JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Cardiac anaplastic large cell lymphoma in an 8-year old boy.
Leuk Res Rep
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We report on an 8 year old boy with primary cardiac anaplastic large cell lymphoma (ALCL), in whom the diagnosis was challenging and who was treated with modified chemotherapy without radiation therapy according to the ALCL 99 study protocol [1]. Two years and 4 months after completion of therapy the boy is in complete remission with normal cardiac function.
Related JoVE Video
Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group.
Blood
PUBLISHED: 11-12-2013
Show Abstract
Hide Abstract
Children with Down syndrome (DS) have an increased risk of B-cell precursor (BCP) acute lymphoblastic leukemia (ALL). The prognostic factors and outcome of DS-ALL patients treated in contemporary protocols are uncertain. We studied 653 DS-ALL patients enrolled in 16 international trials from 1995 to 2004. Non-DS BCP-ALL patients from the Dutch Child Oncology Group and Berlin-Frankfurt-Münster were reference cohorts. DS-ALL patients had a higher 8-year cumulative incidence of relapse (26% ± 2% vs 15% ± 1%, P < .001) and 2-year treatment-related mortality (TRM) (7% ± 1% vs 2.0% ± <1%, P < .0001) than non-DS patients, resulting in lower 8-year event-free survival (EFS) (64% ± 2% vs 81% ± 2%, P < .0001) and overall survival (74% ± 2% vs 89% ± 1%, P < .0001). Independent favorable prognostic factors include age <6 years (hazard ratio [HR] = 0.58, P = .002), white blood cell (WBC) count <10 × 10(9)/L (HR = 0.60, P = .005), and ETV6-RUNX1 (HR = 0.14, P = .006) for EFS and age (HR = 0.48, P < .001), ETV6-RUNX1 (HR = 0.1, P = .016) and high hyperdiploidy (HeH) (HR = 0.29, P = .04) for relapse-free survival. TRM was the major cause of death in ETV6-RUNX1 and HeH DS-ALLs. Thus, while relapse is the main contributor to poorer survival in DS-ALL, infection-associated TRM was increased in all protocol elements, unrelated to treatment phase or regimen. Future strategies to improve outcome in DS-ALL should include improved supportive care throughout therapy and reduction of therapy in newly identified good-prognosis subgroups.
Related JoVE Video
Frequent and sex-biased deletion of SLX4IP by illegitimate V(D)J-mediated recombination in childhood acute lymphoblastic leukemia.
Hum. Mol. Genet.
PUBLISHED: 09-17-2013
Show Abstract
Hide Abstract
Acute lymphoblastic leukemia (ALL) accounts for ?25% of pediatric malignancies. Of interest, the incidence of ALL is observed ?20% higher in males relative to females. The mechanism behind the phenomenon of sex-specific differences is presently not understood. Employing genome-wide genetic aberration screening in 19 ALL samples, one of the most recurrent lesions identified was monoallelic deletion of the 5 region of SLX4IP. We characterized this deletion by conventional molecular genetic techniques and analyzed its interrelationships with biological and clinical characteristics using specimens and data from 993 pediatric patients enrolled into trial AIEOP-BFM ALL 2000. Deletion of SLX4IP was detected in ?30% of patients. Breakpoints within SLX4IP were defined to recurrent positions and revealed junctions with typical characteristics of illegitimate V(D)J-mediated recombination. In initial and validation analyses, SLX4IP deletions were significantly associated with male gender and ETV6/RUNX1-rearranged ALL (both overall P < 0.0001). For mechanistic validation, a second recurrent deletion affecting TAL1 and caused by the same molecular mechanism was analyzed in 1149 T-cell ALL patients. Validating a differential role by sex of illegitimate V(D)J-mediated recombination at the TAL1 locus, 128 out of 1149 T-cell ALL samples bore a deletion and males were significantly more often affected (P = 0.002). The repeatedly detected association of SLX4IP deletion with male sex and the extension of the sex bias to deletion of the TAL1 locus suggest that differential illegitimate V(D)J-mediated recombination events at specific loci may contribute to the consistent observation of higher incidence rates of childhood ALL in boys compared with girls.
Related JoVE Video
High CD45 surface expression determines relapse risk in children with precursor B-cell and T-cell acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol.
Haematologica
PUBLISHED: 08-02-2013
Show Abstract
Hide Abstract
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from an intensified treatment. We earlier identified PTPRC (CD45) gene expression as potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia compared to B-cell-precursor acute lymphoblastic leukemia (P<0.0001) analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event free survival (B-cell-precursor acute lymphoblastic leukemia: 72+/-3% vs. 86+/-1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60+/-8% vs. 78+/-4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22+/-3% vs. 11+/-1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31+/-8% vs. 11+/-3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as additional stratification tool in BFM-based protocols. Clinicaltrials.gov identifier: NCT00430118.
Related JoVE Video
Primary cutaneous CD4+ small to medium-size pleomorphic T-cell lymphoma in a 12-year-old girl.
Pediatr Dermatol
PUBLISHED: 06-12-2013
Show Abstract
Hide Abstract
Primary cutaneous CD4+ small to medium-size pleomorphic T-cell lymphoma (PCSM-TCL) is a rare disease that has been added as a provisional entity to the World Health Organization European Organization for Research and Treatment of Cancer (WHO-EORTC) classification of lymphomas with primary cutaneous manifestations. Patients commonly present with a solitary nodule or plaque on the head or upper trunk, but are usually otherwise in good health. The prognosis is favorable, but the optimal treatment has not been defined. Recent publications have described the expression of programmed death-1 in PCSM-TCL and T-cell pseudolymphoma, suggesting a diagnostic value of this marker in the differential diagnosis of PCSM-TCL in contrast to other types of cutaneous T-cell lymphoma. We present the case of a 12-year-old girl with a tumor of the right supraorbital area. She was treated as an outpatient four times with intralesional triamcinolone acetonide at intervals of 3 to 4 weeks. In addition to the case history, this report includes the clinical and histologic findings and a review of the current literature.
Related JoVE Video
Leukemia surfaceome analysis reveals new disease-associated features.
Blood
PUBLISHED: 05-06-2013
Show Abstract
Hide Abstract
A better description of the leukemia cell surface proteome (surfaceome) is a prerequisite for the development of diagnostic and therapeutic tools. Insights into the complexity of the surfaceome have been limited by the lack of suitable methodologies. We combined a leukemia xenograft model with the discovery-driven chemoproteomic Cell Surface Capture technology to explore the B-cell precursor acute lymphoblastic leukemia (BCP-ALL) surfaceome; 713 cell surface proteins, including 181 CD proteins, were detected through combined analysis of 19 BCP-ALL cases. Diagnostic immunophenotypes were recapitulated in each case, and subtype specific markers were detected. To identify new leukemia-associated markers, we filtered the surfaceome data set against gene expression information from sorted, normal hematopoietic cells. Nine candidate markers (CD18, CD63, CD31, CD97, CD102, CD157, CD217, CD305, and CD317) were validated by flow cytometry in patient samples at diagnosis and during chemotherapy. CD97, CD157, CD63, and CD305 accounted for the most informative differences between normal and malignant cells. The ALL surfaceome constitutes a valuable resource to assist the functional exploration of surface markers in normal and malignant lymphopoiesis. This unbiased approach will also contribute to the development of strategies that rely on complex information for multidimensional flow cytometry data analysis to improve its diagnostic applications.
Related JoVE Video
Low platelet counts after induction therapy for childhood acute lymphoblastic leukemia are strongly associated with poor early response to treatment as measured by minimal residual disease and are prognostic for treatment outcome.
Haematologica
PUBLISHED: 11-04-2011
Show Abstract
Hide Abstract
Numerous reports have been published on the association between kinetics of leukemic cells during early treatment of childhood acute lymphoblastic leukemia and therapeutic outcome. In contrast, little is known about the prognostic relevance of normal blood counts in this setting.
Related JoVE Video
Xenografts of highly resistant leukemia recapitulate the clonal composition of the leukemogenic compartment.
Blood
PUBLISHED: 06-13-2011
Show Abstract
Hide Abstract
Clonal evolution of the leukemogenic compartment may contribute to alter the therapeutic response in acute lymphoblastic leukemia (ALL). Using xenotransplantation of primary leukemia cells, we evaluated the phenotypic and genetic composition of de novo resistant very high risk precursor B-cell ALL, a subgroup defined by the persistence of minimal residual disease despite intensive chemotherapy. Analysis of copy number alterations (CNAs) showed that the xenografted leukemia, even when reconstituted from 100 cells, remained highly related to the diagnostic sample, with minor changes in CNAs, mostly deletions, emerging in most cases in the first passage into mice. At the single-cell level, the pattern of monoallelic and biallelic deletions of the CDKN2A locus revealed distinct leukemia subpopulations, which were reproducibly tracked in xenografts. In most very high risk ALL cases, the predominant diagnostic clones were reconstituted in xenografts, as shown by multiplex polymerase chain reaction analysis of immunoglobulin and T-cell receptor loci. In other cases, the pattern in CNAs and immunoglobulin and T-cell receptor rearrangement was less concordant in xenografts, suggesting the outgrowth of subclones. These results unequivocally demonstrate the existence of clonally closely related but distinct subsets of leukemia initiating cells in ALL, which has important implications for drug development and preclinical disease modeling.
Related JoVE Video
Gain-of-function mutations in interleukin-7 receptor-? (IL7R) in childhood acute lymphoblastic leukemias.
J. Exp. Med.
PUBLISHED: 05-02-2011
Show Abstract
Hide Abstract
Interleukin-7 receptor ? (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia.
Related JoVE Video
Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol.
Blood
PUBLISHED: 04-08-2010
Show Abstract
Hide Abstract
High-level expression of the cytokine receptor-like factor 2 gene, CRLF2, in precursor B-cell acute lymphoblastic leukemia (pB-ALL) was shown to be caused by a translocation involving the IGH@ locus or a deletion juxtaposing CRLF2 with the P2RY8 promoter. To assess its possible prognostic value, CRLF2 expression was analyzed in 555 childhood pB-ALL patients treated according to the Acute Lymphoblastic Leukemia Berlin-Frankfurt-Münster 2000 (ALL-BFM 2000) protocol. Besides CRLF2 rearrangements, high-level CRLF2 expression was seen in cases with supernumerary copies of the CRLF2 locus. On the basis of the detection of CRLF2 rearrangements, a CRLF2 high-expression group (n = 49) was defined. This group had a 6-year relapse incidence of 31% plus or minus 8% compared with 11% plus or minus 1% in the CRLF2 low-expression group (P = .006). This difference was mainly attributable to an extremely high incidence of relapse (71% +/- 19%) in non-high-risk patients with P2RY8-CRLF2 rearrangement. The assessment of CRLF2 aberrations may therefore serve as new stratification tool in Berlin-Frankfurt-Münster-based protocols by identifying additional high-risk patients who may benefit from an intensified and/or targeted treatment.
Related JoVE Video
TEL/AML1-positive patients lacking TEL exon 5 resemble canonical TEL/AML1 cases.
Pediatr Blood Cancer
PUBLISHED: 03-19-2010
Show Abstract
Hide Abstract
The TEL/AML1 fusion gene which represents the most frequent genetic abnormality in childhood ALL, usually results from genomic breakpoints in TEL intron 5 and AML1 intron 1 or 2. At the protein level, the helix-loop-helix domain and exon 5-coded central region of TEL are typically fused to almost entire AML1 including DNA-binding domain.
Related JoVE Video
Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance.
J. Clin. Invest.
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
In vivo resistance to first-line chemotherapy, including to glucocorticoids, is a strong predictor of poor outcome in children with acute lymphoblastic leukemia (ALL). Modulation of cell death regulators represents an attractive strategy for subverting such drug resistance. Here we report complete resensitization of multidrug-resistant childhood ALL cells to glucocorticoids and other cytotoxic agents with subcytotoxic concentrations of obatoclax, a putative antagonist of BCL-2 family members. The reversal of glucocorticoid resistance occurred through rapid activation of autophagy-dependent necroptosis, which bypassed the block in mitochondrial apoptosis. This effect was associated with dissociation of the autophagy inducer beclin-1 from the antiapoptotic BCL-2 family member myeloid cell leukemia sequence 1 (MCL-1) and with a marked decrease in mammalian target of rapamycin (mTOR) activity. Consistent with a protective role for mTOR in glucocorticoid resistance in childhood ALL, combination of rapamycin with the glucocorticoid dexamethasone triggered autophagy-dependent cell death, with characteristic features of necroptosis. Execution of cell death, but not induction of autophagy, was strictly dependent on expression of receptor-interacting protein (RIP-1) kinase and cylindromatosis (turban tumor syndrome) (CYLD), two key regulators of necroptosis. Accordingly, both inhibition of RIP-1 and interference with CYLD restored glucocorticoid resistance completely. Together with evidence for a chemosensitizing activity of obatoclax in vivo, our data provide a compelling rationale for clinical translation of this pharmacological approach into treatments for patients with refractory ALL.
Related JoVE Video
Immunoglobulin heavy chain locus chromosomal translocations in B-cell precursor acute lymphoblastic leukemia: rare clinical curios or potent genetic drivers?
Blood
PUBLISHED: 12-30-2009
Show Abstract
Hide Abstract
Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus define common subgroups of B-cell lymphoma but are rare in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Recent fluorescent in situ hybridization and molecular cloning studies have identified several novel IGH translocations involving genes that play important roles in normal hemopoiesis, including the cytokine receptor genes CRLF2 and EPOR, all members of the CCAAT enhancer-binding protein gene family, as well as genes not normally expressed in hemopoietic cells including inhibitor of DNA binding 4. IGH translocation results in deregulated target gene expression because of juxtaposition with IGH transcriptional enhancers. However, many genes targeted by IGH translocations are also more commonly deregulated in BCP-ALL as a consequence of other genetic or epigenetic mechanisms. For example, interstitial genomic deletions also result in deregulated CRLF2 expression, whereas EPOR expression is deregulated as a consequence of the ETV6-RUNX1 fusion. The possible clinical importance of many of the various IGH translocations in BCP-ALL remains to be determined from prospective studies, but CRLF2 expression is associated with a poor prognosis. Despite their rarity, IGH chromosomal translocations in BCP-ALL therefore define not only new mechanisms of B-cell transformation but also clinically important subgroups of disease and suggest new targeted therapeutic approaches.
Related JoVE Video
Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group.
Blood
PUBLISHED: 11-24-2009
Show Abstract
Hide Abstract
We report gene expression and other analyses to elucidate the molecular characteristics of acute lymphoblastic leukemia (ALL) in children with Down syndrome (DS). We find that by gene expression DS-ALL is a highly heterogeneous disease not definable as a unique entity. Nevertheless, 62% (33/53) of the DS-ALL samples analyzed were characterized by high expression of the type I cytokine receptor CRLF2 caused by either immunoglobulin heavy locus (IgH@) translocations or by interstitial deletions creating chimeric transcripts P2RY8-CRLF2. In 3 of these 33 patients, a novel activating somatic mutation, F232C in CRLF2, was identified. Consistent with our previous research, mutations in R683 of JAK2 were identified in 10 specimens (19% of the patients) and, interestingly, all 10 had high CRLF2 expression. Cytokine receptor-like factor 2 (CRLF2) and mutated Janus kinase 2 (Jak2) cooperated in conferring cytokine-independent growth to BaF3 pro-B cells. Intriguingly, the gene expression signature of DS-ALL is enriched with DNA damage and BCL6 responsive genes, suggesting the possibility of B-cell lymphocytic genomic instability. Thus, DS confers increased risk for genetically highly diverse ALLs with frequent overexpression of CRLF2, associated with activating mutations in the receptor itself or in JAK2. Our data also suggest that the majority of DS children with ALL may benefit from therapy blocking the CRLF2/JAK2 pathways.
Related JoVE Video
Thiopurine methyltransferase genetics is not a major risk factor for secondary malignant neoplasms after treatment of childhood acute lymphoblastic leukemia on Berlin-Frankfurt-Münster protocols.
Blood
PUBLISHED: 06-17-2009
Show Abstract
Hide Abstract
Thiopurine methyltransferase (TPMT)is involved in the metabolism of thiopurines such as 6-mercaptopurine and 6-thioguanine. TPMT activity is significantly altered by genetics, and heterozygous and even more homozygous variant people reveal substiantially decreased TPMT activity. Treatment for childhood acute lymphoblastic leukemia (ALL) regularly includes the use of thiopurine drugs. Importantly, childhood ALL patients with low TPMT activity have been considered to be at increased risk of developing therapy-associated acute myeloid leukemia and brain tumors. In the present study, we genotyped 105 of 129 patients who developed a secondary malignant neoplasm after ALL treatment on 7 consecutive German Berlin-Frankfurt-Münster trials for all functionally relevant TPMT variants. Frequencies of TPMT variants were similarly distributed in secondary malignant neoplasm patients and the overall ALL patient population of 814 patients. Thus, TPMT does not play a major role in the etiology of secondary malignant neoplasm after treatment for childhood ALL, according to Berlin-Frankfurt-Münster strategies.
Related JoVE Video
Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome.
J. Mol. Med.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development usually caused by mutations in the androgen receptor (AR) gene. AIS is characterized by a poor genotype-phenotype correlation, and many patients with clinically presumed AIS do not seem to have mutations in the AR gene. We therefore aimed at identifying a biomarker enabling the assessment of the cellular function of the AR as a transcriptional activator. In the first step, we used complementary DNA (cDNA) microarrays for a genome-wide screen for androgen-regulated genes in two normal male primary scrotal skin fibroblast strains compared to two labia majora fibroblast strains from 46,XY females with complete AIS (CAIS). Apolipoprotein D (APOD) and two further transcripts were significantly upregulated by dihydrotestosterone (DHT) in scrotum fibroblasts, while CAIS labia majora cells were unresponsive. Microarray data were well correlated with quantitative real-time polymerase chain reaction (qRT-PCR; R = 0.93). Subsequently, we used qRT-PCR in independent new cell cultures and confirmed the significant DHT-dependent upregulation of APOD in five normal scrotum strains [13.5 +/- 8.2 (SD)-fold] compared with three CAIS strains (1.2 +/- 0.7-fold, p = 0.028; t test) and six partial androgen insensitivity syndrome strains (2 +/- 1.3-fold, p = 0.034; t test). Moreover, two different 17ss-hydroxysteroid dehydrogenase III deficiency labia majora strains showed APOD induction in the range of normal scrotum (9.96 +/- 1.4-fold), supporting AR specificity. Therefore, qRT-PCR of APOD messenger RNA transcription in primary cultures of labioscrotal skin fibroblasts is a promising tool for assessing AR function, potentially allowing a function-based diagnostic evaluation of AIS in the future.
Related JoVE Video
NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway.
Nat. Med.
PUBLISHED: 02-01-2009
Show Abstract
Hide Abstract
We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia. Intracellular NAMPT and NAD(+) amounts in myeloid cells, as well as plasma NAMPT and NAD(+) levels, were increased by G-CSF treatment of both healthy volunteers and individuals with congenital neutropenia. NAMPT administered both extracellularly and intracellularly induced granulocytic differentiation of CD34(+) hematopoietic progenitor cells and of the promyelocytic leukemia cell line HL-60. Treatment of healthy individuals with high doses of vitamin B3 (nicotinamide), a substrate of NAMPT, induced neutrophilic granulocyte differentiation. The molecular events triggered by NAMPT include NAD(+)-dependent sirtuin-1 activation, subsequent induction of CCAAT/enhancer binding protein-alpha and CCAAT/enhancer binding protein-beta, and, ultimately, upregulation of G-CSF synthesis and G-CSF receptor expression. G-CSF, in turn, further increases NAMPT levels. These results reveal a decisive role of the NAD(+) metabolic pathway in G-CSF-triggered myelopoiesis.
Related JoVE Video
Disorders of sex development expose transcriptional autonomy of genetic sex and androgen-programmed hormonal sex in human blood leukocytes.
BMC Genomics
PUBLISHED: 01-27-2009
Show Abstract
Hide Abstract
Gender appears to be determined by independent programs controlled by the sex-chromosomes and by androgen-dependent programming during embryonic development. To enable experimental dissection of these components in the human, we performed genome-wide profiling of the transcriptomes of peripheral blood mononuclear cells (PBMC) in patients with rare defined "disorders of sex development" (DSD, e.g., 46, XY-females due to defective androgen biosynthesis) compared to normal 46, XY-males and 46, XX-females.
Related JoVE Video
Quantification of free total plasma DNA and minimal residual disease detection in the plasma of children with acute lymphoblastic leukemia.
Ann. Hematol.
PUBLISHED: 01-09-2009
Show Abstract
Hide Abstract
The analysis of total plasma DNA and the monitoring of leukemic clone-specific immunoglobulin and/or T-cell receptor gene rearrangements for the evaluation of minimal residual disease (MRD) in the plasma may be useful tools for prognostic purposes or for early detection of subclinical disease recurrence in children with acute lymphoblastic leukemia (ALL). The aim of this paper is to establish reference ranges for total plasma DNA concentrations and to test the feasibility of MRD measurements employing plasma DNA from children with ALL by using real-time quantitative (RQ)-PCR. Despite wide inter-individual variation, the median concentrations of total plasma DNA for 12 healthy donors (57 ng/ml), 21 children with ALL after day 4 of treatment initiation (62 ng/ml) and 13 children with other malignancies (76 ng/ml) were similar. However, ALL patients had significantly higher concentrations at diagnosis (277 ng/ml) and on treatment day 3 (248 ng/ml) before returning to normal afterwards. Early plasma DNA MRD kinetics could be established for 15 ALL patients and showed good concordance with bone marrow MRD. Plasma DNA was higher in children with ALL at diagnosis but returned to normal within the first four treatment days. Despite low concentrations of DNA, it is feasible to measure MRD kinetics in plasma DNA during ALL induction therapy by adapted real-time PCR methodologies.
Related JoVE Video
Small sizes and indolent evolutionary dynamics challenge the potential role of P2RY8-CRLF2-harboring clones as main relapse-driving force in childhood ALL.
Blood
Show Abstract
Hide Abstract
The P2RY8-CRLF2 fusion defines a particular relapse-prone subset of childhood acute lymphoblastic leukemia (ALL) in Italian Association of Pediatric Hematology and Oncology Berlin-Frankfurt-Münster (AIEOP-BFM) 2000 protocols. To investigate whether and to what extent different clone sizes influence disease and relapse development, we quantified the genomic P2RY8-CRLF2 fusion product and correlated it with the corresponding CRLF2 expression levels in patients enrolled in the BFM-ALL 2000 protocol in Austria. Of 268 cases without recurrent chromosomal translocations and high hyperdiploidy, representing approximately 50% of all cases, 67 (25%) were P2RY8-CRLF2 positive. The respective clone sizes were ? 20% in 27% and < 20% in 73% of them. The cumulative incidence of relapse of the entire fusion-positive group was clone size independent and significantly higher than that of the fusion-negative group (35% ± 8% vs 13% ± 3%, P = .008) and primarily confined to the non-high-risk group. Of 22 P2RY8-CRLF2-positive diagnosis/relapse pairs, only 4/8 had the fusion-positive dominant clone conserved at relapse, whereas none of the original 14 fusion-positive small clones reappeared as the dominant relapse clone. We conclude that the majority of P2RY8-CRLF2-positive clones are small at diagnosis and virtually never generate a dominant relapse clone. Our findings therefore suggest that P2RY8-CRLF2-positive clones do not have the necessary proliferative or selective advantage to evolve into a disease-relevant relapse clone.
Related JoVE Video
Ikaros (IKZF1) alterations and minimal residual disease at day 15 assessed by flow cytometry predict prognosis of childhood BCR/ABL-negative acute lymphoblastic leukemia.
Pediatr Blood Cancer
Show Abstract
Hide Abstract
Recently, several studies have demonstrated a negative prognostic impact of Ikaros (IKZF1) gene alterations in acute lymphoblastic leukemia (ALL). However, controversies still exist regarding the impact of IKZF1 in current treatment protocols.
Related JoVE Video
IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol.
Haematologica
Show Abstract
Hide Abstract
IKZF1 gene deletions have been associated with a poor outcome in pediatric precursor B-cell acute lymphoblastic leukemia. To assess the prognostic relevance of IKZF1 deletions for patients treated on Berlin-Frankfurt-Münster Study Group trial ALL-BFM 2000, we screened 694 diagnostic acute lymphoblastic leukemia samples by Multiplex Ligation-dependent Probe Amplification. Patients whose leukemic cells bore IKZF1 deletions had a lower 5-year event-free survival (0.69±0.05 vs. 0.85±0.01; P<0.0001) compared to those without, mainly due to a higher cumulative incidence of relapses (0.21±0.04 vs. 0.10±0.01; P=0.001). Although IKZF1 deletions were significantly associated with the P2RY8-CRLF2 rearrangement, their prognostic value was found to be independent from this association. Thus, IKZF1 deletion is an independent predictor of treatment outcome and a strong candidate marker for integration in future treatment stratification strategies on ALL-BFM protocols. Clinicaltrials.gov identifier: NCT00430118.
Related JoVE Video
Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: a comparative analysis of the AIEOP-BFM and UK NCRI-CCLG study groups.
Br. J. Haematol.
Show Abstract
Hide Abstract
The prognostic relevance of CRLF2 -rearrangements in childhood acute B-cell precursor lymphoblastic leukaemia (ALL), was assessed by a comparative analysis of 114 non-Down-syndrome patients (99 P2RY8-CRLF2+ , 15 IGH@-CRLF2+ ), 76 from the AIEOP-BFM ALL 2000 and 38 from the MRC ALL97 trials. The 6-year cumulative relapse incidence of P2RY8-CRLF2+ patients treated on the two trials was not statistically different: 0·37 ± 0·06 vs. 0·25 ± 0·08 (P = 0·194). In contrast, 0/9 IGH@-CRLF2+ AIEOP-BFM, but 5/6 ALL97 patients relapsed. Conclusively, P2RY8-CRLF2+ patients had an intermediate protocol-independent outcome while the different prognosis of IGH@-CRLF2+ patients could be related to the different structures of the applied treatment protocols.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.