JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Performance comparison of three BRAF V600E detection methods in malignant melanoma and colorectal cancer specimens.
Tumour Biol.
PUBLISHED: 07-02-2014
Show Abstract
Hide Abstract
Personalized cancer care requires reliable biomarkers. While the BRAF V600E mutation is implemented in the clinic, no method for its detection has so far been established as reference. We aimed to perform a comprehensive comparison of three methods currently being used for V600E detection in clinical samples. We analysed genomic DNA from 127 malignant melanomas (77 patients) and 389 tumours from 141 colorectal cancer patients (383 liver metastases and 6 primary tumours) by Sanger sequencing and a single probe-based high-resolution melting assay (LightMix). Formalin-fixed paraffin-embedded (FFPE) tissue from a subset of these lesions (n?=?77 and 304, respectively) was analysed by immunohistochemistry (IHC) using the V600E-specific antibody VE1. In a dilution series of V600E-mutated DNA in wild-type DNA, the detection limit for the LightMix assay was 1:1000 mutated alleles while it was 1:10 for Sanger sequencing. In line with this, we detected 15 additional mutated melanoma samples and two additional mutated metastatic colorectal cancer samples by the LightMix assay compared to Sanger sequencing. For the melanoma samples, we observed high concordance between DNA-based methods and analysis by IHC. However, in colorectal samples, IHC performed poorly with 12 samples being scored as V600E positive exclusively by IHC and nine samples being scored as V600E negative exclusively by IHC. In conclusion, the VE1 antibody is not recommendable for clinical tests of colorectal cancer samples. For melanoma samples, IHC may be useful as a screening tool guiding further analytical approaches.
Related JoVE Video
Carboxyl-ester lipase maturity-onset diabetes of the young is associated with development of pancreatic cysts and upregulated MAPK signaling in secretin-stimulated duodenal fluid.
Diabetes
PUBLISHED: 09-23-2013
Show Abstract
Hide Abstract
Carboxyl-ester lipase (CEL) maturity-onset diabetes of the young (MODY) is a monogenic form of diabetes and pancreatic exocrine dysfunction due to mutations in the CEL gene encoding CEL. The pathogenic mechanism for diabetes development is unknown. Since CEL is expressed mainly in pancreatic acinar cells, we asked whether we could find structural pancreatic changes in CEL-MODY subjects during the course of diabetes development. Furthermore, we hypothesized that the diseased pancreas releases proteins that are detectable in pancreatic fluid and potentially reflect activation or inactivation of disease-specific pathways. We therefore investigated nondiabetic and diabetic CEL-mutation carriers by pancreatic imaging studies and secretin-stimulated duodenal juice sampling. The secretin-stimulated duodenal juice was studied using cytokine assays, mass spectrometry (MS) proteomics, and multiplexed MS-based measurement of kinase activities. We identified multiple pancreatic cysts in all eight diabetic mutation carriers but not in any of the four nondiabetic mutation carriers or the six healthy controls. Furthermore, we identified upregulated mitogen-activated protein kinase (MAPK) target proteins and MAPK-driven cytokines and increased MAPK activity in the secretin-stimulated duodenal juice. These findings show that subjects with CEL-MODY develop multiple pancreatic cysts by the time they develop diabetes and that upregulated MAPK signaling in the pancreatic secretome may reflect the pathophysiological development of pancreatic cysts and diabetes.
Related JoVE Video
Quantitative measurement of ultrasound attenuation and Hepato-Renal Index in Non-Alcoholic Fatty Liver Disease.
Med Ultrason
PUBLISHED: 03-15-2013
Show Abstract
Hide Abstract
The aim of this study was to non-invasively explore new methods of ultrasound attenuation measurements in livers of patients with Non-Alcoholic-Fatty-Liver-Disease (NAFLD) and to measure the liver tissue elasticity.
Related JoVE Video
Automated tracking of nanoparticle-labeled melanoma cells improves the predictive power of a brain metastasis model.
Cancer Res.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Biologic and therapeutic advances in melanoma brain metastasis are hampered by the paucity of reproducible and predictive animal models. In this work, we developed a robust model of brain metastasis that empowers quantitative tracking of cellular dissemination and tumor progression. Human melanoma cells labeled with superparamagnetic iron oxide nanoparticles (SPION) were injected into the left cardiac ventricle of mice and visualized by MRI. We showed that SPION exposure did not affect viability, growth, or migration in multiple cell lines across several in vitro assays. Moreover, labeling did not impose changes in cell-cycle distribution or apoptosis. In vivo, several SPION-positive cell lines displayed similar cerebral imaging and histologic features. MRI-based automated quantification of labeled cells in the brain showed a sigmoid association between metastasis frequency and doses of inoculated cells. Validation of this fully automated quantification showed a strong correlation with manual signal registration (r(2) = 0.921, P < 0.001) and incidence of brain metastases (r(2) = 0.708, P < 0.001). Metastasis formation resembled the pattern seen in humans and was unaffected by SPION labeling (histology; tumor count, P = 0.686; survival, P = 0.547). In summary, we present here a highly reproducible animal model that can improve the predictive value of mechanistic and therapeutic studies of melanoma brain metastasis.
Related JoVE Video
Vascular proliferation is associated with survival in pancreatic ductal adenocarcinoma.
APMIS
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
In pancreatic ductal adenocarcinoma (PDAC), the benefit of current chemotherapy and radiation therapy is very limited, even in radically resected patients. New treatment strategies, for example based on the inhibition of the tumours blood supply, need to be explored. We have investigated angiogenesis markers and their associations with relapse and survival in 52 histologically confirmed cases of PDAC. Angiogenesis in the primary tumour was evaluated by microvessel density (MVD), vascular proliferation index (VPI) and the presence of glomeruloid microvascular proliferations (GMP). These features were analysed in the context of clinicopathological variables, KRAS mutation status, relapse location and survival. MVD (median 134 microvessels/mm(2) , range 88-177) and VPI (median 3.2%, range 1.6-4.9) were associated with larger tumour size and lymph node metastasis. MVD was also related to the occurrence of liver metastases. Both variables were associated with survival in univariate and multivariate analyses. GMPs were present in 32 (62%) of the cases. Patients who exhibited MVD and VPI values above median, and GMP positivity, had a median survival of only 4.2 months after surgery. In conclusion, the angiogenesis markers MVD and VPI have a significant impact on survival. By also including GMP, a subgroup of PDAC patients with particularly short survival could be identified.
Related JoVE Video
In vivo animal models for studying brain metastasis: value and limitations.
Clin. Exp. Metastasis
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Brain metastasis is associated with a particular poor prognosis. Novel insight into the brain metastatic process is therefore warranted. Several preclinical models of brain tumor metastasis have been developed during the last 60 years, and they have in part revealed some of the mechanisms underlying the metastatic process. This review discusses mechanisms of brain metastasis with a key focus of the development of animal model systems. This includes the use of rodent, syngeneic brain metastasis models (spontaneous, chemically induced and genetically engineered models) and human xenotransplantation models (ectopic inoculation and orthotopic models). Current information indicates that none of these fully reflect tumor development seen in patients with metastatic disease. The various model systems used, however, have provided important insight into specific mechanisms of the metastatic process related to the brain. By combining the knowledge obtained from animal models, new important information on the molecular mechanisms behind metastasis will be obtained, leading to the future development of new therapeutic strategies.
Related JoVE Video
HNF1B mutation in a Turkish child with renal and exocrine pancreas insufficiency, diabetes and liver disease.
Pediatr Diabetes
PUBLISHED: 07-19-2011
Show Abstract
Hide Abstract
A small-for-gestational age female infant presented with bilateral hypoplastic kidneys at 3 months of age. She developed chronic renal insufficiency. Insulin-requiring, non-autoimmune diabetes was documented at 6 years of age. She had mild steatosis and iron deposition in the liver, and mal-development of pancreas. Genetic studies revealed a heterozygous mutation (S148L) of the HNF1B gene, compatible with an HNF1B-MODY phenotype (MODY5). This is the first case of HNF1B-MODY reported from Turkey and represents a particularly severe phenotype of the disease.
Related JoVE Video
Expression of the progenitor marker NG2/CSPG4 predicts poor survival and resistance to ionising radiation in glioblastoma.
Acta Neuropathol.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Glioblastoma (GBM) is a highly aggressive brain tumour, where patients respond poorly to radiotherapy and exhibit dismal survival outcomes. The mechanisms of radioresistance are not completely understood. However, cancer cells with an immature stem-like phenotype are hypothesised to play a role in radioresistance. Since the progenitor marker neuron-glial-2 (NG2) has been shown to regulate several aspects of GBM progression in experimental systems, we hypothesised that its expression would influence the survival of GBM patients. Quantification of NG2 expression in 74 GBM biopsies from newly diagnosed and untreated patients revealed that 50% express high NG2 levels on tumour cells and associated vessels, being associated with significantly shorter survival. This effect was independent of age at diagnosis, treatment received and hypermethylation of the O(6)-methylguanine methyltransferase (MGMT) DNA repair gene promoter. NG2 was frequently co-expressed with nestin and vimentin but rarely with CD133 and the NG2 positive tumour cells harboured genetic aberrations typical for GBM. 2D proteomics of 11 randomly selected biopsies revealed upregulation of an antioxidant, peroxiredoxin-1 (PRDX-1), in the shortest surviving patients. Expression of PRDX-1 was associated with significantly reduced products of oxidative stress. Furthermore, NG2 expressing GBM cells showed resistance to ionising radiation (IR), rapidly recognised DNA damage and effectuated cell cycle checkpoint signalling. PRDX-1 knockdown transiently slowed tumour growth rates and sensitised them to IR in vivo. Our data establish NG2 as an important prognostic factor for GBM patient survival, by mediating resistance to radiotherapy through induction of ROS scavenging enzymes and preferential DNA damage signalling.
Related JoVE Video
Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers.
J. Histochem. Cytochem.
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patients lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC.
Related JoVE Video
Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma.
PLoS ONE
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy.
Related JoVE Video
Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation.
Cancer Res.
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
Human mesenchymal stem cells (hMSC) aid in tissue maintenance and repair by differentiating into specialized cell types. Due to this ability, hMSC are currently being evaluated for cell-based therapies of tissue injury and degenerative diseases. However, extensive expansion ex vivo is a prerequisite to obtain the cell numbers required for human cell-based therapy protocols. Recent studies indicate that hMSC may contribute to cancer development and progression either by acting as cancer-initiating cells or through interactions with stromal elements. If spontaneous transformation ex vivo occurs, this may jeopardize the use of hMSC as therapeutic tools. Whereas murine MSC readily undergo spontaneous transformation, there are conflicting reports about spontaneous transformation of hMSC. We have addressed this controversy in a two-center study by growing bone marrow-derived hMSC in long-term cultures (5-106 weeks). We report for the first time spontaneous malignant transformation to occur in 45.8% (11 of 24) of these cultures. In comparison with hMSC, the transformed mesenchymal cells (TMC) showed a significantly increased proliferation rate and altered morphology and phenotype. In contrast to hMSC, TMC grew well in soft agar assays and were unable to undergo complete differentiation. Importantly, TMC were highly tumorigenic, causing multiple fast-growing lung deposits when injected into immunodeficient mice. We conclude that spontaneous malignant transformation may represent a biohazard in long-term ex vivo expansion of hMSC. On the other hand, this spontaneous transformation process may represent a unique model for studying molecular pathways initiating malignant transformation of hMSC.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.