JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
SNP and haplotype analysis of paired box 3 (PAX3) gene provide evidence for association with growth traits in Chinese cattle.
Mol. Biol. Rep.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
Paired box 3 (PAX3) belongs to the PAX superfamily of transcription factors and plays essential roles in the embryogenesis and postnatal formation of limb musculature through affecting the survival of muscle progenitor cells. By genetic mapping, PAX3 gene is assigned in the interval of quantitative trait loci for body weight on bovine BTA2. The objectives of this study were to detect polymorphisms of PAX3 gene in 1,241 cattle from five breeds and to investigate their effects on growth traits. Initially, three novel single nucleotide polymorphisms (SNPs) were identified by DNA pool sequencing and aCRS-RFLP methods (AC_000159: g.T-580G, g.A4617C and g.79018Ins/del G), which were located at 5'-UTR, exon 4 and intron 6, respectively. A total of eight haplotypes were constructed and the frequency of the three main haplotypes H1 (TAG), H2 (GCG) and H3 (GAG) accounted for over 81.7 % of the total individuals. Statistical analysis revealed that the three SNPs were associated with body height and body length of Nanyang and Chinese Caoyuan cattle at the age of 6 and/or 12 months old (P < 0.05), and consistently significant effects were also found in the haplotype combination analysis on these traits (P < 0.05). This study presented a complete scan of variations within bovine PAX3 gene, which could provide evidence for improving the economic traits of cattle by using these variations as potentially genetic markers in early marker-assisted selection programs.
Related JoVE Video
Characterization of transcriptional complexity during adipose tissue development in bovines of different ages and sexes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Adipose tissue has long been recognized to play an extremely important role in development. In bovines, it not only serves a fundamental function but also plays a key role in the quality of beef and, consequently, has drawn much public attention. Age and sex are two key factors that affect the development of adipose tissue, and there has not yet been a global study detailing the effects of these two factors on expressional differences of adipose tissues.
Related JoVE Video
Discovery of novel and differentially expressed microRNAs between fetal and adult backfat in cattle.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The posttranscriptional gene regulation mediated by microRNAs (miRNAs) plays an important role in various species. Recently, a large number of miRNAs and their expression patterns have been identified. However, to date, limited miRNAs have been reported to modulate adipogenesis and lipid deposition in beef cattle. Total RNAs from Chinese Qinchuan bovine backfat at fetal and adult stages were used to construct small RNA libraries for Illumina next-generation sequencing. A total of 13,915,411 clean reads were obtained from a fetal library and 14,244,946 clean reads from an adult library. In total, 475 known and 36 novel miRNA candidates from backfat were identified. The nucleotide bias, base editing, and family of the known miRNAs were also analyzed. Based on stem-loop qPCR, 15 specific miRNAs were detected, and the results showed that bta-miRNAn25 and miRNAn26 were highly expressed in backfat tissue, suggesting these small RNAs play a role in the development and maintenance of bovine subcutaneous fat tissue. Putative targets for miRNAn25 and miRNAn26 were predicted, and the 61 most significant target transcripts were related to lipid and fatty acid metabolism. Of interest, the canonical pathway and gene networks analyses revealed that PPAR?/RXR? activation and LXR/RXR activation were important components of the gene interaction hierarchy results. In the present study, we explored the backfat miRNAome differences between cattle of different developmental stages, expanding the expression repertoire of bovine miRNAs that could contribute to further studies on the fat development of cattle. Predication of target genes analysis of miRNA25 and miRNA26 also showed potential gene networks that affect lipid and fatty acid metabolism. These results may help in the design of new intervention strategies to improve beef quality.
Related JoVE Video
Associations of MYH3 gene copy number variations with transcriptional expression and growth traits in Chinese cattle.
Gene
PUBLISHED: 09-14-2013
Show Abstract
Hide Abstract
Copy number variations (CNVs) have been recently recognized as another important genetic variability complementary to single nucleotide polymorphisms (SNPs). Compelling evidence has indicated that CNVs are responsible for phenotypic traits by changing the copy numbers of functional genes. Myosin heavy chain 3 (MYH3) gene is a critical regulatory factor in skeletal muscle development, and has been detected in the CNVs region by comparative genomic hybridization (CGH) array. This study was conducted to validate and detect the distribution of MYH3 copy numbers (relative to Angus cattle) in four Chinese cattle breeds (NY, QC, LX, and CY), and further to investigate the associations of the copy number changes with its transcriptional expression and cattle growth traits. Substantial genetic differences of MYH3 copy numbers were identified between NY and the other three breeds (P<0.01). The copy numbers of MYH3 gene presented the positive correlations with the transcript level of MYH3 gene in both fetal and adult skeletal muscles (P<0.05). Statistical analysis revealed that CNVs of MYH3 gene were significantly associated with growth traits of NY cattle, and the individuals with copy number gain showed better phenotypes than the loss and/or median groups (P<0.05). This study firstly attempted to establish the correlations between CNVs of candidate genes and growth traits, and our results suggested that the CNVs of MYH3 gene may be utilized as the potential markers for economic traits in selection breeding programs of Chinese cattle.
Related JoVE Video
Genetic variants and effects on milk traits of the caprine paired-like homeodomain transcription factor 2 (PITX2) gene in dairy goats.
Gene
PUBLISHED: 07-23-2013
Show Abstract
Hide Abstract
The paired-like homeodomain transcription factor 2 (PITX2) gene plays a critical role in cell proliferation, differentiation, hematopoiesis and organogenesis. This gene regulates several genes expressions in the Wnt/beta-catenin and POU1F1 pathways, thereby probably affecting milk performance. The goal of this study was to characterize the genetic variants of the PITX2 gene and test their associations with milk traits in dairy goats. Herein, four novel single nucleotide polymorphisms (SNPs), AC_000163:g.18117T>C, g.18161C>G, g.18322C>A and g.18353T>C, within the caprine PITX2 gene, were found in two famous Chinese dairy goat breeds. These SNPs mapping at Cys28Arg, Pro42Pro, IVS1+79C>A and IVS1+110T>C, were genotyped by the MvaI, SmaI, MspI and RsaI aCRS-RFLP or PCR-RFLP methods, respectively. Accordingly, two main haplotypes (CGCT and CGCC) were identified among the specimens. Association testing revealed that the SmaI and RsaI polymorphisms were significantly associated with the milk fat content, milk lactose content and milk density (P<0.05 or P<0.01) in the Guanzhong (GZ) dairy goats, respectively. At the same time, the RsaI locus was also found to significantly link to the second lactation milk yield, milk fat content, milk lactose content, milk density and milk total solid content (P<0.05 or P<0.01) in the Xinong Saanen (XNSN) dairy goats, respectively. These results indicated that the caprine PITX2 gene had the significant effects on milk traits. Hence, the RsaI and SmaI loci could be regarded as two DNA markers for selecting superior milk performance in dairy goats. These preliminary findings not only would extend the spectrum of genetic variation of the goat PITX2 gene, but also would contribute to implementing marker-assisted selection (MAS) in breeding and genetics in dairy goats.
Related JoVE Video
Novel polymorphisms of the APOA2 gene and its promoter region affect body traits in cattle.
Gene
PUBLISHED: 07-12-2013
Show Abstract
Hide Abstract
Apolipoprotein A-II (APOA2) is one of the major constituents of high-density lipoprotein and plays a critical role in lipid metabolism and obesity. However, similar research for the bovine APOA2 gene is lacking. In this study, polymorphisms of the bovine APOA2 gene and its promoter region were detected in 1021 cows from four breeds by sequencing and PCR-RFLP methods. Totally, we detected six novel mutations which included one mutation in the promoter region, two mutations in the exons and three mutations in the introns. There were four polymorphisms within APOA2 gene were analyzed. The allele A, T, T and G frequencies of the four loci were predominant in the four breeds when in separate or combinations analysis which suggested cows with those alleles to be more adapted to the steppe environment. The association analysis indicated three SVs in Nangyang cows, two SVs in Qinchun cows and the 9 haplotypes in Nangyang cows were significantly associated with body traits (P<0.05 or P<0.01). The results of this study suggested the bovine APOA2 gene may be a strong candidate gene for body traits in the cattle breeding program.
Related JoVE Video
Copy number variations of MICAL-L2 shaping gene expression contribute to different phenotypes of cattle.
Mamm. Genome
PUBLISHED: 07-06-2013
Show Abstract
Hide Abstract
Copy number variations (CNVs) recently have been recognized as an important source of genetic variability. Compelling evidence has indicated that CNVs are responsible for phenotypic traits by altering the copy numbers of functional genes. The molecule interacting with CasL-like protein 2 (MICAL-L2) gene plays a critical role in muscle fiber development and has been identified in the CNV region by comparative genomic hybridization array. In the present study, we detected the different distributions of MICAL-L2 gene copy numbers in four Chinese cattle breeds (QC, NY, LX, and CY) and investigated the functional effects of MICAL-L2 CNVs on the genes expression level and the phenotypic traits in QC and NY cattle. The results showed that the copy number loss (relative to Angus cattle) was more frequent in CY than in the other breeds. The MICAL-L2 gene copy number presented a moderate negative correlation with the transcriptional expression in fetal skeletal muscles (P < 0.05). Statistical analysis revealed that the MICAL-L2 CNVs were significantly associated with body weight, body height, and body length of NY cattle in the early stages (6 and 12 months old), and the copy number loss showed better traits than the gain and/or median groups (P < 0.05). No significance was found at the late stages in QC (24 months old) and NY cattle (18 and 24 months old). These observations provided further insight into the associations between cattle CNVs and economic traits, suggesting that the CNVs may be considered promising markers for the molecular breeding of Chinese beef cattle.
Related JoVE Video
SNPs of bovine HGF gene and their association with growth traits in Nanyang cattle.
Res. Vet. Sci.
PUBLISHED: 03-07-2013
Show Abstract
Hide Abstract
Hepatocyte growth factor (HGF) is one of the multifunctional cell factors that regulates cellular proliferation, motility and morphogenesis in mammalians. And its medical research has deep significance. In this paper, polymorphisms of HGF gene were investigated in 1433 health and irrelated Chinese cattle by PCR-RFLP and DNA sequencing approach. Ten novel Single nucleotide polymorphisms (SNPs) were identified, which included one missense mutation, g.72801G>A in the coding region, and the others in the intron. Association analysis between four of them, g.288T>C, g.72801G>A, g.77172G>T, and g.77408T>G, and growth traits in Nanyang, were performed. The results indicated that SNPs within bovine HGF gene were significantly associated with growth traits. Phylogenetic analysis showed that the genetic background of Caoyuan Red cattle was different from the others in the tested breeds. The findings will provide a background for application of bovine HGF gene in the selection program in Chinese cattle.
Related JoVE Video
Exploring polymorphisms and potential application roles of the bovine Nfix gene in breeding.
Genome
Show Abstract
Hide Abstract
The aim of this study was to detect mutations of the nuclear factor I/X (Nfix) gene and examine the association of its polymorphisms with growth traits in cattle. Six sequence variants (SVs) including five single-nucleotide mutations and an indel with multiple alleles were detected, among which four polymorphisms within the Nfix gene were identified in 1159 individuals of five cattle breeds by sequencing and forced PCR-RFLP methods. The results of haplotype analysis showed 14 haplotypes within the breeds. Three haplotypes were shared by the five cattle breeds. Hap1 (ACAI) was extremely predominant in all test populations, which suggested that individuals with Hap1 (ACAI) were more adapted to the steppe environment. Association analysis in Nanyang cattle showed that two SVs of the Nfix gene were significantly associated with growth traits at different ages. In addition, the locations of the SVs showed that the 3 terminal of the bovine Nfix gene was unstable. Combining this instability with its characteristic of multiple alternative splicing, we conjectured that some SVs might have a relationship with the formation of the splices through which growth traits are modulated. This study will provide useful information for the selection and detection of multiple forms of alternative splicing of the bovine Nfix gene.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.