JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Structure and electrical properties of (111)-oriented Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 thin film for ultra-high-frequency transducer applications.
IEEE Trans Ultrason Ferroelectr Freq Control
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
Ternary lead magnesium niobate-lead zirconate titanate system 0.4Pb(Mg(1/3)Nb(2/3))O(3)-0.25PbZrO(3)-0.35PbTiO(3) (40PMN-25PZ-35PT) thin film with a thickness of 1.5 ?m was grown on Pt(111)/Ti/SiO(2)/Si substrate via chemical solution deposition. X-ray diffraction and transmission electron microscopy results suggested the film obtained was highly (111)-oriented. The remanent polarization and coercive electric field of the film were found to be 25.5 ?C/cm(2) and 51 kV/cm, respectively. In addition, at 1 kHz, the dielectric constant was measured to be 1960 and the dielectric loss 0.036. The film was observed to undergo a diffuse ferroelectric-to-paraelectric phase transition at around 209°C. The leakage current appeared to depend on the voltage polarity. If the Au electrode was biased positively, the leakage current was dominated by the Schottky emission mechanism. When the Pt electrode was biased positively, the conduction current curve showed an ohmic behavior at a low electric field and space-charge-limited current characteristics at a high electric field.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.