JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Transcriptional activation of mina by sp1/3 factors.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Mina is an epigenetic gene regulatory protein known to function in multiple physiological and pathological contexts, including pulmonary inflammation, cell proliferation, cancer and immunity. We showed previously that the level of Mina gene expression is subject to natural genetic variation linked to 21 SNPs occurring in the Mina 5 region [1]. In order to explore the mechanisms regulating Mina gene expression, we set out to molecularly characterize the Mina promoter in the region encompassing these SNPs. We used three kinds of assays - reporter, gel shift and chromatin immunoprecipitation - to analyze a 2 kb genomic fragment spanning the upstream and intron 1 regions flanking exon 1. Here we discovered a pair of Mina promoters (P1 and P2) and a P1-specific enhancer element (E1). Pharmacologic inhibition and siRNA knockdown experiments suggested that Sp1/3 transcription factors trigger Mina expression through additive activity targeted to a cluster of four Sp1/3 binding sites forming the P1 promoter. These results set the stage for comprehensive analysis of Mina gene regulation from the context of tissue specificity, the impact of inherited genetic variation and the nature of upstream signaling pathways.
Related JoVE Video
Pre-B cell leukemia homeobox 1 is associated with lupus susceptibility in mice and humans.
J. Immunol.
PUBLISHED: 12-16-2011
Show Abstract
Hide Abstract
Sle1a.1 is part of the Sle1 susceptibility locus, which has the strongest association with lupus nephritis in the NZM2410 mouse model. In this study, we show that Sle1a.1 results in the production of activated and autoreactive CD4(+) T cells. Additionally, Sle1a.1 expression reduces the peripheral regulatory T cell pool, as well as induces a defective response of CD4(+) T cells to the retinoic acid expansion of TGF-?-induced regulatory T cells. At the molecular level, Sle1a.1 corresponds to an increased expression of a novel splice isoform of Pbx1, Pbx1-d. Pbx1-d overexpression is sufficient to induce an activated/inflammatory phenotype in Jurkat T cells and to decrease their apoptotic response to retinoic acid. PBX1-d is expressed more frequently in the CD4(+) T cells from lupus patients than from healthy controls, and its presence correlates with an increased central memory T cell population. These findings indicate that Pbx1 is a novel lupus susceptibility gene that regulates T cell activation and tolerance.
Related JoVE Video
Cyclin-dependent kinase inhibitor Cdkn2c regulates B cell homeostasis and function in the NZM2410-derived murine lupus susceptibility locus Sle2c1.
J. Immunol.
PUBLISHED: 05-04-2011
Show Abstract
Hide Abstract
Sle2c1 is an NZM2410- and NZB-derived lupus susceptibility locus that induces an expansion of the B1a cell compartment. B1a cells have a repertoire enriched for autoreactivity, and an expansion of this B cell subset occurs in several mouse models of lupus. A combination of genetic mapping and candidate gene analysis presents Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(INK4c) (p18), as the top candidate gene for inducing the Slec2c1-associated expansion of B1a cells. A novel single nucleotide polymorphism in the NZB allele of the Cdkn2c promoter is associated with a significantly reduced Cdkn2c expression in the splenic B cells and peritoneal cavity B1a cells from Sle2c1-carrying mice, which leads to a defective G1 cell cycle arrest in splenic B cells and increased proliferation of peritoneal cavity B1a cells. As the cell cycle is differentially regulated in B1a and B2 cells, these results suggest that Cdkn2c plays a critical role in B1a cell self-renewal and that its impaired expression leads to an accumulation of these cells with high autoreactive potential.
Related JoVE Video
FoxM1 regulates re-annealing of endothelial adherens junctions through transcriptional control of beta-catenin expression.
J. Exp. Med.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
Repair of the injured vascular intima requires a series of coordinated events that mediate both endothelial regeneration and reannealing of adherens junctions (AJs) to form a restrictive endothelial barrier. The forkhead transcription factor FoxM1 is essential for endothelial proliferation after vascular injury. However, little is known about mechanisms by which FoxM1 regulates endothelial barrier reannealing. Here, using a mouse model with endothelial cell (EC)-restricted disruption of FoxM1 (FoxM1 CKO) and primary cultures of ECs with small interfering RNA (siRNA)-mediated knockdown of FoxM1, we demonstrate a novel requisite role of FoxM1 in mediating endothelial AJ barrier repair through the transcriptional control of beta-catenin. In the FoxM1 CKO lung vasculature, we observed persistent microvessel leakage characterized by impaired reannealing of endothelial AJs after endothelial injury. We also showed that FoxM1 directly regulated beta-catenin transcription and that reexpression of beta-catenin rescued the defective AJ barrier-reannealing phenotype of FoxM1-deficient ECs. Knockdown of beta-catenin mimicked the phenotype of defective barrier recovery seen in FoxM1-deficient ECs. These data demonstrate that FoxM1 is required for reannealing of endothelial AJs in order to form a restrictive endothelial barrier through transcriptional control of beta-catenin expression. Therefore, means of activating FoxM1-mediated endothelial repair represent a new therapeutic strategy for the treatment of inflammatory vascular diseases associated with persistent vascular barrier leakiness such as acute lung injury.
Related JoVE Video
Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration.
J. Clin. Invest.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Pulmonary hypertension (PH) is an unremitting disease defined by a progressive increase in pulmonary vascular resistance leading to right-sided heart failure. Using mice with genetic deletions of caveolin 1 (Cav1) and eNOS (Nos3), we demonstrate here that chronic eNOS activation secondary to loss of caveolin-1 can lead to PH. Consistent with a role for eNOS in the pathogenesis of PH, the pulmonary vascular remodeling and PH phenotype of Cav1-/- mice were absent in Cav1-/-Nos3-/- mice. Further, treatment of Cav1-/- mice with either MnTMPyP (a superoxide scavenger) or l-NAME (a NOS inhibitor) reversed their pulmonary vascular pathology and PH phenotype. Activation of eNOS in Cav1-/- lungs led to the impairment of PKG activity through tyrosine nitration. Moreover, the PH phenotype in Cav1-/- lungs could be rescued by overexpression of PKG-1. The clinical relevance of the data was indicated by the observation that lung tissue from patients with idiopathic pulmonary arterial hypertension demonstrated increased eNOS activation and PKG nitration and reduced caveolin-1 expression. Together, these data show that loss of caveolin-1 leads to hyperactive eNOS and subsequent tyrosine nitration-dependent impairment of PKG activity, which results in PH. Thus, targeting of PKG nitration represents a potential novel therapeutic strategy for the treatment of PH.
Related JoVE Video
Cyclin-dependent kinase inhibitor Cdkn2c deficiency promotes B1a cell expansion and autoimmunity in a mouse model of lupus.
J. Immunol.
Show Abstract
Hide Abstract
The lupus-prone NZM2410 mice present an expanded B1a cell population that we have mapped to the Sle2c1 lupus susceptibility locus. The expression of Cdkn2c, a gene encoding for cyclin-dependent kinase inhibitor p18(Ink4c) and located within Sle2c1, is significantly lower in B6.Sle2c1 B cells than in B6 B cells. To test the hypothesis that the B1a cell expansion in B6.Sle2c1 mice was due to a defective p18 expression, we analyzed the B1a cell phenotypes of p18-deficient C57BL/6 mice. We found a dose-dependent negative correlation between the number of B1a cells and p18 expression in B cells, with p18-deficient mice showing an early expansion of the peritoneal B1a cell pool. p18 deficiency enhanced the homeostatic expansion of B1a cells but not of splenic conventional B cells, and the elevated number of B6.Sle2c1 B1a cells was normalized by cyclin D2 deficiency. These data demonstrated that p18 is a key regulator of the size of the B1a cell pool. B6.p18(-/-) mice produced significant amounts of anti-DNA IgM and IgG, indicating that p18 deficiency contributes to humoral autoimmunity. Finally, we have shown that Sle2c1 increases lpr-associated lymphadenopathy and T cell-mediated pathology. B6.p18(-/-).lpr mice showed a greater lymphadenopathy than B6.Sle2c1.lpr mice, but their renal pathology was intermediate between that of B6.lpr and B6.Sle2c1.lpr mice. This indicated that p18-deficiency synergizes, at least partially, with lpr-mediated pathology. These results show that Cdkn2c contributes to lupus susceptibility by regulating the size of the B1a cell compartment and hence their contribution to autoimmunity.
Related JoVE Video
Genetic variation at a Yin-Yang 1 response site regulates the transcription of cyclin-dependent kinase inhibitor p18INK4C transcript in lupus-prone mice.
J. Immunol.
Show Abstract
Hide Abstract
We have previously shown that a novel -74 C-to-T mutation in the promoter of the cyclin-dependent kinase inhibitor p18(Ink4c) (p18) gene was associated with a reduced p18 expression in B cells from mice carrying the Sle2c1 lupus susceptibility locus. To determine the function of the -74 C/T single nucleotide polymorphism, we have characterized the proximal promoter of the mouse p18 gene. Functional analysis of the 5 flanking region by sequential deletions revealed crucial elements between -300 and +1, confirming the in silico prediction that the -74 T allele created a novel Yin-Yang 1 (YY-1) binding site adjacent to an existing one common to both alleles. Moreover, we found that YY-1, E2F1, and Sp-1 can synergistically enhance the activity of the p18 promoter. Mutational inactivation revealed that YY-1 binding regulates the p18 activity in an allele-dependent fashion. EMSAs with splenic B cell extracts directly demonstrated that YY-1 binds to the p18 promoter with differences between the C and the T alleles. We also determined in vivo by chromatin immunoprecipitation that the T allele resulted in increased YY-1 and decreased Nrf-2 binding to the p18 promoter as compared with the C allele in B cells. Thus, YY-1 is a direct regulator of p18 gene expression in an allele-dependent fashion that is consistent with the lupus-associated T allele, inducing a lower p18 transcriptional activity by increasing YY-1 binding. These results establish the p18 -74 C/T mutation as the leading causal variant for the B1a cell expansion that characterizes the NZB and NZM2410 lupus-prone strains.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.