JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Mid-infrared spectral characteristics of lipid molecular structures in Brassica carinata seeds: relationship to oil content, fatty acid and glucosinolate profiles, polyphenols, and condensed tannins.
J. Agric. Food Chem.
PUBLISHED: 08-01-2014
Show Abstract
Hide Abstract
The objectives of this study were to quantify lipid-related inherent molecular structures using a Fourier transform infrared spectroscopy (FT-IR) technique and determine their relationship to oil content, fatty acid and glucosinolate profile, total polyphenols, and condensed tannins in seeds from newly developed yellow-seeded and brown-seeded Brassica carinata lines. Canola seeds were used as a reference. The lipid-related molecular spectral band intensities were strongly correlated to the contents of oil, fatty acids, glucosinolates, and polyphenols. The regression equations gave relatively high predictive power for the estimation of oil (R(2) = 0.99); all measured fatty acids (R(2) > 0.80), except C14:0, C20:3n-3, C22:2n-9, and C22:2n-6; 3-butenyl, 2-OH-3-butenyl, 4-OH-3-CH3-indolyl, and total glucosinolates (R(2) > 0.686); and total polyphenols (R(2) = 0.935). However, further study is required to obtain predictive equations based on large numbers of samples from diverse sources to illustrate the general applicability of these regression equations.
Related JoVE Video
Detect changes in lipid-related structure of brown- and yellow-seeded Brassica Carinata seed during rumen fermentation in relation to basic chemical profile using ATR-FT/IR molecular spectroscopy with chemometrics.
Spectrochim Acta A Mol Biomol Spectrosc
PUBLISHED: 05-19-2014
Show Abstract
Hide Abstract
In this experiment, brown- and yellow-seeded Brassica carinata were selected to use as a model to investigate whether there were any changes in lipid-related structure make-up (including CH3 and CH2 asymmetric and symmetric stretching bands ca. 3010-2765cm(-1), unsaturated lipid band ca. 3043-2987cm(-1) and carbonyl CO ester band ca. 1789-1701cm(-1)) of oilseed tissue during rumen in situ incubation using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FT/IR). Correlations of lipid spectral characteristics with basic chemical profile and multivariate analyses for clarifying structural differences within lipid regions between two carinata seeds were also measured. The results showed that most spectral parameters in both carinata seeds were reduced as incubation time increased. However, the extent of changes in peak intensity of carbonyl CO ester group of brown-seeded carinata was not in fully accordance with that of yellow-seeded carinata. Additionally, these lipid structure features were highly correlated with the concentrations of OM (positively), CP (positively), NDF (negatively) and EE (positively) in carinata seeds after 0, 12, 24 and 48h of incubation. Based on the results from multivariate analyses, neither AHCA nor PCA could produce any distinctions in rumen residues between brown- and yellow-seeded carinata in spectra at lipid regions. It was concluded that besides for original feed samples, spectroscopic technique of ATR-FT/IR could also be used for rumen degradation residues in detecting changes in lipid-related molecular structure make-up. Further studies are needed to explore more details in lipid metabolism during ruminal fermentation with the combined consideration on both metabolic basis and molecular structural basis.
Related JoVE Video
Interactive Association between Biopolymers and Biofunctions in Carinata Seeds as Energy Feedstock and Their Coproducts (Carinata Meal) from Biofuel and Bio-oil Processing before and after Biodegradation: Current Advanced Molecular Spectroscopic Investigations.
J. Agric. Food Chem.
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation.
Related JoVE Video
Characterization of protein and carbohydrate mid-IR spectral features in crop residues.
Spectrochim Acta A Mol Biomol Spectrosc
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
To the best of our knowledge, a few studies have been conducted on inherent structure spectral traits related to biopolymers of crop residues. The objective of this study was to characterize protein and carbohydrate structure spectral features of three field crop residues (rice straw, wheat straw and millet straw) in comparison with two crop vines (peanut vine and pea vine) by using Fourier transform infrared spectroscopy (FTIR) technique with attenuated total reflectance (ATR). Also, multivariate analyses were performed on spectral data sets within the regions mainly related to protein and carbohydrate in this study. The results showed that spectral differences existed in mid-IR peak intensities that are mainly related to protein and carbohydrate among these crop residue samples. With regard to protein spectral profile, peanut vine showed the greatest mid-IR band intensities that are related to protein amide and protein secondary structures, followed by pea vine and the rest three field crop straws. The crop vines had 48-134% higher spectral band intensity than the grain straws in spectral features associated with protein. Similar trends were also found in the bands that are mainly related to structural carbohydrates (such as cellulosic compounds). However, the field crop residues had higher peak intensity in total carbohydrates region than the crop vines. Furthermore, spectral ratios varied among the residue samples, indicating that these five crop residues had different internal structural conformation. However, multivariate spectral analyses showed that structural similarities still exhibited among crop residues in the regions associated with protein biopolymers and carbohydrate. Further study is needed to find out whether there is any relationship between spectroscopic information and nutrition supply in various kinds of crop residue when fed to animals.
Related JoVE Video
Investigating the Molecular Structural Features of Hulless Barley (Hordeum vulgare L.) in Relation to Metabolic Characteristics Using Synchrotron-Based Fourier Transform Infrared Microspectroscopy.
J. Agric. Food Chem.
PUBLISHED: 11-18-2013
Show Abstract
Hide Abstract
The synchrotron-based Fourier transform infrared microspectroscopy (SR-FTIRM) technique was used to quantify molecular structural features of the four hulless barley lines with altered carbohydrate traits [amylose, 1-40% of dry matter (DM); ?-glucan, 5-10% of DM] in relation to rumen degradation kinetics, intestinal nutrient digestion, and predicted protein supply. Spectral features of ?-glucan (both area and heights) in hulless barley lines showed a negative correlation with protein availability in the small intestine, including truly digested protein in the small intestine (DVE) (r = -0.76, P < 0.01; r = -0.84, P < 0.01) and total metabolizable protein (MP) (r = -0.71, P < 0.05; r = -0.84, P < 0.01). Variation in absorption intensities of total carbohydrate (CHO) was observed with negative effects on protein degradation, digestion, and potential protein supply (P < 0.05). Molecular structural features of CHO in hulless barley have negative effects on the supply of true protein to ruminants. The results clearly indicated the impact of the carbohydrate-protein structure and matrix.
Related JoVE Video
Studies on Brassica carinata seed. 1. Protein molecular structure in relation to protein nutritive values and metabolic characteristics.
J. Agric. Food Chem.
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
The objectives of this study were to investigate (1) the protein chemical profile, (2) the protein subfractions partitioned by the Cornell Net Carbohydrate and Protein System (CNCPS), (3) the rumen crude protein (CP) degradation kinetics, (4) the protein supply predicted by the DVE/OEB system, (5) the protein structural features using a Fourier transform infrared (FTIR) spectroscopic technique with attenuated total reflectance (ATR), and (6) the correlations between protein intrinsic structural features and nutritional profiles in three strains of Brassica carinata in yellow and brown seed coats, with comparison to canola seed as a reference. The results showed that carinata seed strains were different in both nutritional values and IR absorbance within the protein spectral region (ca. 1720-1482 cm(-1)). The comparison between yellow and brown B. carinata seeds indicated that the former was lower in acid detergent insoluble crude protein (ADICP; P = 0.002) and undegradable protein fraction (PC; P = 0.002) and greater in the degradable (D) fraction (P = 0.004) and true absorbed protein in the small intestine (DVE; P = 0.02) as well as feed milk value (FMV; P = 0.02) than the latter. The brown canola seed (Brassica napus L.) was also not in full accordance with B. carinata seed on these parameters. The FTIR studies showed significant differences in protein amide II peak height, amide I peak area, and ?-sheet height among different B. carinata strains. However, multivariate spectral analyses indicated a similarity in protein structural makeup in these four kinds of oilseed. The not very strong correlations shown in this study implied that the limited sample size and narrow range in biological and spectral variation might be responses for the weak relationships between chemical profile and mid-IR spectral data. Further studies using sufficient samples with wide and diverse range in nutritional properties are needed to illustrate the actual relationship between spectroscopic data and nutritional profiles in oilseeds.
Related JoVE Video
Studies on Brassica carinata seed. 2. Carbohydrate molecular structure in relation to carbohydrate chemical profile, energy values, and biodegradation characteristics.
J. Agric. Food Chem.
PUBLISHED: 10-09-2013
Show Abstract
Hide Abstract
The objectives of this study were to investigate (1) the carbohydrate chemical profile, (2) the energy values, (3) the rumen neutral detergent fiber (NDF) degradation kinetics, (4) the carbohydrate-related functional group structural features using a Fourier transform infrared (FTIR) spectroscopic technique with attenuated total reflectance (ATR), and (5) the correlations between carbohydrate intrinsic structural features and nutritional profiles in three strains of Brassica carinata in yellow and brown seed coats, with comparison to canola seed as a reference. The results showed that yellow B. carinata strains 111000EM and AAC A100 were lower for contents of neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), and carbohydrate (CHO) and higher for contents of total digestible nutrients (TDN), energy values, and effective degradable NDF (EDNDF) than brown-seeded 110915EM. In comparison, brown canola seed (Brassica napus L.) had more fiber content and less EDNDF. Also, carinata strains showed significantly different IR intensities in structural carbohydrate (SCHO), cellulosic compounds (CELC), and total CHO profiles. These structural variations might be one of the possible reasons for various fiber profile and biodegradation characteristics for ruminants in oilseeds. However, multivariate analyses within carbohydrate regions indicated there were still some structural relationships among the four oilseed samples. Moreover, the correlation study showed that the changes of CELC and CHO peak intensities were highly related with some changes in CHO chemical profile, energy values, and in situ NDF degradation kinetics in B. carinata and canola seeds. Further study with a large sample size is still necessary to figure out whether CHO molecular spectral information could be used to predict nutrient values and biological behavior in oilseeds.
Related JoVE Video
Synchrotron-based microspectroscopic study on the effects of heat treatments on cotyledon tissues in yellow-type canola (Brassica) seeds.
J. Agric. Food Chem.
PUBLISHED: 07-18-2013
Show Abstract
Hide Abstract
Synchrotron-based infrared (IR) microspectroscopy is able to reveal structural features of biomaterials within intact tissue at both cellular and molecular levels. Heat-related treatments have been used to improve nutrient availability of canola seeds and meal. However, hitherto, there has been no study on the sensitivity and response of each layer in canola seeds to heat-related treatments. It is not known which layer (epiderm/mucllage, spermoderm, endosperm, or cotyledon) is the most sensitive to heat when heat treatment is applied to the seeds. Traditional wet chemical analysis is unable to answer such questions. The objective of this study is to use synchrotron IR microspectroscopy with multivariate molecular spectral analyses as a research tool to study heat treatment effects in a fast way on the structural changes in cotyledon tissues of yellow-type canola (Brassica) seeds among raw (treatment code "A"), wet heating (autoclaving at 121 °C for 60 min, treatment code "B"), and dry heating (dry roasting at 120 °C for 60 min, treatment code "C"). The hypothesis of this study was that different heat treatments have different heat penetration abilities on cotyledon tissues in yellow-type canola seeds. The multivariate analytical tools principal component analysis (PCA) and agglomerative hierarchal cluster analysis (AHCA) were applied to investigate variance and groupings within the spectral data set [whole spectral range of ca. 4000-650 cm(-1), spectral range of ca. 1300-900 cm(-1) (cellulose or saccarides), spectral range of ca. 1800-1500 cm(-1) (secondary structures of protein) and spectral range of ca. 1500-1300 cm(-1) (bending motion of methylene and methyl group; this change is consistent with the change in the range of ca. 3000-2800 cm(-1))]. The results showed that there were no clear cluster and groups formed in the cotyledon tissues among the three treatments (A, B, and C). There were no clear distinguished responses of the cotyledon tissues to different types of heat treatments using multivariate molecular spectral analyses. The results indicate that the cotyledon tissues might not be sufficiently penetrated by both heat treatments (autoclaving and dry roasting) under the specified conditions. A future study is needed to analyze individual functional group band intensity among the treatments using univariate molecular spectral analysis to confirm multivariate PCA and cluster analyses.
Related JoVE Video
Using synchrotron radiation-based infrared microspectroscopy to reveal microchemical structure characterization: frost damaged wheat vs. normal wheat.
Int J Mol Sci
PUBLISHED: 06-13-2013
Show Abstract
Hide Abstract
This study was conducted to compare: (1) protein chemical characteristics, including the amide I and II region, as well as protein secondary structure; and (2) carbohydrate internal structure and functional groups spectral intensities between the frost damaged wheat and normal wheat using synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM). Fingerprint regions of specific interest in our study involved protein and carbohydrate functional group band assignments, including protein amide I and II (ca. 1774-1475 cm(-1)), structural carbohydrates (SCHO, ca. 1498-1176 cm(-1)), cellulosic compounds (CELC, ca. 1295-1176 cm(-1)), total carbohydrates (CHO, ca. 1191-906 cm(-1)) and non-structural carbohydrates (NSCHO, ca. 954-809 cm(-1)). The results showed that frost did cause variations in spectral profiles in wheat grains. Compared with healthy wheat grains, frost damaged wheat had significantly lower (p < 0.05) spectral intensities in height and area ratios of amide I to II and almost all the spectral parameters of carbohydrate-related functional groups, including SCHO, CHO and NSCHO. Furthermore, the height ratio of protein amide I to the third peak of CHO and the area ratios of protein amide (amide I + II) to carbohydrate compounds (CHO and SCHO) were also changed (p < 0.05) in damaged wheat grains. It was concluded that the SR-FTIR microspectroscopic technique was able to examine inherent molecular structure features at an ultra-spatial resolution (10 × 10 ?m) between different wheat grains samples. The structural characterization of wheat was influenced by climate conditions, such as frost damage, and these structural variations might be a major reason for the decreases in nutritive values, nutrients availability and milling and baking quality in wheat grains.
Related JoVE Video
Chemical Profile, Energy Values, and Protein Molecular Structure Characteristics of Biofuel/Bio-oil Co-products (Carinata Meal) in Comparison with Canola Meal.
J. Agric. Food Chem.
PUBLISHED: 04-15-2013
Show Abstract
Hide Abstract
To our knowledge, little information exists on nutritive values and molecular structural characteristics associated with protein biopolymers of carinata meal from biofuel and bio-oil processing. The objectives of this study were to investigate (1) chemical compositions; (2) protein and carbohydrate subfractions partitioned by the Cornell Net Carbohydrate and Protein System (CNCPS); (3) truly digestible nutrients and energy values; (4) protein conformation spectral characteristics using the ATR-FT/IR technique; and (5) the correlation between protein intrinsic structural features and nutrient profiles of carinata meal in comparison with conventional canola meal as references. The results showed that carinata meal was higher (p < 0.05) in soluble crude protein (SCP, 55.6% CP) and nonprotein nitrogen (NPN, 38.5% CP) and lower in acid detergent insoluble crude protein (ADICP, 1.3% CP) compared to canola meal. Although no differences were found in CP and carbohydrate (CHO) contents, CNCPS protein and carbohydrate subfractions were different (p < 0.05) between carinata meal and canola meal. Carinata meal has similar contents of total digestible nutrient (TDN) and predicted energy values to canoal meal (p > 0.05). As for protein spectral features, much greater IR absorbance in amide I height and area as well as ?-helix and ?-sheet height for carinata meal by 20-31% (p < 0.05) was found compared with canola meal; however, results from agglomerative hierarchical cluster analysis (CLA) and principal component analysis (PCA) indicated these two meals could not be distinguished completely within the protein spectrum (ca. 1728-1478 cm(-1)). Additionally, close correlations were observed between protein structural parameters and protein nutrient profiles and subfractions. All the comparisons between carinata meal and canola meal in our study indicated that carinata meal could be used as a potential high-protein supplement source for ruminants. Further study is needed on more information associated with nutrient degradability, utilization, and availability of carinata meal to ruminants for its better and effective application in animal industry.
Related JoVE Video
Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal.
Spectrochim Acta A Mol Biomol Spectrosc
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm(-1)), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm(-1)), total carbohydrates (CHO, region and baseline ca. 1193-889cm(-1)) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm(-1), region: 1102-1083 cm(-1)) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm(-1)) to 2nd peak (ca. 1374 cm(-1)) height ratio, CHO 1st peak (ca. 1149 cm(-1)) to 3rd peak (ca. 1032 cm(-1)) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P<0.05) during 48 h ruminal degradation in both carinata meal and canola meal. Although carinata meal differed from canola meal in some carbohydrate spectral parameters, multivariate results from agglomerative hierarchical cluster analysis and principal component analysis showed that both original and in situ residues of two meals were not fully distinguished from each other within carbohydrate spectral regions. It was concluded that carbohydrate structural conformation could be detected in carinata meal by using ATR-FT/IR techniques and further study is needed to explore more information on molecular spectral features of other functional group such as protein structure profile and their association with potential nutrient supply and availability of carinata meal in animals.
Related JoVE Video
Detect changes in protein structure of carinata meal during rumen fermentation in relation to basic chemical profile and comparison with canola meal using ATR-FT/IR molecular spectroscopy with chemometrics.
Spectrochim Acta A Mol Biomol Spectrosc
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
As far as we know, no study has been carried out on whether protein structure changes in the feed during rumen fermentation from other research team. This study was conducted to characterize protein structure spectral changes in carinata meal during ruminal fermentation using Fourier transform infrared spectroscopy (FT/IR) technique with ATR. The objectives were to find out whether (1) protein internal structure (in terms of protein amide profile and protein secondary structure profile) changed after in situ ruminal fermentation at 0, 12, 24 and 48 h in carinata meal and conventional canola meal was used as a reference; (2) there was any correlation between protein spectral parameters and basic chemical profile in in situ rumen residue samples; and (3) the protein structural chemical make-up of carinata meal differed from canola meal during 48 h rumen incubation. The results showed that protein structure features in both carinata meal and canola meal were altered as incubation time increased (P<0.0001) and linear and curvilinear relationships (P<0.05) on amide II height and area, height and area ratio of amide I and II as well as height ratio of ?-helix and ?-sheet were observed within 48 h ruminal fermentation. And the amide I height and area as well as ?-helix height and ?-sheet height were in the highest level of IR absorbance at 0 h and then gradually declined linearly (P<0.0001) by 30-38% after 48 h incubation. These results indicated that not only quantities decreased but also inherent structure changed in protein chemical make-up during ruminal fermentation. Meanwhile, strong correlations were found between protein spectral parameters and some basic nutrients profile such as CP (positively) and NDF (negatively). And both AHCA and PCA results showed that in situ rumen residues from carinata meal was not distinguished from those from canola meal, suggesting some relationship in structural make-up exhibited between them within protein region during 48 h rumen fermentation. Further studies are still needed to investigate detailed information on structural changes in protein of various feedstuffs in order to fully and deeply understand protein degradation during rumen fermentation on both metabolic basis and molecular biological basis.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.