JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Homing pigeons respond to time-compensated solar cues even in sight of the loft.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The sun has long been thought to guide bird navigation as the second step in a two-stage process, in which determining position using a map is followed by course setting using a compass, both over unfamiliar and familiar terrain. The animals endogenous clock time-compensates the solar compass for the suns apparent movement throughout the day, and this allows predictable deflections in orientation to test for the compass influence using clock-shift manipulations. To examine the influence of the solar compass during a highly familiar navigational task, 24 clock-shifted homing pigeons were precision-tracked from a release site close to and in sight of their final goal, the colony loft. The resulting trajectories displayed significant partial deflection from the loft direction as predicted by either fast or slow clock-shift treatments. The partial deflection was also found to be stable along the entire trajectory indicating regular updating of orientation via input from the solar compass throughout the final approach flight to the loft. Our results demonstrate that time-compensated solar cues are deeply embedded in the way birds orient during homing flight, are accessed throughout the journey and on a remarkably fine-grained scale, and may be combined effectively simultaneously with direct guidance from familiar landmarks, even when birds are flying towards a directly visible goal.
Related JoVE Video
A model-based prioritisation exercise for the European water framework directive.
Int J Environ Res Public Health
PUBLISHED: 01-24-2011
Show Abstract
Hide Abstract
A model-based prioritisation exercise has been carried out for the Water Framework Directive (WFD) implementation. The approach considers two aspects: the hazard of a certain chemical and its exposure levels, and focuses on aquatic ecosystems, but also takes into account hazards due to secondary poisoning, bioaccumulation through the food chain and potential human health effects. A list provided by EU Member States, Stakeholders and Non-Governmental Organizations comprising 2,034 substances was evaluated according to hazard and exposure criteria. Then 78 substances classified as "of high concern" where analysed and ranked in terms of risk ratio (Predicted Environmental Concentration/Predicted No-Effect Concentration). This exercise has been complemented by a monitoring-based prioritization exercise using data provided by Member States. The proposed approach constitutes the first step in setting the basis for an open modular screening tool that could be used for the next prioritization exercises foreseen by the WFD.
Related JoVE Video
Comparison of the Arylamine N-acetyltransferase from Mycobacterium marinum and Mycobacterium tuberculosis.
Protein J.
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
Arylamine N-acetyltansferase (NAT) from Mycobacterium tuberculosis (TBNAT) is a potential drug target for anti-tubercular therapy. Recombinant TBNAT is much less soluble and is produced in lower yields than the closely related NAT from Mycobacterium marinum (MMNAT). In order to explore MMNAT as a model for TBNAT in drug discovery, we compare the two mycobacterial NAT enzymes. Two site-directed mutants of MMNAT have been prepared and characterised: MMNAT71, Tyr --> Phe and MMNAT209, Met --> Thr, in which residues within 6 A of the active-site cysteine have been replaced with the corresponding residue from TBNAT. Two chimeric proteins have also been produced in which the third domain of MMNAT has been replaced by the third domain of TBNAT and vice versa. The activity profile of the chimeric proteins suggests a role for the third domain in the evolutionary divergence of NAT between these closely related mycobacterial species.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.