JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
KML001, a telomere-targeting drug, sensitizes glioblastoma cells to temozolomide chemotherapy and radiotherapy through DNA damage and apoptosis.
Biomed Res Int
PUBLISHED: 06-26-2014
Show Abstract
Hide Abstract
Standard treatment for glioblastoma comprises surgical resection, chemotherapy with temozolomide, and radiotherapy. Nevertheless, majority of glioblastoma patients have recurrence from resistance to the cytotoxic conventional therapies. We examined combinational effects of KML001, an arsenic compound targeting telomeres of chromosomes with temozolomide or irradiation, in glioblastoma cell lines and xenograft models, to overcome the therapeutic limitation of chemoradiation therapy for glioblastoma. Although KML001 alone showed little effects on in vitro survival of glioblastoma cells, cell death by in vitro temozolomide treatment or irradiation was synergistically potentiated by combination with KML001. Since phosphorylated ?-H2AX, cleaved casepase-3, and cleaved PARP were dramatically increased by KML001, the synergistic effects would be mediated by increased DNA damage and subsequent tumor cell apoptosis. Combinatorial effects of KML001 were observed not only in chemo- and radiosensitive glioblastoma cell line, U87MG, but also in the resistant cell line, U251MG. In the U87MG glioblastoma xenograft models, KML001 did not have systemic toxicity but showed synergistic therapeutic effects in combination with temozolomide or irradiation to reduce tumor volumes significantly. These data indicated that KML001 could be a candidate sensitizer to potentiate therapeutic effects of conventional cytotoxic treatment for glioblastoma.
Related JoVE Video
TopBP1 and Claspin contribute to the radioresistance of lung cancer brain metastases.
Mol. Cancer
PUBLISHED: 05-11-2014
Show Abstract
Hide Abstract
Radiation therapy is one of the most effective therapeutic tools for brain metastasis. However, it is inevitable that some cancer cells become resistant to radiation. This study is focused on the identification of genes associated with radioresistance in metastatic brain tumor from lung cancer and the functional examination of the selected genes with regards to altered sensitivity of cancer cells to radiation.
Related JoVE Video
Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing.
Genomics
PUBLISHED: 02-25-2014
Show Abstract
Hide Abstract
Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment.
Related JoVE Video
Genetically-engineered Human Neural Stem Cells with Rabbit Carboxyl Esterase Can Target CNS Lymphoma.
Anticancer Res.
PUBLISHED: 12-11-2013
Show Abstract
Hide Abstract
Despite advances in its treatment, CNS lymphoma remains a devastating disease. Taking advantage of the tumour-tropic properties of neural stem cells (NSCs) is a novel therapeutic strategy. To apply this strategy to the treatment of CNS lymphoma, we investigated the role of NSCs expressing carboxyl esterase (HB1.F3.CE), which activates irinotecan.
Related JoVE Video
Chemical inhibition of prometastatic lysyl-tRNA synthetase-laminin receptor interaction.
Nat. Chem. Biol.
PUBLISHED: 06-18-2013
Show Abstract
Hide Abstract
Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.
Related JoVE Video
Radiosensitization of brain metastasis by targeting c-MET.
Lab. Invest.
PUBLISHED: 02-04-2013
Show Abstract
Hide Abstract
Radiotherapy is the most widely used therapeutic modality in brain metastasis; however, it only provides palliation due to inevitable tumor recurrence. Resistance of tumor cells to ionizing radiation is a major cause of treatment failure. A critical unmet need in oncology is to develop rationale driven approaches that can enhance the efficacy of radiotherapy against metastatic tumor. Utilizing in vivo orthotopic primary tumor and brain metastasis models that recapitulate clinical situation of the patients with metastatic breast cancer, we investigated a molecular mechanism through which metastatic tumor cells acquire resistance to radiation. Recent studies have demonstrated that the hepatocyte growth factor (HGF)-c-Met pathway is essential for the pathologic development and progression of many human cancers such as proliferation, invasion and resistance to anticancer therapies. In this study, c-Met signaling activity as well as total c-Met expression was significantly upregulated in both breast cancer cell lines irradiated in vitro and ex vivo radio-resistant cells derived from breast cancer brain metastatic xenografts. To interrogate the role of c-Met signaling in radioresistance of brain metastasis, we evaluated the effects on tumor cell viability, clonogenicity, sensitivity to radiation, and in vitro/in vivo tumor growth after targeting c-Met by small-hairpin RNA (shRNA) or small-molecule kinase inhibitor (PF-2341066). Although c-Met silencing or radiation alone demonstrated a modest decrease in clonogenic growth of parental breast cancers and brain metastatic derivatives, combination of two modalities showed synergistic antitumor effects resulting in significant prolongation of overall survival in tumor-bearing mice. Taken together, optimizing c-Met targeting in combination with radiation is critical to enhance the effectiveness of radiotherapy in the treatments of brain metastasis.
Related JoVE Video
Patient-specific orthotopic glioblastoma xenograft models recapitulate the histopathology and biology of human glioblastomas in situ.
Cell Rep
PUBLISHED: 01-17-2013
Show Abstract
Hide Abstract
Frequent discrepancies between preclinical and clinical results of anticancer agents demand a reliable translational platform that can precisely recapitulate the biology of human cancers. Another critical unmet need is the ability to predict therapeutic responses for individual patients. Toward this goal, we have established a library of orthotopic glioblastoma (GBM) xenograft models using surgical samples of GBM patients. These patient-specific GBM xenograft tumors recapitulate histopathological properties and maintain genomic characteristics of parental GBMs in situ. Furthermore, in vivo irradiation, chemotherapy, and targeted therapy of these xenograft tumors mimic the treatment response of parental GBMs. We also found that establishment of orthotopic xenograft models portends poor prognosis of GBM patients and identified the gene signatures and pathways signatures associated with the clinical aggressiveness of GBMs. Together, the patient-specific orthotopic GBM xenograft library represent the preclinically and clinically valuable "patient tumors phenocopy" that represents molecular and functional heterogeneity of GBMs.
Related JoVE Video
In vivo specific delivery of c-Met siRNA to glioblastoma using cationic solid lipid nanoparticles.
Bioconjug. Chem.
PUBLISHED: 11-28-2011
Show Abstract
Hide Abstract
RNA interference is a powerful strategy that inhibits gene expression through specific mRNA degradation. In vivo, however, the application of small interfering RNAs (siRNAs) is severely limited by their instability and their poor delivery into target cells and tissues. This is especially true with glioblastomas (GBMs), the most frequent and malignant form of brain tumor, that has limited treatment options due to the largely impenetrable blood-brain barrier. Here, cationic solid lipid nanoparticles (SLN), reconstituted from natural components of protein-free low-density lipoprotein, was conjugated to PEGylated c-Met siRNA. The c-Met siRNA-PEG/SLN complex efficiently down-regulated c-Met expression level, as well as decreased cell proliferation in U-87MG in vitro. In orthotopic U-87MG xenograft tumor model, intravenous administration of the complex significantly inhibited c-Met expression at the tumor tissue and suppressed tumor growth without showing any systemic toxicity in mice. Use of Cy5.5 conjugated SLN revealed enhanced accumulation of the siRNA-PEG/SLN complexes specifically in the brain tumor. Our data demonstrates the feasibility of using siRNA-PEG/SLN complexes as a potential carrier of therapeutic siRNAs for the systemic treatment of GBM in the clinic.
Related JoVE Video
Wnt activation is implicated in glioblastoma radioresistance.
Lab. Invest.
PUBLISHED: 11-14-2011
Show Abstract
Hide Abstract
Glioblastoma (GBM) patients have dismal median survival even with the most rigorous treatments currently available. Radiotherapy is the most effective non-surgical therapy for GBM patients; however, patients succumb due to tumor recurrence within a year. To develop a curative therapeutic approach, we need to better understand the underlying molecular mechanism of radiation resistance in GBM. Towards this goal, we developed an in vivo orthotopic GBM model system that mimics the radiation response of human GBM, using both established-GBM cell line and patient-derived freshly dissociated GBM specimen. In-vivo ionizing radiation (IR) treatment prolonged the survival of mice with intracranical tumor derived from U373MG, but failed to prevent tumor recurrence. U373MG and GBM578 cells isolated after in-vivo IR (U373-IR and 578-IR) were more clonogenic and enriched with stem cell-like characteristics, compared with mock-treated control tumor cells. Transcriptomic analyses and quantitative real-time reverse-transcription PCR analyses using these matched GBM cells before and after radiation treatment revealed that Wnt pathways were preferentially activated in post-IR GBM cells. U373-IR cells and 578-IR were enriched with cells positive for both active ?-catenin (ABC) and Sox2 population, and this subpopulation was further increased after additional in-vitro radiation treatment, suggesting that radiation resistance of GBM is mediated due, in part, to the activation of stem cell-associated pathways including Wnt. Finally, pharmacological and siRNA inhibition of Wnt pathway significantly decreased the survival and clonogenicity of GBM cells and reduced their ABC(+)/Sox2(+) population. Together, these data suggest that Wnt activation is a molecular mechanism to confer GBM radioresistance and an important therapeutic target.
Related JoVE Video
Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer.
Cancer Lett.
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Neural stem cells (NSCs) led to the development of a novel strategy for delivering therapeutic genes to tumors. NSCs expressing rabbit carboxyl esterase (F3.CE), which activates CPT-11, significantly inhibited the growth of MDA-MB-435 cells in the presence of CPT-11. F3.CE cells migrated selectively into the brain metastases located in the opposite hemisphere. The treatment also significantly decreased tumor volume in immune-deficient mice bearing MDA-MB-435 tumors when F3.CE cells were transplanted into the contralateral hemisphere. The survival rate was significantly prolonged with the treatment with F3.CE and CPT-11. This strategy may be considered as an effective treatment regimen for brain metastases.
Related JoVE Video
Prognostic implications of the DNA damage response pathway in glioblastoma.
Oncol. Rep.
PUBLISHED: 02-02-2011
Show Abstract
Hide Abstract
Genomic instability and resistance to genotoxic therapies for glioblastoma (GBM) suggest aberrant DNA damage response (DDR), since DDR maintains the genomic integrity against genotoxic insults including anti-tumor therapies. To elucidate the biological and clinical meaning of DDR in GBM, we retrospectively investigated the immunohistochemical expression of DDR proteins (ATM, Chk1, Chk2, TopBP1, Rad17, p53, Nbs1, MDC1, ?H2AX and RPA1) in 69 GBM surgical samples and their relation with GBM patient survival. Remarkably, higher expression of ATM revealed significantly longer overall survival (OS) and progression-free survival (PFS) (p<0.05). Upon multivariate analysis, expression level of ATM was an independent factor for longer OS (p=0.020) and longer PFS (p=0.019). Since ATM induces cell cycle arrest or apoptosis through cell cycle regulators in response to genotoxic insults, these results indicate that aberrant DDR signaling through ATM in GBM may be associated with resistance to genotoxic anti-tumor therapeutics. Conclusively, we emphasize that the identification of DDR machinery, which can be involved in unstable genomic status or genotoxic therapies in GBM, is very important to predict patient outcome.
Related JoVE Video
Inhibition of checkpoint kinase 1 sensitizes lung cancer brain metastases to radiotherapy.
Biochem. Biophys. Res. Commun.
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
The most important therapeutic tool in brain metastasis is radiation therapy. However, resistance to radiation is a possible cause of recurrence or treatment failure. Recently, signal pathways about DNA damage checkpoints after irradiation have been noticed. We investigated the radiosensitivity can be enhanced with treatment of Chk1 inhibitor, AZD7762 in lung cancer cell lines and xenograft models of lung cancer brain metastasis. Clonogenic survival assays showed enhancement of radiosensitivity with AZD7762 after irradiation of various doses. AZD7762 increased ATR/ATM-mediated Chk1 phosphorylation and stabilized Cdc25A, suppressed cyclin A expression in lung cancer cell lines. In xenograft models of lung cancer (PC14PE6) brain metastasis, AZD7762 significantly prolonged the median survival time in response to radiation. Depletion of Chk1 using shRNA also showed an enhancement of sensitivity to radiation in PC14PE6 cells. The results of this study support that Chk1 can be a good target for enhancement of radiosensitivity.
Related JoVE Video
Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage.
PLoS ONE
Show Abstract
Hide Abstract
Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.