JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Probiotic Escherichia coli Nissle 1917 and commensal E. coli K12 differentially affect the inflammasome in intestinal epithelial cells.
Digestion
PUBLISHED: 02-05-2014
Show Abstract
Hide Abstract
The probiotic bacterial strain Escherichia coli Nissle 1917 (EcN) is used for the treatment of ulcerative colitis (UC), diarrhea and constipation. Its beneficial effects in the treatment of UC have been demonstrated in several controlled clinical studies; however, the mechanism of action on the cellular level is still not completely clear. The intracellular pattern recognition receptor NLRP3 is expressed in intestinal epithelial cells (IEC), activates caspase-1 within the inflammasome complex and has been implicated to play a role in the etiology of inflammatory bowel diseases.
Related JoVE Video
Sagittal changes in lower incisors by the use of lingual arch.
Dental Press J Orthod
PUBLISHED: 10-08-2013
Show Abstract
Hide Abstract
The objective of this study was to evaluate a sagittal variation on the lower incisors with the use of the lingual arch on the transition from mixed to permanent dentition.
Related JoVE Video
Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone.
PLoS ONE
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
The renal handling of salt and protons and bicarbonate are intricately linked through shared transport mechanisms for sodium, chloride, protons, and bicarbonate. In the collecting duct, the regulated fine-tuning of salt and acid-base homeostasis is achieved by a series of transport proteins located in different cell types, intercalated and principal cells. Intercalated cells are considered to be of less importance for salt handling but recent evidence has suggested that the anion exchanger pendrin may participate in salt reabsorption and blood pressure regulation. Here, we examined the regulated expression of two functionally related but differentially expressed anion exchangers, AE1 and pendrin, by dietary electrolyte intake and aldosterone. Cortical expression of pendrin was regulated on mRNA and protein level. The combination of NaHCO? and DOCA enhanced pendrin mRNA and protein levels, whereas DOCA or NaHCO? alone had no effect. NaCl or KHCO? increased pendrin mRNA, KCl decreased its mRNA abundance. On protein level, NH?Cl, NaCl, and KCl reduced pendrin expression, the other treatments were without effect. In contrast, AE1 mRNA or protein expression in kidney cortex was regulated by none of these treatments. In kidney medulla, NaHCO?/DOCA or NaHCO? alone enhanced AE1 mRNA levels. AE1 protein abundance was increased by NH?Cl, NaHCO?/DOCA, and NaCl. Immunolocalization showed that during NH?Cl treatment the relative number of AE1 positive cells was increased and pendrin expressing cells reduced. Thus, pendrin and AE1 are differentially regulated with distinct mechanisms that separately affect mRNA and protein levels. Pendrin is regulated by acidosis and chloride intake, whereas AE1 is enhanced by acidosis, NaCl, and the combination of DOCA and NaHCO?.
Related JoVE Video
BCL-2 modifying factor (BMF) is a central regulator of anoikis in human intestinal epithelial cells.
J. Biol. Chem.
PUBLISHED: 06-14-2011
Show Abstract
Hide Abstract
BCL-2 modifying factor (BMF) is a sentinel considered to register damage at the cytoskeleton and to convey a death signal to B-cell lymphoma 2. B-cell lymphoma 2 is neutralized by BMF and thereby facilitates cytochrome C release from mitochondria. We investigated the role of BMF for intestinal epithelial cell (IEC) homeostasis. Acute colitis was induced in Bmf-deficient mice (Bmf(-/-)) with dextran sulfate sodium. Colonic crypt length in Bmf(-/-) mice was significantly increased as compared with WT mice. Dextran sulfate sodium induced less signs of colitis in Bmf(-/-) mice, as weight loss was reduced compared with the WT. Primary human IEC exhibited increased BMF in the extrusion zone. Quantitative PCR showed a significant up-regulation of BMF expression after initiation of anoikis in primary human IEC. BMF was found on mitochondria during anoikis, as demonstrated by Western blot analysis. RNAi mediated knockdown of BMF reduced the number of apoptotic cells and led to reduced caspase 3 activity. A significant increase in phospho-AKT was determined after RNAi treatment. BMF knockdown supports survival of IEC. BMF is induced in human IEC by the loss of cell attachment and is likely to play an important role in the regulation of IEC survival.
Related JoVE Video
Protein tyrosine phosphatase nonreceptor type 2 regulates autophagosome formation in human intestinal cells.
Inflamm. Bowel Dis.
PUBLISHED: 04-19-2011
Show Abstract
Hide Abstract
Autophagy is a process of central importance for maintaining cell homeostasis, survival, and the regulation of inflammation. Recent studies associated variants within the gene loci, encoding protein tyrosine phosphatase nonreceptor type 2 (PTPN2), and autophagy genes, such as autophagy-related 16-like 1 (ATG16L1), with chronic inflammatory disorders, such as Crohns disease (CD). We show that PTPN2 regulates autophagy in human intestinal epithelial cells (IEC) and primary colonic lamina propria fibroblasts (CLPF).
Related JoVE Video
Localization of members of MCT monocarboxylate transporter family Slc16 in the kidney and regulation during metabolic acidosis.
Am. J. Physiol. Renal Physiol.
PUBLISHED: 04-14-2010
Show Abstract
Hide Abstract
The monocarboxylate transporter family (MCT) comprises 14 members with distinct transport properties and tissue distribution. The kidney expresses several members of the MCT family, but only little is known about their exact distribution and function. Here, we investigated selected members of the MCT family in the mouse kidney. MCT1, MCT2, MCT7, and MCT8 localized to basolateral membranes of the epithelial cells lining the nephron. MCT1 and MCT8 were detected in proximal tubule cells whereas MCT7 and MCT2 were located in the thick ascending limb and the distal tubule. CD147, a beta-subunit of MCT1 and MCT4, showed partially overlapping expression with MCT1 and MCT2. However, CD147 was also found in intercalated cells. We also detected SMCT1 and SMCT2, two Na(+)-dependent monocarboxylate cotransporters, on the luminal membrane of type A intercalated cells. Moreover, mice were given an acid load for 2 and 7 days. Acidotic animals showed a marked but transient increase in urinary lactate excretion. During acidosis, a downregulation of MCT1, MCT8, and SMCT2 was observed at the mRNA level, whereas MCT7 and SMCT1 showed increased mRNA abundance. Only MCT7 showed lower protein abundance whereas all other transporters remained unchanged. In summary, we describe for the first time the localization of various MCT transporters in mammalian kidney and demonstrate that metabolic acidosis induces a transient increase in urinary lactate excretion paralleled by lower MCT7 protein expression.
Related JoVE Video
Microparticles and their impact on intestinal immunity.
Dig Dis
Show Abstract
Hide Abstract
Microparticles are small (<1 µm), nonbiological particles that are used in many areas of daily life. As food additive they are used as anticaking agents or food colorants. The most common food-derived ingested compounds are aluminium silicate and titanium dioxide (TiO(2)), the latter being a white pigment used in toothpaste or sugar toppings. The increasing abundance of microparticles in the Western diet raises the question of the potential risks associated with gastrointestinal diseases such as Crohns disease (CD). Accumulation of particles has been shown in cells of Peyers patches, but it is not clear whether this also has pathological effects. NLRP3 is a member of the intracellular pattern recognition receptor family and it is part of the inflammasome, a multiprotein complex containing caspase-1 which activates the proinflammatory cytokines interleukin (IL)-1? and IL-18. With regard to recent findings identifying small particles such as asbestos and monosodium urate as NLRP3 activators, TiO(2) may be another potential target for inflammasome studies. We found that macrophage-like cells readily take up TiO(2) after 6 h. Incubation of cells with TiO(2) resulted in the assembly of NLRP3 with caspase-1. This inflammasome assembly correlated with secretion of IL-1?. In intestinal epithelial cells, TiO(2) also was found to be ingested. The counting of particles localized intracellularly revealed a dose-dependent increase of TiO(2)-positive cells. This points to the fact that in humans with a leaky intestinal barrier (such as IBD patients), TiO(2) microparticles may be taken up by macrophages and intestinal epithelial cells, may activate the inflammasome and induce IL-1? and IL-18 secretion. This may aggravate inflammation in susceptible individuals.
Related JoVE Video
Intrarectal instillation of Clostridium difficile toxin A triggers colonic inflammation and tissue damage: development of a novel and efficient mouse model of Clostridium difficile toxin exposure.
Infect. Immun.
Show Abstract
Hide Abstract
Clostridium difficile, a major cause of hospital-acquired diarrhea, triggers disease through the release of two toxins, toxin A (TcdA) and toxin B (TcdB). These toxins disrupt the cytoskeleton of the intestinal epithelial cell, increasing intestinal permeability and triggering the release of inflammatory mediators resulting in intestinal injury and inflammation. The most prevalent animal model to study TcdA/TcdB-induced intestinal injury involves injecting toxin into the lumen of a surgically generated "ileal loop." This model is time-consuming and exhibits variability depending on the expertise of the surgeon. Furthermore, the target organ of C. difficile infection (CDI) in humans is the colon, not the ileum. In the current study, we describe a new model of CDI that involves intrarectal instillation of TcdA/TcdB into the mouse colon. The administration of TcdA/TcdB triggered colonic inflammation and neutrophil and macrophage infiltration as well as increased epithelial barrier permeability and intestinal epithelial cell death. The damage and inflammation triggered by TcdA/TcdB isolates from the VPI and 630 strains correlated with the concentration of TcdA and TcdB produced. TcdA/TcdB exposure increased the expression of a number of inflammatory mediators associated with human CDI, including interleukin-6 (IL-6), gamma interferon (IFN-?), and IL-1?. Finally, we were able to demonstrate that TcdA was much more potent at inducing colonic injury than was TcdB but TcdB could act synergistically with TcdA to exacerbate injury. Taken together, our data indicate that the intrarectal murine model provides a robust and efficient system to examine the effects of TcdA/TcdB on the induction of inflammation and colonic tissue damage in the context of human CDI.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.