquito species. Resource limitations within habitats can constrain larval density and development, and this drives competitive interactions among and between species.
Related JoVE Video
Fine-scale analysis of parasite resistance genes in the red flour beetle, Tribolium castaneum.
Genetics
PUBLISHED: 06-14-2013
Show Abstract
Hide Abstract
Parasite infection impacts population dynamics through effects on fitness and fecundity of the individual host. In addition to the known roles of environmental factors, host susceptibility to parasites has a genetic basis that has not been well characterized. We previously mapped quantitative trait loci (QTL) for susceptibility to rat tapeworm (Hymenolepis diminuta) infection in Tribolium castaneum using dominant AFLP markers; however, the resistance genes were not identified. Here, we refined the QTL locations and increased the marker density in the QTL regions using new microsatellite markers, sequence-tagged site markers, and single-strand conformational polymorphism markers. Resistance QTL in three linkage groups (LG3, LG6, and LG8) were each mapped to intervals <1.0 cM between two codominant markers. The effects of 21 genes in the three QTL regions were investigated by using quantitative RT-PCR analysis, and transcription profiles were obtained from the resistant TIW1 and the susceptible cSM strains. Based on transcription data, eight genes were selected for RNA interference analysis to investigate their possible roles in H. diminuta resistance, including cytochrome P450 (LOC657454) and Toll-like receptor 13 (TLR13, LOC662131). The transcription of P450 and TLR13 genes in the resistant TIW1 strains was reduced more than ninefold relative to the control. Moreover, the effects of gene knockdown of P450 and TLR13 caused resistant beetles to become susceptible to tapeworm infection, which strongly suggests an important role for each in T. castaneum resistance to H. diminuta infection.
Related JoVE Video
Risk factors associated with slide positivity among febrile patients in a conflict zone of north-eastern Myanmar along the China-Myanmar border.
Malar. J.
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
Malaria within the Greater Mekong sub-region is extremely heterogeneous. While China and Thailand have been relatively successful in controlling malaria, Myanmar continues to see high prevalence. Coupled with the recent emergence of artemisinin-resistant malaria along the Thai-Myanmar border, this makes Myanmar an important focus of malaria within the overall region. However, accurate epidemiological data from Myanmar have been lacking, in part because of ongoing and emerging conflicts between the government and various ethnic groups. Here the results are reported from a risk analysis of malaria slide positivity in a conflict zone along the China-Myanmar border.
Related JoVE Video
Modest additive effects of integrated vector control measures on malaria prevalence and transmission in western Kenya.
Malar. J.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
The effect of integrating vector larval intervention on malaria transmission is unknown when insecticide-treated bed-net (ITN) coverage is very high, and the optimal indicator for intervention evaluation needs to be determined when transmission is low.
Related JoVE Video
Strongyloidiasis: an emerging infectious disease in China.
Am. J. Trop. Med. Hyg.
PUBLISHED: 03-08-2013
Show Abstract
Hide Abstract
Since the first case of strongyloidiasis reported in China in 1973, there have been 330 confirmed cases as of 2011. The present study conducted a meta-analysis on 106 cases for which detailed information on clinical symptoms, diagnosis, and outcome was available. Most (63%) cases were from the past decade. Immunocompromised patients and those given cortical hormones accounted for 68% of the cases, and case-fatality rate was 38%. General clinical symptoms included abdominal pain (53%), diarrhea (46%), fever (40%), and vomiting (39%). The parasite positivity rate in feces, sputum, and urine by microscopic diagnosis was 75%, 24%, and 8%, respectively, and gastrointestinal endoscopy or other biopsy detection rates were 17%. A lack of specific clinical manifestations makes early diagnosis and correct treatment difficult. Strongyloidiasis is an emerging disease in China, and public and clinical awareness needs to be raised to improve prevention and control.
Related JoVE Video
A first report of Anopheles funestus sibling species in western Kenya highlands.
Acta Trop.
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Understanding disease vector composition is of priority in designing effective disease control programs. In integrated vector control management, understanding of disease vector species among species complexes simplifies priorities for effective control tools selection. This study identified members of the Anopheles funestus complex sampled in western Kenya from 2002 to 2011 from different breeding sites. Larval sampling was carried out using the standard dipper (350ml) in larval habitats in western Kenya highlands from January 2002 to December 2012. The morphologically identified An. funestus larvae were preserved in absolute ethanol for molecular identification using polymerase chain reaction (PCR). Among the 184 identified specimens of An. funestus sampled, only 76 specimens were clearly identified after DNA amplification and PCR. Among these, 25 (32.9%) were An. funestus s.s, 22 (28.9%) An. leesoni, 9 (11.8%) An. rivulorum and 20 (26.3%) were An. vaneedeni. None was identified as An. parensis. This study has demonstrated the existence of the siblings species of An. funestus complex in western Kenya highlands. However, there is need for further studies to evaluate the dynamics of the adults and sporozoite infectivity rates throughout the region based on these findings.
Related JoVE Video
Performance of two rapid diagnostic tests for malaria diagnosis at the China-Myanmar border area.
Malar. J.
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Rapid diagnostic tests (RDTs) have become an essential tool in the contemporary malaria control and management programmes in the world. This study aims to evaluate the performance of two commonly used RDTs for malaria diagnosis in the China-Myanmar border area.
Related JoVE Video
Utility of health facility-based malaria data for malaria surveillance.
PLoS ONE
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
Currently, intensive malaria control programs are being implemented in Africa to reduce the malaria burden. Clinical malaria data from hospitals are valuable for monitoring trends in malaria morbidity and for evaluating the impacts of these interventions. However, the reliability of hospital-based data for true malaria incidence is often questioned because of diagnosis accuracy issues and variation in access to healthcare facilities among sub-groups of the population. This study investigated how diagnosis and treatment practices of malaria cases in hospitals affect reliability of hospital malaria data.
Related JoVE Video
Genetic diversity and lack of artemisinin selection signature on the Plasmodium falciparum ATP6 in the Greater Mekong Subregion.
PLoS ONE
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
The recent detection of clinical Artemisinin (ART) resistance manifested as delayed parasite clearance in the Cambodia-Thailand border area raises a serious concern. The mechanism of ART resistance is not clear; but the P. falciparum sarco/endoplasmic reticulum Ca(2+)-ATPase (PfSERCA or PfATP6) has been speculated to be the target of ARTs and thus a potential marker for ART resistance. Here we amplified and sequenced pfatp6 gene (~3.6 Kb) in 213 samples collected after 2005 from the Greater Mekong Subregion, where ART drugs have been used extensively in the past. A total of 24 single nucleotide polymorphisms (SNPs), including 8 newly found in this study and 13 nonsynonymous, were identified. However, these mutations were either uncommon or also present in other geographical regions with limited ART use. None of the mutations were suggestive of directional selection by ARTs. We further analyzed pfatp6 from a worldwide collection of 862 P. falciparum isolates in 19 populations from Asia, Africa, South America and Oceania, which include samples from regions prior to and after deployments ART drugs. A total of 71 SNPs were identified, resulting in 106 nucleotide haplotypes. Similarly, many of the mutations were continent-specific and present at frequencies below 5%. The most predominant and perhaps the ancestral haplotype occurred in 441 samples and was present in 16 populations from Asia, Africa, and Oceania. The 3D7 haplotype found in 54 samples was the second most common haplotype and present in nine populations from all four continents. Assessment of the selection strength on pfatp6 in the 19 parasite populations found that pfatp6 in most of these populations was under purifying selection with an average d(N)/d(S) ratio of 0.333. Molecular evolution analyses did not detect significant departures from neutrality in pfatp6 for most populations, challenging the suitability of this gene as a marker for monitoring ART resistance.
Related JoVE Video
Relationship between knockdown resistance, metabolic detoxification and organismal resistance to pyrethroids in Anopheles sinensis.
PLoS ONE
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Anopheles sinensis is the most important vector of malaria in Southeast Asia, including China. Currently, the most effective measure to prevent malaria transmission relies on vector control through the use of insecticides, primarily pyrethroids. Extensive use of insecticides poses strong selection pressure on mosquito populations for resistance. Resistance to insecticides can arise due to mutations in the insecticide target site (target site resistance), which in the case of pyrethroids is the para-type sodium channel gene, and/or the catabolism of the insecticide by detoxification enzymes before it reaches its target (metabolic detoxification resistance). In this study, we examined deltamethrin resistance in An. sinensis from China and investigated the relative importance of target site versus metabolic detoxification mechanisms in resistance. A high frequency (>85%) of nonsynonymous mutations in the para gene was found in populations from central China, but not in populations from southern China. Metabolic detoxification as measured by the activity of monooxygenases and glutathione S-transferases (GSTs) was detected in populations from both central and southern China. Monooxygenase activity levels were significantly higher in the resistant than the susceptible mosquitoes, independently of their geographic origin. Stepwise multiple regression analyses in mosquito populations from central China found that both knockdown resistance (kdr) mutations and monooxygenase activity were significantly associated with deltamethrin resistance, with monooxygenase activity playing a stronger role. These results demonstrate the importance of metabolic detoxification in pyrethroid resistance in An. sinensis, and suggest that different mechanisms of resistance could evolve in geographically different populations.
Related JoVE Video
Sequence analysis of genes associated with resistance to chloroquine and sulphadoxine pyrimethamine in P. falciparum and P. vivax isolates from the Bannu district of Pakistan.
Braz J Infect Dis
PUBLISHED: 02-03-2013
Show Abstract
Hide Abstract
Plasmodium vivax and Plasmodium falciparum are becoming resistant to drugs including antifolates, sulphonamides and chloroquine. This study was focused at sequence analysis of resistant genes of these parasites against sulphadoxine-pyrimethamine and chloroquine, from Bannu, Pakistan. Known mutations were detected at codons 57, 58 and 117 of pvdhfr gene of P. vivax, while none of the isolates had any pvdhps mutation. Similarly P. falciparum isolates exhibited double 59R+108N mutations in pfdhfr, and single 437G in pfdhps thus demonstrating the existance of triple mutant 59R+108N+437G haplotype in this region. The key chloroquine resistance mutation, 76T in pfcrt was observed in 100% of the P. falciparum isolates, with haplotype SVMNT which is also associated with resistance to amodiaquine. Some novel mutations were also observed in pvdhfr and pfdhfr genes.
Related JoVE Video
Transcription profiling of immune genes during parasite infection in susceptible and resistant strains of the flour beetles (Tribolium castaneum).
Exp. Parasitol.
PUBLISHED: 01-10-2013
Show Abstract
Hide Abstract
The flour beetle, Tribolium castaneum, is an intermediate host for the tapeworm Hymenolepis diminuta and has become an important genetic model to explore immune responses to parasite infection in insect hosts. The present study examined the immune responses to tapeworm infection in resistant (TIW1) and susceptible (cSM) strains of the red flour beetle, T. castaneum, using real-time quantitative reverse transcription PCR on 29 immunity-related genes that exhibit antimicrobial properties. Thirteen of the 29 genes showed constitutive differences in expression between the two strains. Fourteen to fifteen of the 29 genes exhibited significant differences in transcription levels when beetles were challenged with tapeworm parasite in the resistant and susceptible strains. Nine genes (GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2 and serpin29) in cSM and 13 genes (lysozyme2, proPO1, GNBP3, cSPH2, lysozyme4, defensin1, PGRP-SA, defensin2, coleoptericin1, attacin2, proPO2/3, PGRP-LE and PGRP-SB) in TIW1 were up-regulated by infections or showed parasite infection-induced expression. Seven genes (attacin2, coleoptericin1, defensin1, defensin2, lysozyme2, PGRP-SA and PGRP-SB) were more than 10 folds higher in the resistant TIW1 strain than in the susceptible cSM strain after exposure to tapeworm parasites. This study demonstrated the effects of genetic background, the transcription profile to parasite infection, and identified the immunity-related genes that were significantly regulated by the infection of tapeworms in Tribolium beetles.
Related JoVE Video
Protein Microarray Analysis of Antibody Responses to Plasmodium falciparum in Western Kenyan Highland Sites with Differing Transmission Levels.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Malaria represents a major public health problem in Africa. In the East African highlands, the high-altitude areas were previously considered too cold to support vector population and parasite transmission, rendering the region particularly prone to epidemic malaria due to the lack of protective immunity of the population. Since the 1980s, frequent malaria epidemics have been reported and these successive outbreaks may have generated some immunity against Plasmodium falciparum amongst the highland residents. Serological studies reveal indirect evidence of human exposure to the parasite, and can reliably assess prevalence of exposure and transmission intensity in an endemic area. However, the vast majority of serological studies of malaria have been, hereto, limited to a small number of the parasites antigens. We surveyed and compared the antibody response profiles of age-stratified sera from residents of two endemic areas in the western Kenyan highlands with differing malaria transmission intensities, during two distinct seasons, against 854 polypeptides of P. falciparum using high-throughput proteomic microarray technology. We identified 107 proteins as serum antibody targets, which were then characterized for their gene ontology biological process and cellular component of the parasite, and showed significant enrichment for categories related to immune evasion, pathogenesis and expression on the hosts cell and parasites surface. Additionally, we calculated age-fitted annual seroconversion rates for the immunogenic proteins, and contrasted the age-dependent antibody acquisition for those antigens between the two sampling sites. We observed highly immunogenic antigens that produce stable antibody responses from early age in both sites, as well as less immunogenic proteins that require repeated exposure for stable responses to develop and produce different seroconversion rates between sites. We propose that a combination of highly and less immunogenic proteins could be used in serological surveys to detect differences in malaria transmission levels, distinguishing sites of unstable and stable transmission.
Related JoVE Video
Gene expression-based biomarkers for Anopheles gambiae age grading.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors.
Related JoVE Video
Genetic analysis of invasive Aedes albopictus populations in Los Angeles County, California and its potential public health impact.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The Asian tiger mosquito, Aedes albopictus, is an anthropophilic aggressive daytime-biting nuisance and an efficient vector of certain arboviruses and filarial nematodes. Over the last 30 years, this species has spread rapidly through human travel and commerce from its native tropical forests of Asia to every continent except Antarctica. In 2011, a population of Asian tiger mosquito (Aedes albopictus) was discovered in Los Angeles (LA) County, California. To determine the probable origin of this invasive species, the genetic structure of the population was compared against 11 populations from the United States and abroad, as well as preserved specimens from a 2001 introduction into California using the mitochondrial cytochrome c oxidase 1 (CO1) gene. A total of 66 haplotypes were detected among samples and were divided into three main groups. Aedes albopictus collected in 2001 and 2011 from LA County were genetically related and similar to those from Asia but distinct from those collected in the eastern and southeastern United States. In view of the high genetic similarities between the 2001 and 2011 LA samples, it is possible that the 2011 population represents in part the descendants of the 2001 introduction. There remains an imperative need for improved surveillance and control strategies for this species.
Related JoVE Video
Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands.
Parasit Vectors
PUBLISHED: 11-08-2011
Show Abstract
Hide Abstract
Topographic parameters such as elevation, slope, aspect, and ruggedness play an important role in malaria transmission in the highland areas. They affect biological systems, such as larval habitats presence and productivity for malaria mosquitoes. This study investigated whether the distribution of local spatial malaria vectors and risk of infection with malaria parasites in the highlands is related to topography.
Related JoVE Video
Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2011-31 May 2011.
Mol Ecol Resour
PUBLISHED: 07-20-2011
Show Abstract
Hide Abstract
This article documents the addition of 92 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Anopheles minimus, An. sinensis, An. dirus, Calephelis mutica, Lutjanus kasmira, Murella muralis and Orchestia montagui. These loci were cross-tested on the following species: Calephelis arizonensi, Calephelis borealis, Calephelis nemesis, Calephelis virginiensis and Lutjanus bengalensis.
Related JoVE Video
Progress towards understanding the ecology and epidemiology of malaria in the western Kenya highlands: opportunities and challenges for control under climate change risk.
Acta Trop.
PUBLISHED: 07-07-2011
Show Abstract
Hide Abstract
Following severe malaria epidemics in the western Kenya highlands after the late 1980s it became imperative to undertake eco-epidemiological assessments of the disease and determine its drivers, spatial-temporal distribution and control strategies. Extensive research has indicated that the major biophysical drivers of the disease are climate change and variability, terrain, topography, hydrology and immunity. Vector distribution is focalized at valley bottoms and abundance is closely related with drainage efficiency, habitat availability, stability and productivity of the ecosystems. Early epidemic prediction models have been developed and they can be used to assess climate risks that warrant extra interventions with a lead time of 2-4 months. Targeted integrated vector management strategies can significantly reduce the cost on the indoor residual spraying by targeting the foci of transmission in transmission hotspots. Malaria control in the highlands has reduced vector population by 90%, infections by 50-90% in humans and in some cases transmission has been interrupted. Insecticide resistance is increasing and as transmission decreases so will immunity. Active surveillance will be required to monitor and contain emerging threats. More studies on eco-stratification of the disease, based on its major drivers, are required so that interventions are tailored for specific ecosystems. New and innovative control interventions such as house modification with a one-application strategy may reduce the threat from insecticide resistance and low compliance associated with the use of ITNs.
Related JoVE Video
Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya.
PLoS ONE
PUBLISHED: 06-29-2011
Show Abstract
Hide Abstract
The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.
Related JoVE Video
Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands.
Parasit Vectors
PUBLISHED: 06-04-2011
Show Abstract
Hide Abstract
The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations.
Related JoVE Video
Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya.
Parasit Vectors
PUBLISHED: 05-23-2011
Show Abstract
Hide Abstract
Insecticide-treated bed nets (ITNs) are known to be highly effective in reducing malaria morbidity and mortality. However, usage varies among households, and such variations in actual usage may seriously limit the potential impact of nets and cause spatial heterogeneity on malaria transmission. This study examined ITN ownership and underlying factors for among-household variation in use, and malaria transmission in two highland regions of western Kenya.
Related JoVE Video
Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands.
Parasit Vectors
PUBLISHED: 04-15-2011
Show Abstract
Hide Abstract
Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap.
Related JoVE Video
Analysing the generality of spatially predictive mosquito habitat models.
Acta Trop.
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
The increasing spread of multi-drug resistant malaria in African highlands has highlighted the importance of malaria suppression through vector control. Its historical success has meant that larval control has been proposed as part of an integrated malaria vector control program. Due to high operation costs, larval control activities would benefit greatly if the locations of mosquito habitats could be identified quickly and easily, allowing for focal habitat source suppression. Several mosquito habitat models have been developed to predict the location of mosquito habitats. However, to what extent these models can be generalised across time and space to predict the distribution of dynamic mosquito habitats remains largely unexplored. This study used mosquito habitat data collected in six different time periods and four different modelling approaches to establish 24 mosquito habitat models. We systematically tested the generality of these 24 mosquito habitat models. We found that although habitat--environment relationships change temporally, a modest level of performance was attained when validating the models using data collected from different time periods. We also describe flexible approaches to the predictive modelling of mosquito habitats, that provide novel modelling architecture for future research efforts.
Related JoVE Video
Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae.
PLoS ONE
PUBLISHED: 03-21-2011
Show Abstract
Hide Abstract
Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts) was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru) (67/248, or 27%) is similar to the percentage of transcripts located within these inversions (31%). These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of candidate regions involved in the desiccation response in this important malaria vector.
Related JoVE Video
Genetic diversity of Plasmodium vivax malaria in China and Myanmar.
Infect. Genet. Evol.
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Genetic diversity and population structure of Plasmodium vivax parasites are valuable to the prediction of the origin and spread of novel variants within and between populations, and to the program evaluation of malaria control measures. Using two polymorphic genetic markers, the merozoite surface protein genes PvMSP-3? and PvMSP-3?, we investigated the genetic diversity of four Southeast Asian P. vivax populations, representing both subtropical and temperate strains with dramatically divergent relapse patterns. PCR amplification of PvMSP-3? and PvMSP-3? genes detected three and four major size polymorphisms among the 235 infections examined, respectively, while restriction analysis detected 15 and 19 alleles, respectively. Samples from different geographical areas differed dramatically in their PvMSP-3? and PvMSP-3? allele composition and frequency. Samples tended to cluster on the basis of their PCR-RFLP polymorphism. These results indicated that different parasite genotypes were circulating in each endemic area, and that geographic isolation may exist. Multiple infections were detected in all four parasite populations, ranging from 20.5% to 31.8%, strongly indicating that P. vivax populations were highly diverse and multiple clonal infections are common in these malaria-hypoendemic regions of Southeast Asia.
Related JoVE Video
Changing patterns of malaria epidemiology between 2002 and 2010 in Western Kenya: the fall and rise of malaria.
PLoS ONE
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
The impact of insecticide treated nets (ITNs) on reducing malaria incidence is shown mainly through data collection from health facilities. Routine evaluation of long-term epidemiological and entomological dynamics is currently unavailable. In Kenya, new policies supporting the provision of free ITNs were implemented nationwide in June 2006. To evaluate the impacts of ITNs on malaria transmission, we conducted monthly surveys in three sentinel sites with different transmission intensities in western Kenya from 2002 to 2010.
Related JoVE Video
Challenges and prospects for malaria elimination in the Greater Mekong Subregion.
Acta Trop.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Despite significant improvement in the malaria situation of the Greater Mekong Subregion (GMS), malaria control for the region continues to face a multitude of challenges. The extremely patchy malaria distribution, especially along international borders, makes disease surveillance and targeted control difficult. The vector systems are also diverse with dramatic differences in habitat ecology, biting behavior, and vectorial capacity, and there is a lack of effective transmission surveillance and control tools. Finally, in an era of heavy deployment of artemisinin-based combination therapies, the region acts as an epicenter of drug resistance, with the emergence of artemisinin resistant Plasmodium falciparum posing a threat to both regional and global malaria elimination campaigns. This problem is further exacerbated by the circulation of counterfeit and substandard artemisinin drugs. Accordingly, this Southeast Asian Malaria Research Center, consisting of a consortium of US and regional research institutions, has proposed four interlinked projects to address these most urgent problems in malaria control. The aims of these projects will help to substantially improve our understanding of malaria epidemiology, vector systems and their roles in malaria transmission, as well as the mechanisms of drug resistance in parasites. Through the training of next-generation scientists in malaria research, this program will help build up and strengthen regional research infrastructure and capacities, which are essential for sustained malaria control in this region.
Related JoVE Video
Malaria in the Greater Mekong Subregion: heterogeneity and complexity.
Acta Trop.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, Chinas Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHOs Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by border malaria and forest malaria with high transmission occurring along international borders and in forests or forest fringes, respectively. Border malaria is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and Plasmodium vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is severely undermined due to high prevalence of glucose-6-phosphate dehydrogenase deficiency in target human populations. In the GMS, the dramatically different ecologies, diverse vector systems, and insecticide resistance render traditional mosquito control less efficient. Here we attempt to review the changing malaria epidemiology in the GMS, analyze the vector systems and patterns of malaria transmission, and identify the major challenges the malaria control community faces on its way to malaria elimination.
Related JoVE Video
Alternative splicing of the Anopheles gambiae Dscam gene in diverse Plasmodium falciparum infections.
Malar. J.
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
In insects, including Anopheles mosquitoes, Dscam (Down syndrome cell adhesion molecule) appears to be involved in phagocytosis of pathogens, and shows pathogen-specific splice-form expression between divergent pathogen (or parasite) types (e.g. between bacteria and Plasmodium or between Plasmodium berghei and Plasmodium falciparum). Here, data are presented from the first study of Dscam expression in response to genetic diversity within a parasite species.
Related JoVE Video
Indoor residual spray and insecticide-treated bednets for malaria control: theoretical synergisms and antagonisms.
J R Soc Interface
PUBLISHED: 11-17-2010
Show Abstract
Hide Abstract
Indoor residual spray (IRS) of insecticides and insecticide-treated bednets (ITNs) are the two most important malaria vector control tools in the tropical world. Application of both tools in the same locations is being implemented for malaria control in endemic and epidemic Africa. The two tools are assumed to have synergistic benefits in reducing malaria transmission because they both act at multiple stages of the transmission cycle. However, this assumption has not been rigorously examined, empirically or theoretically. Using mathematical modelling, we obtained the conditions for which a combination strategy can be expected to improve upon single control tools. Specifically, spraying of dichlorodiphenyltrichloroethane (DDT) in all houses where residents are not using ITNs can reduce transmission of malaria (R(0)) by up to 10 times more than the reduction achieved through ITNs alone. Importantly, however, we also show how antagonism between control tools can arise via interference of their modes of action. Repellent IRS reduces the likelihood that ITNs are contacted within sprayed houses and ITNs reduce the rate at which blood-fed mosquitoes rest on sprayed walls. For example, 80 per cent coverage of ITNs and DDT used together at the household level resulted in an R(0) of 11.1 when compared with an R(0) of 0.1 achieved with 80 per cent ITN coverage without DDT. While this undesired effect can be avoided using low-repellence pyrethroid chemicals for IRS, the extent of the potential benefits is also attenuated. We discuss the impact that this result will likely have on future efforts in malaria control combination strategy.
Related JoVE Video
A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands.
BMC Infect. Dis.
PUBLISHED: 09-24-2010
Show Abstract
Hide Abstract
The Kenyan highlands were malaria-free before the 1910s, but a series of malaria epidemics have occurred in the highlands of western Kenya since the 1980s. Longitudinal studies of the genetic structure, complexity, infection dynamics, and duration of naturally acquired Plasmodium falciparum infections are needed to facilitate a comprehensive understanding of malaria epidemiology in the complex Kenyan highland eco-epidemiological systems where malaria recently expanded, as well as the evaluation of control measures.
Related JoVE Video
Modelling knowlesi malaria transmission in humans: vector preference and host competence.
Malar. J.
PUBLISHED: 08-18-2010
Show Abstract
Hide Abstract
Plasmodium knowlesi, a malaria species that normally infects long-tailed macaques, was recently found to be prevalent in humans in Southeast Asia. While human host competency has been demonstrated experimentally, the extent to which the parasite can be transmitted from human back to mosquito vector in nature is unclear.
Related JoVE Video
Genome-wide patterns of gene expression during aging in the African malaria vector Anopheles gambiae.
PLoS ONE
PUBLISHED: 06-29-2010
Show Abstract
Hide Abstract
The primary means of reducing malaria transmission is through reduction in longevity in days of the adult female stage of the Anopheles vector. However, assessing chronological age is limited to crude physiologic methods which categorize the females binomially as either very young (nulliparous) or not very young (parous). Yet the epidemiologically relevant reduction in life span falls within the latter category. Age-grading methods that delineate chronological age, using accurate molecular surrogates based upon gene expression profiles, will allow quantification of the longevity-reducing effects of vector control tools aimed at the adult, female mosquito. In this study, microarray analyses of gene expression profiles in the African malaria vector Anopheles gambiae were conducted during natural senescence of females in laboratory conditions. Results showed that detoxification-related and stress-responsive genes were up-regulated as mosquitoes aged. A total of 276 transcripts had age-dependent expression, independently of blood feeding and egg laying events. Expression of 112 (40.6%) of these transcripts increased or decreased monotonically with increasing chronologic age. Seven candidate genes for practical age assessment were tested by quantitative gene amplification in the An. gambiae G3 strain in a laboratory experiment and the Mbita strain in field enclosures set up in western Kenya under conditions closely resembling natural ones. Results were similar between experiments, indicating that senescence is marked by changes in gene expression and that chronological age can be gauged accurately and repeatedly with this method. These results indicate that the method may be suitable for accurate gauging of the age in days of field-caught, female An. gambiae.
Related JoVE Video
aeGEPUCI: a database of gene expression in the dengue vector mosquito, Aedes aegypti.
BMC Res Notes
PUBLISHED: 06-29-2010
Show Abstract
Hide Abstract
Aedes aegypti is the principal vector of dengue and yellow fever viruses. The availability of the sequenced and annotated genome enables genome-wide analyses of gene expression in this mosquito. The large amount of data resulting from these analyses requires efficient cataloguing before it becomes useful as the basis for new insights into gene expression patterns and studies of the underlying molecular mechanisms for generating these patterns.
Related JoVE Video
Genetic structure of Plasmodium vivax and Plasmodium falciparum in the Bannu district of Pakistan.
Malar. J.
PUBLISHED: 04-23-2010
Show Abstract
Hide Abstract
Plasmodium vivax and Plasmodium falciparum are the major causative agents of malaria. While knowledge of the genetic structure of malaria parasites is useful for understanding the evolution of parasite virulence, designing anti-malarial vaccines and assessing the impact of malaria control measures, there is a paucity of information on genetic diversity of these two malaria parasites in Pakistan. This study sought to shed some light on the genetic structure of P. vivax and P. falciparum in this understudied region.
Related JoVE Video
Molecular ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes.
PLoS ONE
PUBLISHED: 04-18-2010
Show Abstract
Hide Abstract
Pyrethroid insecticides have been extensively used in China and worldwide for public health pest control. Accurate resistance monitoring is essential to guide the rational use of insecticides and resistance management. Here we examined the nucleotide diversity of the para-sodium channel gene, which confers knockdown resistance (kdr) in Culex pipiens pallens mosquitoes in China. The sequence analysis of the para-sodium channel gene identified L1014F and L1014S mutations. We developed and validated allele-specific PCR and the real-time TaqMan methods for resistance diagnosis. The real-time TaqMan method is more superior to the allele-specific PCR method as evidenced by higher amplification rate and better sensitivity and specificity. Significant positive correlation between kdr allele frequency and bioassay-based resistance phenotype demonstrates that the frequency of L1014F and L1014S mutations in the kdr gene can be used as a molecular marker for deltamethrin resistance monitoring in natural Cx. pipiens pallens populations in the East China region. The laboratory selection experiment found that L1014F mutation frequency, but not L1014S mutation, responded to deltamethrin selection, suggesting that the L1014F mutation is the key mutation conferring resistance to deltamethrin. High L1014F mutation frequency detected in six populations of Cx. pipens pallens suggests high prevalence of pyrethroid resistance in Eastern China, calling for further surveys to map the resistance in China and for investigating alternative mosquito control strategies.
Related JoVE Video
Community-wide benefits of targeted indoor residual spray for malaria control in the western Kenya highland.
Malar. J.
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
Interest in indoor residual spray (IRS) has been rekindled in recent years, as it is increasingly considered to be a key component of integrated malaria management. Regular spraying of each human dwelling becomes less and less practical as the control area increases. Where malaria transmission is concentrated around focal points, however, targeted IRS may pose a feasible alternative to mass spraying. Here, the impact of targeted IRS was assessed in the highlands of western Kenya.
Related JoVE Video
Population structure of Anopheles gambiae along the Kenyan coast.
Acta Trop.
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
In the tropics, Anopheles mosquito abundance is greatest during the wet season and decline significantly during the dry season as larval habitats shrink. Population size fluctuations between wet and dry seasons may lead to variation in distribution of specific alleles within natural Anopheles populations, and a possible effect on the population genetic structure. We used 11 microsatellite markers to examine the effect of seasonality on population genetic structure of Anopheles gambiae s.s. at two sites along the Kenyan coast. All loci were highly polymorphic with the total number of alleles for pooled samples ranging from 7 (locus ND36) to 21 (locus AG2H46). Significant estimates of genetic differentiation between sites and seasons were observed suggesting the existence of spatio-temporal subpopulation structuring. Genetic bottleneck analysis showed no indication of excess heterozygosity in any of the populations. These findings suggest that along the Kenyan coast, seasonality and site specific ecological factors can alter the genetic structure of A. gambiae s.s. populations.
Related JoVE Video
Proteomics reveals novel components of the Anopheles gambiae eggshell.
J. Insect Physiol.
PUBLISHED: 01-22-2010
Show Abstract
Hide Abstract
While genome and transcriptome sequencing has revealed a large number and diversity of Anopheles gambiae predicted proteins, identifying their functions and biosynthetic pathways remains challenging. Applied mass spectrometry-based proteomics in conjunction with mosquito genome and transcriptome databases were used to identify 44 proteins as putative components of the eggshell. Among the identified molecules are two vitelline membrane proteins and a group of seven putative chorion proteins. Enzymes with peroxidase, laccase and phenoloxidase activities, likely involved in cross-linking reactions that stabilize the eggshell structure, also were identified. Seven odorant binding proteins were found in association with the mosquito eggshell, although their role has yet to be demonstrated. This analysis fills a considerable gap of knowledge about proteins that build the eggshell of anopheline mosquitoes.
Related JoVE Video
Allelic gene structure variations in Anopheles gambiae mosquitoes.
PLoS ONE
PUBLISHED: 01-15-2010
Show Abstract
Hide Abstract
Allelic gene structure variations and alternative splicing are responsible for transcript structure variations. More than 75% of human genes have structural isoforms of transcripts, but to date few studies have been conducted to verify the alternative splicing systematically.
Related JoVE Video
A network population model of the dynamics and control of African malaria vectors.
Trans. R. Soc. Trop. Med. Hyg.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
A more robust assessment of malaria control through mosquito larval habitat destruction will come from a better understanding of the distribution, productivity and connectivity of breeding sites. The present study examines the significance of vector dispersal ability, larval habitat stability and productivity on the persistence and extinction of a mosquito population inhabiting a dynamic network of breeding sites. We use this novel method of vector modelling to show that when dispersal is limited or vector distribution is patchy, the spread and growth of a mosquito population at the onset of a rainy season is delayed and extinction through larval habitat destruction is more readily achieved. We also determine the impact of two alternative dry-season survival strategies on mosquito dynamics. Simulations suggest that if adult vectors remain dormant throughout the dry season, the stage structure of the population will be synchronized at the onset of the wet season and its growth will be delayed. In contrast, a population that continues to breed throughout the dry season grows more rapidly and is more difficult to control. Our findings have important implications on the development of integrative malaria vector management strategies and on the understanding of dry-season survival mechanisms of African malaria vectors.
Related JoVE Video
Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa.
Am. J. Trop. Med. Hyg.
PUBLISHED: 12-10-2009
Show Abstract
Hide Abstract
Spatial and temporal variations in the distribution of anopheline larval habitats and land use and land cover (LULC) changes can influence malaria transmission intensity. This information is important for understanding the environmental determinants of malaria transmission heterogeneity, and it is critical to the study of the effects of environmental changes on malaria transmission. In this study, we investigated the spatial and temporal variations in the distribution of anopheline larval habitats and LULC changes in western Kenya highlands over a 4-year period. Anopheles gambiae complex larvae were mainly confined to valley bottoms during both the dry and wet seasons. Although An. gambiae larvae were located in man-made habitats where riparian forests and natural swamps had been cleared, Anopheles funestus larvae were mainly found in permanent habitats in pastures. The association between land cover type and occurrence of anopheline larvae was statistically significant. The distribution of anopheline positive habitats varied significantly between months, during the survey. In 2004, the mean density of An. gambiae was significantly higher during the month of May, whereas the density of An. funestus peaked significantly in February. Over the study period, major LULC changes occurred mostly in the valley bottoms. Overall, farmland increased by 3.9%, whereas both pastures and natural swamps decreased by 8.9% and 20.9%, respectively. The area under forest cover was decreased by 5.8%. Land-use changes in the study area are favorable to An. gambiae larval development, thereby risking a more widespread distribution of malaria vector habitats and potentially increasing malaria transmission in western Kenya highlands.
Related JoVE Video
Loop-mediated isothermal amplification (LAMP) for rapid identification of Anopheles gambiae and Anopheles arabiensis mosquitoes.
Am. J. Trop. Med. Hyg.
PUBLISHED: 12-10-2009
Show Abstract
Hide Abstract
The main malaria vectors of sub-Saharan Africa, Anopheles gambiae sensu stricto and Anopheles arabiensis are morphologically indistinguishable, but often occur in sympatry and differ in feeding preference and vector competence. It is important to assess vector species identity for understanding the vectorial system and establishing appropriate vector control measures. The currently available species diagnosis methods for An. gambiae sensu latu require equipment to which public health practitioners in many African countries may not have access. This report describes a loop-mediated isothermal amplification technique (LAMP) for An. gambiae species diagnosis. The LAMP method was tested in single mosquito legs and whole body. The sensitivity and specificity of the LAMP method, in reference to the conventional rDNA-polymerse chain reaction (PCR) method, ranged from 0.93 to 1.00. The LAMP-based species identification method can be performed in a water bath and completed within 65 minutes, representing an alternative method for rapid and field applicable vector species diagnosis.
Related JoVE Video
Temporal and spatial stability of Anopheles gambiae larval habitat distribution in Western Kenya highlands.
Int J Health Geogr
PUBLISHED: 10-12-2009
Show Abstract
Hide Abstract
Localized mosquito larval habitat management and the use of larvicides have been proposed as important control tools in integrated malaria vector management programs. In order to optimize the utility of these tools, detailed knowledge of the spatial distribution patterns of mosquito larval habitats is crucial. However, the spatial and temporal changes of habitat distribution patterns under different climatic conditions are rarely quantified and their implications to larval control are unknown.
Related JoVE Video
Prevalence of antimalarial drug resistance mutations in Plasmodium vivax and P. falciparum from a malaria-endemic area of Pakistan.
Am. J. Trop. Med. Hyg.
PUBLISHED: 08-27-2009
Show Abstract
Hide Abstract
To study drug resistance in Bannu district, a malaria-endemic area in Pakistan, molecular-based analyses were undertaken. In Plasmodium vivax, antifolate resistance mutations were detected in pvdhfr gene codons 57, 58, and 117, with a 117N mutation frequency of 93.5%. All P. falciparum isolates exhibited double 59R + 108N mutations in pfdhfr, whereas the triple mutant 59R + 108N + 437G haplotype was found in 31.8% isolates. Furthermore, all (100%) P. falciparum isolates exhibited the key chloroquine resistance mutation, pfcrt 76T, which is also associated with resistance to amodiaquine. Additionally, pfmdr1 86Y and D1042Y mutations were, respectively, detected in 32% and 9% isolates. These results indicate an emerging multi-drug resistance problem in P. vivax and P. falciparum malaria parasites in Pakistan.
Related JoVE Video
Modeling the effects of integrating larval habitat source reduction and insecticide treated nets for malaria control.
PLoS ONE
PUBLISHED: 06-10-2009
Show Abstract
Hide Abstract
Integrated vector management for malaria control has received a lot of recent interest. Attacking multiple points in the transmission cycle is hoped to act synergistically and improve upon current single-tool interventions based on the use of insecticide-treated bed nets (ITNs). In the present study, we theoretically examined the application of larval habitat source reduction with ITNs in reducing malaria transmission. We selected this type of environmental management to complement ITNs because of a potential secondary mode of action that both control strategies share. In addition to increasing vector mortality, ITNs reduce the rate at which female mosquitoes locate human hosts for blood feeding, thereby extending their gonotrophic cycle. Similarly, while reducing adult vector emergence and abundance, source reduction of larval habitats may prolong the cycle duration by extending delays in locating oviposition sites. We found, however, that source reduction of larval habitats only operates through this secondary mode of action when habitat density is below a critical threshold. Hence, we illustrate how this strategy becomes increasingly effective when larval habitats are limited. We also demonstrate that habitat source reduction is better suited to human populations of higher density and in the presence of insecticide resistance or when the insecticidal properties of ITNs are depleted.
Related JoVE Video
High prevalence of asymptomatic plasmodium falciparum infections in a highland area of western Kenya: a cohort study.
J. Infect. Dis.
PUBLISHED: 05-30-2009
Show Abstract
Hide Abstract
Transmission of malaria in an area of hypoendemicity in the highlands of western Kenya is not expected to lead to rapid acquisition of immunity to malaria. However, the subpopulation of individuals with asymptomatic Plasmodium falciparum infection may play a significant role as an infection reservoir and should be considered in malaria-control programs. Determination of the spatiotemporal dynamics of asymptomatic subpopulations provides an opportunity to estimate the epidemiological importance of this group to malaria transmission.
Related JoVE Video
Habitat stability and occurrences of malaria vector larvae in western Kenya highlands.
Malar. J.
PUBLISHED: 04-28-2009
Show Abstract
Hide Abstract
Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control.
Related JoVE Video
Cloning and characterization of 60S ribosomal protein L22 (RPL22) from Culex pipiens pallens.
Comp. Biochem. Physiol. B, Biochem. Mol. Biol.
PUBLISHED: 03-02-2009
Show Abstract
Hide Abstract
The 60S ribosomal protein L22 (GenBank accession no. EF990190) was cloned from Culex pipiens pallens. An open reading frame (ORF) of 447 bps was found to encode a putative 148 amino acids protein which shares 90% and 80% identity with RPL22 genes from Aedes aegypti and Anopheles gambiae respectively. Real-time quantitative PCR analysis demonstrated that the transcription level of RPL22 in deltamethrin-resistant strain was 2.57 folds higher than in deltamethrin-susceptible strain of Cx. pipiens pallens. Overexpression of RPL22 in C6/36 cells showed that the deltamethrin-resistance was decreased in C6/36-RPL22 cell compared to the control. The mRNA level of cytochrome P450 6A1 (CYP6A1, GenBank accession no. FJ423553) showed that CYP6A1 was down-regulated in the C6/36 transfected with RPL22 (C6/36-RPL22) cells, suggesting that CYP6A1 was repressed by RPL22. Our study provides the first evidence that RPL22 may play some role in the regulation of deltamethrin-resistance in Cx. pipiens pallens.
Related JoVE Video
Genetic structure of Plasmodium falciparum populations between lowland and highland sites and antimalarial drug resistance in Western Kenya.
Infect. Genet. Evol.
PUBLISHED: 02-17-2009
Show Abstract
Hide Abstract
Human travel to malaria endemic lowlands from epidemic highlands has been shown to increase the risk of malaria infections in the highlands. In order to gain insight on the impact of human travel, we examined prevalence, genetic variability and population genetic structure of Plasmodium falciparum in asymptomatic children from one highland site and three surrounding malaria endemic lowland sites in Western Kenya, using multilocus microsatellite genotyping. We further analyzed the frequencies of mutations at the genes conferring resistance to chloroquine and sulfadoxine-pyrimethamine. We found a significant decrease in malaria prevalence in the highland site from 2006 to 2007, 1 year after the introduction of the artemisinin-based combination therapy as first-line treatment for uncomplicated malaria and the scale-up of insecticide-treated bed nets. Population genetic diversity, measured by the number of observed and effective microsatellite alleles and Neis unbiased genetic diversity, was high and comparable for both highland and lowland populations. Analysis of molecular variance did not detect a significant genetic structure across highland and lowland regions. Similarly, mutations at key antimalarial-resistance codons of the pfcrt, pfmdr1, pfdhfr and pfdhps genes were found at comparable high frequencies in all four sites. High level of gene flow and lack of significant genetic structure in malaria parasites between highland and lowland areas suggest the importance of human travel in shaping parasite population structure.
Related JoVE Video
Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.
PLoS ONE
Show Abstract
Hide Abstract
Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.
Related JoVE Video
Alterations in Plasmodium falciparum genetic structure two years after increased malaria control efforts in western Kenya.
Am. J. Trop. Med. Hyg.
Show Abstract
Hide Abstract
The impact of malaria intervention measures (insecticide-treated net use and artemisinin combination therapy) on malaria genetics was investigated at two sites in western Kenya: an endemic lowland and an epidemic highland. The genetic structure of the parasite population was assessed by using microsatellites, and the prevalence of drug-resistant mutations was examined by using the polymerase chain reaction-restriction fragment length polymorphism method. Two years after intervention, genetic diversity remained high in both populations. A significant decrease in the prevalence of quintuple mutations conferring resistance to sulfadoxine-pyrimethamine was detected in both populations, but the mutation prevalence at codon 1246 of the Plasmodium falciparum multidrug resistance 1 gene had increased in the highland population. The decrease in sulfadoxine-pyrimethamine-resistant mutants is encouraging, but the increase in P. falciparum multidrug resistance 1 gene mutations is worrisome because these mutations are linked to resistance to other antimalarial drugs. In addition, the high level of genetic diversity observed after intervention suggests transmission is still high in each population.
Related JoVE Video
The ecology of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana: abundance, productivity and survivorship.
Parasit Vectors
Show Abstract
Hide Abstract
Irrigated vegetable farms within the city of Kumasi, Ghana, create hotspots for the breeding of malaria vectors, which could lead to high transmission of malaria. This study investigated the abundance and productivity of mosquitoes in an irrigated vegetable farm in Kumasi, Ghana.
Related JoVE Video
Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci.
Acta Trop.
Show Abstract
Hide Abstract
Levels of genetic diversity of the malaria parasites and multiclonal infections are correlated with transmission intensity. In order to monitor the effect of strengthened malaria control efforts in recent years at the China-Myanmar border area, we followed the temporal dynamics of genetic diversity of three polymorphic antigenic markers msp1, msp2, and glurp in the Plasmodium falciparum populations. Despite reduced malaria prevalence in the region, parasite populations exhibited high levels of genetic diversity. Genotyping 258 clinical samples collected in four years detected a total of 22 PCR size alleles. Multiclonal infections were detected in 45.7% of the patient samples, giving a minimum multiplicity of infection of 1.41. The majority of alleles experienced significant temporal fluctuations through the years. Haplotype diversity based on the three-locus genotypes ranged from the lowest in 2009 at 0.33 to the highest in 2010 at 0.80. Sequencing of msp1 fragments from 36 random samples of five allele size groups detected 13 different sequences, revealing an additional layer of genetic complexity. This study suggests that despite reduced prevalence of malaria infections in this region, the parasite population size and transmission intensity remained high enough to allow effective genetic recombination of the parasites and continued maintenance of genetic diversity.
Related JoVE Video
Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.
Infect. Genet. Evol.
Show Abstract
Hide Abstract
Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.