JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Obesity-linked homologues TfAP-2 and Twz establish meal frequency in Drosophila melanogaster.
PLoS Genet.
PUBLISHED: 09-04-2014
Show Abstract
Hide Abstract
In all animals managing the size of individual meals and frequency of feeding is crucial for metabolic homeostasis. In the current study we demonstrate that the noradrenalin analogue octopamine and the cholecystokinin (CCK) homologue Drosulfakinin (Dsk) function downstream of TfAP-2 and Tiwaz (Twz) to control the number of meals in adult flies. Loss of TfAP-2 or Twz in octopaminergic neurons increased the size of individual meals, while overexpression of TfAP-2 significantly decreased meal size and increased feeding frequency. Of note, our study reveals that TfAP-2 and Twz regulate octopamine signaling to initiate feeding; then octopamine, in a negative feedback loop, induces expression of Dsk to inhibit consummatory behavior. Intriguingly, we found that the mouse TfAP-2 and Twz homologues, AP-2? and Kctd15, co-localize in areas of the brain known to regulate feeding behavior and reward, and a proximity ligation assay (PLA) demonstrated that AP-2? and Kctd15 interact directly in a mouse hypothalamus-derived cell line. Finally, we show that in this mouse hypothalamic cell line AP-2? and Kctd15 directly interact with Ube2i, a mouse sumoylation enzyme, and that AP-2? may itself be sumoylated. Our study reveals how two obesity-linked homologues regulate metabolic homeostasis by modulating consummatory behavior.
Related JoVE Video
Replacement of short segments within transmembrane domains of MC2R disrupts retention signal.
J. Mol. Endocrinol.
PUBLISHED: 07-29-2014
Show Abstract
Hide Abstract
The proteolysis of the pro-opiomelanocortin precursor results in the formation of melanocortins (MCs), a group of peptides that share the conserved -H-F-R-W- sequence, which acts as a pharmacophore for five subtypes of MC receptors (MCRs). MC type 2 receptor (MC2R; also known as ACTHR) is the most specialized of all the MCRs. It is predominantly expressed in the adrenal cortex and specifically binds ACTH. Unlike other MCRs, it requires melanocortin receptor accessory protein 1 (MRAP) for formation of active receptor and for its transport to the cell membrane. The molecular mechanisms underlying this specificity remain poorly understood. In this study, we used directed mutagenesis to investigate the role of various short MC2R sequence segments in receptor membrane trafficking and specific activation upon stimulation with ligands. The strategy of the study was to replace two to five amino acid residues within one MC2R segment with the corresponding residues of MC4R. In total, 20 recombinant receptors C-terminally fused to enhanced green fluorescent protein were generated and their membrane trafficking efficiencies and cAMP response upon stimulation with ?-MSH and ACTH(1-24) were estimated during their stand-alone expression and coexpression with MRAP. Our results indicate that both the motif that determines the ligand-recognition specificity and the intracellular retention signal are formed by a specific extracellular structure, which is supported by the correct alignment of the transmembrane domains. Our results also indicate that the aromatic-residue-rich segment of the second extracellular loop is involved in the effects mediated by the second ACTH pharmacophore (-K-K-R-R-).
Related JoVE Video
Ghrelin effects expression of several genes associated with depression-like behavior.
Prog. Neuropsychopharmacol. Biol. Psychiatry
PUBLISHED: 07-24-2014
Show Abstract
Hide Abstract
Ghrelin (Ghr) is an orexigenic peptide that is being investigated for its potential role in development of anxiety-like behavior and modulation of depressive-like symptoms induced by bilateral olfactory bulbectomy (OB) in rodents. Olfactory bulbectomy is an animal model useful to study of depression and Ghr could be an alternative therapeutic tool in depression therapy. We studied the effects of intracerebroventricular (i.c.v.) Ghr administration on the expression of hypothalamic genes related to depression and mood (delta opioid receptor (DOR), mu opioid receptor (MOR) and kappa opioid receptor (KOR), lutropin-choriogonadotropic hormone receptor (LHCGR), serotonin transporter (SERT), interleukin 1 beta (IL-1b), vasopressin (AVP) and corticotrophin releasing hormone (CRH)) in OB animals, as well as changes in plasma levels of AVP, CRH and adenocorticotropic hormone (ACTH). We found that acute Ghr 0.3nmol/?l administration increases gene expression of DOR, SERT and LHCGR in OB mice and decreased expression of IL-1b, suggesting that these genes could be involved in the antidepressant-like effects of Ghr. In addition, OB animals exhibit high AVP gene expression and elevated plasma concentrations of AVP and ACTH and acute Ghr 0.3nmol/?l administration reduces AVP gene expression and the concentration of these hormones, suggesting that peptide-effects on depressive-like behavior could be mediated at least in part via AVP. In conclusion, this study provides new evidence about genes, receptors and hormones involved in the antidepressant mechanism/s induced by Ghr in OB animals.
Related JoVE Video
Advances in kinase targeting: current clinical use and clinical trials.
Trends Pharmacol. Sci.
PUBLISHED: 06-29-2014
Show Abstract
Hide Abstract
Phosphotransferases, also known as kinases, are the most intensively studied protein drug target category in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. This development has emerged following the great success of small-molecule, orally available protein kinase inhibitors for the treatment of cancer, starting with the introduction of imatinib (Gleevec®) in 2003. The pharmacological utility of kinase-targeting has expanded to include treatment of inflammatory diseases, and rapid development is ongoing for kinase-targeted therapies in a broad array of indications in ophthalmology, analgesia, central nervous system (CNS) disorders, and the complications of diabetes, osteoporosis, and otology. In this review we highlight specifically the kinase drug targets and kinase-targeting agents being explored in current clinical trials. This analysis is based on a recent estimate of all established and clinical trial drug mechanisms of action, utilizing private and public databases to create an extensive dataset detailing aspects of more than 3000 approved and experimental drugs.
Related JoVE Video
Fat Mass and Obesity-Associated Gene (FTO) Is Linked to Higher Plasma Levels of the Hunger Hormone Ghrelin and Lower Serum Levels of the Satiety Hormone Leptin in Older Adults.
Diabetes
PUBLISHED: 06-04-2014
Show Abstract
Hide Abstract
The mechanisms through which common polymorphisms in the fat mass and obesity-associated gene (FTO) drive the development of obesity in humans are poorly understood. Using cross-sectional data from 985 older people (50% females) who participated at age 70 years in the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS), circulating levels of ghrelin and leptin were measured after an overnight fast. In addition, subjects were genotyped for FTO rs17817449 (AA, n = 345 [35%]; AC/CA, n = 481 [48.8%]; CC, n = 159 [16.1%]). Linear regression analyses controlling for sex, self-reported physical activity level, fasting plasma glucose, and BMI were used. A positive relationship between the number of FTO C risk alleles and plasma ghrelin levels was found (P = 0.005; relative plasma ghrelin difference between CC and AA carriers = ?9%). In contrast, serum levels of the satiety-enhancing hormone leptin were inversely linked to the number of FTO C risk alleles (P = 0.001; relative serum leptin difference between CC and AA carriers = ?11%). These associations were also found when controlling for waist circumference. The present findings suggest that FTO may facilitate weight gain in humans by shifting the endocrine balance from the satiety hormone leptin toward the hunger-promoting hormone ghrelin.
Related JoVE Video
Melanocortin 4 receptor activation inhibits presynaptic N-type calcium channels in amygdaloid complex neurons.
Eur. J. Neurosci.
PUBLISHED: 04-30-2014
Show Abstract
Hide Abstract
The melanocortin 4 receptor (MC4R) is a G protein-coupled receptor involved in food intake and energy expenditure regulation. MC4R activation modifies neuronal activity but the molecular mechanisms by which this regulation occurs remain unclear. Here, we tested the hypothesis that MC4R activation regulates the activity of voltage-gated calcium channels and, as a consequence, synaptic activity. We also tested whether the proposed effect occurs in the amygdala, a brain area known to mediate the anorexigenic actions of MC4R signaling. Using the patch-clamp technique, we found that the activation of MC4R with its agonist melanotan II specifically inhibited 34.5 ± 1.5% of N-type calcium currents in transiently transfected HEK293 cells. This inhibition was concentration-dependent, voltage-independent and occluded by the G?s pathway inhibitor cholera toxin. Moreover, we found that melanotan II specifically inhibited 25.9 ± 2.0% of native N-type calcium currents and 55.4 ± 14.4% of evoked inhibitory postsynaptic currents in mouse cultured amygdala neurons. In vivo, we found that the MC4R agonist RO27-3225 increased the marker of cellular activity c-Fos in several components of the amygdala, whereas the N-type channel blocker ? conotoxin GVIA increased c-Fos expression exclusively in the central subdivision of the amygdala. Thus, MC4R specifically inhibited the presynaptic N-type channel subtype, and this inhibition may be important for the effects of melanocortin in the central subdivision of the amygdala.
Related JoVE Video
Efficacy of antibody-based therapies to treat Alzheimer's disease: just a matter of timing?
Exp. Gerontol.
PUBLISHED: 04-28-2014
Show Abstract
Hide Abstract
A pharmaceutical intervention that has received great attention in recent years for treating Alzheimer's disease (AD) is the use of antibodies targeting amyloid beta (A?) in the brain, as the formation of A? plaques is considered as being the driving force for the development and progression of AD. Recently, a Phase III trial in patients with mild-to-moderate AD has provided ambivalent evidence for the efficacy of this intervention. In this trial, the intravenous administration of bapineuzumab, a monoclonal antibody targeting A? in the brain, for 78weeks led to a reduction of cerebrospinal fluid levels of phosphorylated tau and evidence for lower A? accumulation in the brain of AD patients who carried APOE ?4. However, this treatment did not improve clinical outcomes (e.g. the rate of cognitive decline) in these patients. Similar null results with respect to the rate of cognitive decline were found in a separate Phase III clinical trial after treatment with solanezumab. Based on these findings, one conclusion could be that antibodies targeting A? in the brain may unfold their highest efficacy when given before the development of clinical AD symptoms, i.e. during a period where neurodegeneration but not cognitive loss represents the major pathology. Another conclusion could be that antibody-based pharmaceutical interventions may fail to slow the progress of cognitive loss in patients who have AD because of their solely pharmaceutical therapeutic approach. Leisure activities that require patients' mental and physical abilities (e.g. exercise) are associated with a reduced risk of developing dementia. In the same manner, they may help to curb the progress of this devastating disease. Thus, combining the use of antibodies targeting A? with therapeutic strategies that require patients' mental and physical abilities might help tackle the neurodegenerative dynamics and cognitive loss both in patients with AD, and its prodromal state, mild cognitive impairment.
Related JoVE Video
Increased impulsivity in response to food cues after sleep loss in healthy young men.
Obesity (Silver Spring)
PUBLISHED: 03-16-2014
Show Abstract
Hide Abstract
To investigate whether acute total sleep deprivation (TSD) leads to decreased cognitive control when food cues are presented during a task requiring active attention, by assessing the ability to cognitively inhibit prepotent responses.
Related JoVE Video
Synaptic changes induced by melanocortin signalling.
Nat. Rev. Neurosci.
PUBLISHED: 03-04-2014
Show Abstract
Hide Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Related JoVE Video
The G protein-coupled receptor GPR162 is widely distributed in the CNS and highly expressed in the hypothalamus and in hedonic feeding areas.
Gene
PUBLISHED: 02-24-2014
Show Abstract
Hide Abstract
The Rhodopsin family is a class of integral membrane proteins belonging to G protein-coupled receptors (GPCRs). To date, several orphan GPCRs are still uncharacterized and in this study we present an anatomical characterization of the GPR162 protein and an attempt to describe its functional role. Our results show that GPR162 is widely expressed in GABAergic as well as other neurons within the mouse hippocampus, whereas extensive expression is observed in areas related to energy homeostasis and hedonic feeding such as hypothalamus, amygdala and ventral tegmental area, regions known to be involved in the regulation of palatable food consumption.
Related JoVE Video
The Drosophila Kctd-family homologue Kctd12-like modulates male aggression and mating behaviour.
Eur. J. Neurosci.
PUBLISHED: 02-14-2014
Show Abstract
Hide Abstract
In Drosophila, serotonin (5-HT) regulates aggression, mating behaviour and sleep/wake behaviour through different receptors. Currently, how these various receptors are themselves regulated is still not completely understood. The KCTD12-family of proteins, which have been shown to modify G-protein-coupled receptor (GPCR) signalling in mammals, are one possibility of auxiliary proteins modulating 5-HT receptor signalling. The KCTD12-family was found to be remarkably conserved and present in species from C. elegans to humans. The Drosophila KCTD12 homologue Kctd12-like (Ktl) was highly expressed in both the larval and adult CNS. By performing behavioural assays in male Drosophila, we now reveal that Ktl is required for proper male aggression and mating behaviour. Previously, it was shown that Ktl is in a complex with the Drosophila 5-HT receptor 5-HT7, and we observed that both Ktl and the 5-HT1A receptor are required in insulin-producing cells (IPCs) for proper adult male behaviour, as well as for hyperaggressive activity induced by the mammalian 5-HT1A receptor agonist 8-hydroxy-2-dipropylaminotetralin-hydrobromide. Finally, we show that Ktl expression in the IPCs is necessary to regulate locomotion and normal sleep/wake patterns in Drosophila, but not the 5-HT1A receptor. Similar to what was observed with mammalian KCTD12-family members that interact physically with a GPCR receptor to regulate desensitization, in Drosophila Ktl may function in GPCR 5-HT receptor pathways to regulate their signalling, which is required for proper adult male behaviour.
Related JoVE Video
Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity.
Gene
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
The combination of the obesity epidemic and an aging population presents growing challenges for the healthcare system. Obesity and aging are major risk factors for a diverse number of diseases and it is of importance to understand their interaction and the underlying molecular mechanisms. Herein the authors examined the methylation levels of 27578 CpG sites in 46 samples from adult peripheral blood. The effect of obesity and aging was ascertained with general linear models. More than one hundred probes were correlated to aging, nine of which belonged to the KEGG group map04080. Additionally, 10 CpG sites had diverse methylation profiles in obese and lean individuals, one of which was the telomerase catalytic subunit (TERT). In eight of ten cases the methylation change was reverted between obese and lean individuals. One region proved to be differentially methylated with obesity (LINC00304) independent of age. This study provides evidence that obesity influences age driven epigenetic changes, which provides a molecular link between aging and obesity. This link and the identified markers may prove to be valuable biomarkers for the understanding of the molecular basis of aging, obesity and associated diseases.
Related JoVE Video
Acute sleep deprivation increases serum levels of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in healthy young men.
Sleep
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
To investigate whether total sleep deprivation (TSD) affects circulating concentrations of neuron-specific enolase (NSE) and S100 calcium binding protein B (S-100B) in humans. These factors are usually found in the cytoplasm of neurons and glia cells. Increasing concentrations of these factors in blood may be therefore indicative for either neuronal damage, impaired blood brain barrier function, or both. In addition, amyloid ? (A?) peptides 1-42 and 1-40 were measured in plasma to calculate their ratio. A reduced plasma ratio of A? peptides 1-42 to 1-40 is considered an indirect measure of increased deposition of A? 1-42 peptide in the brain.
Related JoVE Video
Acute sleep deprivation in healthy young men: impact on population diversity and function of circulating neutrophils.
Brain Behav. Immun.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
Lack of sleep greatly affects our immune system. The present study investigates the acute effects of total sleep deprivation on blood neutrophils, the most abundant immune cell in our circulation and the first cell type recruited to sites of infection. Thus, the population diversity and function of circulating neutrophils were compared in healthy young men following one night of total sleep deprivation (TSD) or after 8h regular sleep. We found that neutrophil counts were elevated after nocturnal wakefulness (2.0 ± 0.2 × 10(9)/l vs. 2.6 ± 0.2 × 10(9)/l, sleep vs. TSD, respectively) and the population contained more immature CD16(dim)/CD62L(bright) cells (0.11 ± 0.040 × 10(9)/l [5.5 ± 1.1%] vs. 0.26 ± 0.020 × 10(9)/l [9.9 ± 1.4%]). As the rise in numbers of circulating mature CD16(bright)/CD62L(bright) neutrophils was less pronounced, the fraction of this subpopulation showed a significant decrease (1.8 ± 0.15 × 10(9)/l [88 ± 1.8%] vs. 2.1 ± 0.12 × 10(9)/l [82 ± 2.8%]). The surface expression of receptors regulating mobilization of neutrophils from bone marrow was decreased (CXCR4 and CD49d on immature neutrophils; CXCR2 on mature neutrophils). The receptor CXCR2 is also involved in the production of reactive oxygen species (ROS), and in line with this, total neutrophils produced less ROS. In addition, following sleep loss, circulating neutrophils exhibited enhanced surface levels of CD11b, which indicates enhanced granular fusion and concomitant protein translocation to the membrane. Our findings demonstrate that sleep loss exerts significant effects on population diversity and function of circulating neutrophils in healthy men. To which extent these changes could explain as to why people with poor sleep patterns are more susceptible to infections warrants further investigation.
Related JoVE Video
The Drosophila small GTPase Rac2 is required for normal feeding and mating behaviour.
Behav. Genet.
PUBLISHED: 01-17-2014
Show Abstract
Hide Abstract
All multicellular organisms require the ability to regulate bodily processes in order to maintain a stable condition, which necessitates fluctuations in internal metabolics, as well as modifications of outward behaviour. Understanding the genetics behind this modulation is important as a general model for the metabolic modification of behaviour. This study demonstrates that the activity of the small GTPase Rac2 is required in Drosophila for the proper regulation of lipid storage and feeding behaviour, as well as aggression and mating behaviours. Rac2 mutant males and females are susceptible to starvation and contain considerably less lipids than controls. Furthermore, Rac2 mutants also have disrupted feeding behaviour, eating fewer but larger meals than controls. Intriguingly, Rac2 mutant males rarely initiate aggressive behaviour and display significantly increased levels of courtship behaviour towards other males and mated females. From these results we conclude that Rac2 has a central role in regulating the Drosophila homeostatic system.
Related JoVE Video
Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents.
Eur. J. Hum. Genet.
PUBLISHED: 01-09-2014
Show Abstract
Hide Abstract
The type and the amount of dietary fat have a significant influence on the metabolic pathways involved in the development of obesity, metabolic syndrome, diabetes type 2 and cardiovascular diseases. However, it is unknown to what extent this modulation is achieved through DNA methylation. We assessed the effects of cholesterol intake, the proportion of energy intake derived from fat, the ratio of polyunsaturated fatty acids (PUFA) to saturated fatty acids (SFA), the ratio of monounsaturated fatty acids (MUFA) to SFA, and the ratio of MUFA+PUFA to SFA on genome-wide DNA methylation patterns in normal-weight and obese children. We determined the genome-wide methylation profile in the blood of 69 Greek preadolescents (?10 years old) as well as their dietary intake for two consecutive weekdays and one weekend day. The methylation levels of one CpG island shore and four sites were significantly correlated with total fat intake. The methylation levels of 2 islands, 11 island shores and 16 sites were significantly correlated with PUFA/SFA; of 9 islands, 26 island shores and 158 sites with MUFA/SFA; and of 10 islands, 40 island shores and 130 sites with (MUFA+PUFA)/SFA. We found significant gene enrichment in 34 pathways for PUFA/SFA, including the leptin pathway, and a significant enrichment in 5 pathways for (MUFA+PUFA)/SFA. Our results suggest that specific changes in DNA methylation may have an important role in the mechanisms involved in the physiological responses to different types of dietary fat.European Journal of Human Genetics advance online publication, 30 July 2014; doi:10.1038/ejhg.2014.139.
Related JoVE Video
The role of common and rare MC4R variants and FTO polymorphisms in extreme form of obesity.
Mol. Biol. Rep.
PUBLISHED: 01-03-2014
Show Abstract
Hide Abstract
Melanocortin 4 receptor (MC4R) is an important regulator of food intake and number of studies report genetic variations influencing the risk of obesity. Here we explored the role of common genetic variation from MC4R locus comparing with SNPs from gene FTO locus, as well as the frequency and functionality of rare MC4R mutations in cohort of 380 severely obese individuals (BMI > 39 kg/m(2)) and 380 lean subjects from the Genome Database of Latvian Population (LGDB). We found correlation for two SNPs--rs11642015 and rs62048402 in the fat mass and obesity-associated protein (FTO) with obesity but no association was detected for rs17782313 located in the MC4R locus in these severely obese individuals. We sequenced the whole gene MC4R coding region in all study subjects and found five previously known heterozygous non-synonymous substitutions V103I, I121T, S127L, V166I and I251L. Expression in mammalian cells showed that the S127L, V166I and double V103I/S127L mutant receptors had significantly decreased quantity at the cell surface compared to the wild type MC4R. We carried out detailed functional analysis of V166I that demonstrated that, despite low abundance in plasma membrane, the V166I variant has lower EC50 value upon ?MSH activation than the wild type receptor, while the level of AGRP inhibition was decreased, implying that V166I cause hyperactive satiety signalling. Overall, this study suggest that S127L may be the most frequent functional MC4R mutation leading to the severe obesity in general population and provides new insight into the functionality of population based variants of the MC4R.
Related JoVE Video
Watching TV and food intake: the role of content.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Obesity is a serious and growing health concern worldwide. Watching television (TV) represents a condition during which many habitually eat, irrespective of hunger level. However, as of yet, little is known about how the content of television programs being watched differentially impacts concurrent eating behavior. In this study, eighteen normal-weight female students participated in three counter-balanced experimental conditions, including a 'Boring' TV condition (art lecture), an 'Engaging' TV condition (Swedish TV comedy series), and a no TV control condition during which participants read (a text on insects living in Sweden). Throughout each condition participants had access to both high-calorie (M&Ms) and low-calorie (grapes) snacks. We found that, relative to the Engaging TV condition, Boring TV encouraged excessive eating (+52% g, P?=?0.009). Additionally, the Engaging TV condition actually resulted in significantly less concurrent intake relative to the control 'Text' condition (-35% g, P?=?0.05). This intake was driven almost entirely by the healthy snack, grapes; however, this interaction did not reach significance (P?=?0.07). Finally, there was a significant correlation between how bored participants were across all conditions, and their concurrent food intake (beta?=?0.317, P?=?0.02). Intake as measured by kcals was similarly patterned but did not reach significance. These results suggest that, for women, different TV programs elicit different levels of concurrent food intake, and that the degree to which a program is engaging (or alternately, boring) is related to that intake. Additionally, they suggest that emotional content (e.g. boring vs. engaging) may be more associated than modality (e.g. TV vs. text) with concurrent intake.
Related JoVE Video
CDKAL1-related single nucleotide polymorphisms are associated with insulin resistance in a cross-sectional cohort of Greek children.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Five novel loci recently found to be associated with body mass in two GWAS of East Asian populations were evaluated in two cohorts of Swedish and Greek children and adolescents. These loci are located within, or in the proximity of: CDKAL1, PCSK1, GP2, PAX6 and KLF9. No association with body mass has previously been reported for these loci in GWAS performed on European populations. The single nucleotide polymorphisms (SNPs) with the strongest association at each loci in the East Asian GWAS were genotyped in two cohorts, one obesity case control cohort of Swedish children and adolescents consisting of 496 cases and 520 controls and one cross-sectional cohort of 2293 nine-to-thirteen year old Greek children and adolescents. SNPs were surveyed for association with body mass and other phenotypic traits commonly associated with obesity, including adipose tissue distribution, insulin resistance and daily caloric intake. No association with body mass was found in either cohort. However, among the Greek children, association with insulin resistance could be observed for the two CDKAL1-related SNPs: rs9356744 (??=?0.018, p?=?0.014) and rs2206734 (??=?0.024, p?=?0.001). CDKAL1-related variants have previously been associated with type 2 diabetes and insulin response. This study reports association of CDKAL1-related SNPs with insulin resistance, a clinical marker related to type 2 diabetes in a cross-sectional cohort of Greek children and adolescents of European descent.
Related JoVE Video
Insights into the origin of nematode chemosensory GPCRs: putative orthologs of the Srw family are found across several phyla of protostomes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Nematode chemosensory GPCRs in Caenorhabditis elegans (NemChRs) are classified into 19 gene families, and are initially thought to have split from the ancestral Rhodopsin family of GPCRs. However, earlier studies have shown that among all 19 NemChR gene families, only the srw family has a clear sequence relationship to the ancestral Rhodopsin GPCR family. Yet, the phylogenetic relationships between the srw family of NemChRs and the Rhodopsin subfamilies are not fully understood. Also, a widespread search was not previously performed to check for the presence of putative srw family-like sequences or the other 18 NemChR families in several new protostome species outside the nematode lineage. In this study, we have investigated for the presence of 19 NemChR families across 26 eukaryotic species, covering basal eukaryotic branches and provide the first evidence that the srw family of NemChRs is indeed present across several phyla of protostomes. We could identify 29 putative orthologs of the srw family in insects (15 genes), molluscs (11 genes) and Schistosoma mansoni (3 genes). Furthermore, using HMM-HMM profile based comparisons and phylogenetic analysis we show that among all Rhodopsin subfamilies, the peptide and SOG (somatostatin/opioid/galanin) subfamilies are phylogenetically the closest relatives to the srw family of NemChRs. Taken together, we demonstrate that the srw family split from the large Rhodopsin family, possibly from the peptide and/or SOG subfamilies, well before the split of the nematode lineage, somewhere close to the divergence of the common ancestor of protostomes. Our analysis also suggests that the srsx family of NemChRs shares a clear sequence homology with the Rhodopsin subfamilies, as well as with few of the vertebrate olfactory receptors. Overall, this study provides further insights into the evolutionary events that shaped the GPCR chemosensory system in protostome species.
Related JoVE Video
BDNF polymorphisms are linked to poorer working memory performance, reduced cerebellar and hippocampal volumes and differences in prefrontal cortex in a Swedish elderly population.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Brain-derived neurotrophic factor (BDNF) links learning, memory and cognitive decline in elderly, but evidence linking BDNF allele variation, cognition and brain structural differences is lacking.
Related JoVE Video
Regulation of Aggression by Obesity-Linked Genes TfAP-2 and Twz Through Octopamine Signaling in Drosophila.
Genetics
PUBLISHED: 10-18-2013
Show Abstract
Hide Abstract
In Drosophila the monoamine octopamine, through mechanisms that are not completely resolved, regulates both aggression and mating behavior. Interestingly, our study demonstrates that the Drosophila obesity-linked homologues Transcription factor AP-2 (TfAP-2, TFAP2B in humans) and Tiwaz (Twz, KCTD15 in humans) interact to modify male behavior by controlling the expression of Tyramine ?-hydroxylase (Tbh) and Vesicular monanime transporter (Vmat), genes necessary for octopamine production and secretion. Furthermore, we reveal that octopamine in turn regulates aggression through the Drosophila cholecystokinin (CCK) satiation hormone homologue Drosulfakinin (Dsk). Finally, we establish that TfAP-2 is expressed in octopaminergic neurons known to control aggressive behaviour and that TfAP-2 requires functional Twz for its activity. We conclude that genetically manipulating the obesity-linked homologues TfAP-2 and Twz is sufficient to affect octopamine signalling, which in turn modulates Drosophila male behavior through the regulation of the satiation hormone Dsk.
Related JoVE Video
Exposure to Bisphenol A Affects Lipid Metabolism in Drosophila melanogaster.
Basic Clin. Pharmacol. Toxicol.
PUBLISHED: 09-26-2013
Show Abstract
Hide Abstract
Exposure to bisphenol A (BPA) in rodents was shown to induce obesity, yet the mechanism by which BPA might induce obesity is still unclear. We employed the genetically tractable model organism, Drosophila melanogaster, to test the effects of raising them on food containing various concentrations of BPA. Of note, raising males on food containing BPA were susceptible to starvation, possibly by inhibiting their ability to perform lipolysis during starvation, leading to significantly increased lipid content after 24 hr of fasting. Furthermore, feeding males with BPA significantly inhibited the expression of insulin-like peptides. From these results, we conclude that BPA may inhibit lipid recruitment during starvation in Drosophila.
Related JoVE Video
The Druggable Genome: Evaluation of Drug Targets in Clinical Trials Suggests Major Shifts in Molecular Class and Indication.
Annu. Rev. Pharmacol. Toxicol.
PUBLISHED: 08-30-2013
Show Abstract
Hide Abstract
The largest innovations within pharmaceutical development come through new compounds that have unique and novel modes of action. These innovations commonly involve expanding the protein space targeted by pharmaceutical agents. At present, information about drugs and drug targets is available online via public databases such as DrugBank and the Therapeutic Targets Database. However, this information is biased, understandably so, toward established drugs and drug-target interactions. To gain a better overview of the drug-targeted portion of the human proteome and the directions of current drug development, we developed a data set of clinical trial drug-target interactions based on CenterWatchs Drugs in Clinical Trials Database, one of the largest databases of its kind. Our curation identified 475 potentially novel clinical trial drug targets. This review aims to identify trends in drug development based on the potentially novel targets currently being explored in clinical trials. Expected final online publication date for the Annual Review of Pharmacology and Toxicology Volume 54 is January 06, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
Related JoVE Video
Exposure to a high-fat high-sugar diet causes strong up-regulation of proopiomelanocortin and differentially affects dopamine D1 and D2 receptor gene expression in the brainstem of rats.
Neurosci. Lett.
PUBLISHED: 07-15-2013
Show Abstract
Hide Abstract
A strong link between obesity and dopamine (DA) has been established by studies associating body weight status to variants of genes related to DA signalling. Human and animal studies investigating this relationship have so far focused mainly on the role of DA within the mesolimbic pathway. The aim of this study was to investigate potential DA receptor dysregulation in the brainstem, where these receptors play a potential role in meal termination, during high-fat high-sugar diet (HFHS) exposure. Expression of other key genes, including proopiomelanocortin (POMC), was also analyzed. We randomized rats into three groups; ad libitum access to HFHS (n=24), restricted HFHS access (n=10), or controls (chow-fed, n=10). After 5 weeks, brainstem gene expression was investigated by qRT-PCR. We observed an increase in POMC expression in ad libitum HFHS-fed rats compared to chow-fed controls (p<0.01). Further, expression of DA D2 receptor mRNA was down-regulated in the brainstem of the HFHS ad libitum-fed rats (p<0.05), whereas expression of the DA D1 receptor was upregulated (p<0.01) in these animals compared to chow-fed rats. In control experiments, we observed no effect relative to chow-fed controls on DA-receptor or POMC gene expression in the hypothalamus of HFHS diet-exposed rats, or in the brainstem of acutely food deprived rats. The present findings suggest brainstem POMC to be responsive to palatable foods, and that DA dysregulation after access to energy-dense diets occurs not only in striatal regions, but also in the brainstem, which could be relevant for overeating and for the development and maintenance of obesity.
Related JoVE Video
Acute sleep deprivation increases food purchasing in men.
Obesity (Silver Spring)
PUBLISHED: 06-11-2013
Show Abstract
Hide Abstract
To investigate if acute sleep deprivation affects food purchasing choices in a mock supermarket.
Related JoVE Video
Mediterranean diet habits in older individuals: Associations with cognitive functioning and brain volumes.
Exp. Gerontol.
PUBLISHED: 05-18-2013
Show Abstract
Hide Abstract
To examine the association between dietary habits, cognitive functioning and brain volumes in older individuals, data from 194 cognitively healthy individuals who participated in the Prospective Investigation of the Vasculature in Uppsala Seniors cohort were used. At age 70, participants kept diaries of their food intake for 1week. These records were used to calculate a Mediterranean diet (MeDi) score (comprising dietary habits traditionally found in Mediterranean countries, e.g. high intake of fruits and low intake of meat), with higher scores indicating more pronounced MeDi-like dietary habits. Five years later, participants cognitive capabilities were examined by the seven minute screening (7MS) (a cognitive test battery used by clinicians to screen for dementia), and their brain volumes were measured by volumetric magnetic resonance imaging. Multivariate linear regression analyses were constructed to examine the association between the total MeDi score and cognitive functioning and brain volumes. In addition, possible associations between MeDis eight dietary features and cognitive functioning and brain volumes were investigated. From the eight dietary features included in the MeDi score, pertaining to a low consumption of meat and meat products was linked to a better performance on the 7MS test (P=0.001) and greater total brain volume (i.e. the sum of white and gray matter, P=0.03) when controlling for potential confounders (e.g. BMI) in the analysis. Integrating all dietary features into the total MeDi score explained less variance in cognitive functioning and brain volumes than its single dietary component meat intake. These observational findings suggest that keeping to a low meat intake could prove to be an impact-driven public health policy to support healthy cognitive aging, when confirmed by longitudinal studies. Further, they suggest that the MeDi score is a construct that may mask possible associations of single MeDi features with brain health domains in elderly populations.
Related JoVE Video
Characterization of the transporterB0AT3 (Slc6a17) in the rodent central nervous system.
BMC Neurosci
PUBLISHED: 05-09-2013
Show Abstract
Hide Abstract
The vesicular B0AT3 transporter (SLC6A17), one of the members of the SLC6 family, is a transporter for neutral amino acids and is exclusively expressed in brain. Here we provide a comprehensive expression profile of B0AT3 in mouse brain using in situ hybridization and immunohistochemistry.
Related JoVE Video
Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire.
Gene
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Saccoglossus kowalevskii (the acorn worm) is a hemichordate belonging to the superphylum of deuterostome bilateral animals. Hemichordates are sister group to echinoderms, and closely related to chordates. S. kowalevskii has chordate like morphological traits and serves as an important model organism, helping developmental biologists to understand the evolution of the central nervous system (CNS). Despite being such an important model organism, the signalling system repertoire of the largest family of integral transmembrane receptor proteins, G protein-coupled receptors (GPCRs) is largely unknown in S. kowalevskii. Here, we identified 260 unique GPCRs and classified as many as 257 of them into five main mammalian GPCR families; Glutamate (23), Rhodopsin (212), Adhesion (18), Frizzled (3) and Secretin (1). Despite having a diffuse nervous system, the acorn worm contains well conserved orthologues for human Adhesion and Glutamate family members, with a similar N-terminal domain architecture. This is particularly true for genes involved in CNS development and regulation in vertebrates. The average sequence identity between the GPCR orthologues in human and S. kowalevskii is around 47%, and this is same as observed in couple of the closest vertebrate relatives, Ciona intestinalis (41%) and Branchiostoma floridae (~47%). The Rhodopsin family has fewer members than vertebrates and lacks clear homologues for 6 of the 13 subgroups, including olfactory, chemokine, prostaglandin, purine, melanocyte concentrating hormone receptors and MAS-related receptors. However, the peptide and somatostatin binding receptors have expanded locally in the acorn worm. Overall, this study is the first large scale analysis of a major signalling gene superfamily in the hemichordate lineage. The establishment of orthologue relationships with genes involved in neurotransmission and development of the CNS in vertebrates provides a foundation for understanding the evolution of signal transduction and allows for further investigation of the hemichordate neurobiology.
Related JoVE Video
Anorexia nervosa is linked to reduced brain structure in reward and somatosensory regions: a meta-analysis of VBM studies.
BMC Psychiatry
PUBLISHED: 04-03-2013
Show Abstract
Hide Abstract
Structural imaging studies demonstrate brain tissue abnormalities in eating disorders, yet a quantitative analysis has not been done.
Related JoVE Video
Solute carriers as drug targets: current use, clinical trials and prospective.
Mol. Aspects Med.
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
Solute carriers (SLCs) comprise a large family of membrane transporters responsible for the transmembrane transport of a wide variety of substrates such as inorganic ions, amino acids, neurotransmitters and sugars. Despite being the largest family of membrane transport proteins, SLCs have been relatively under-utilized as therapeutic drug targets by approved drugs. In this paper, we aim to catalogue therapeutic SLCs utilized by approved drugs or currently in clinical trials. By mining information on clinical trials from the Centerwatch.com "drugs in clinical trials database" we were able to identify potentially novel SLC drug targets currently under development. We also searched the literature for SLCs that have been discussed as future therapeutic drug targets. We find SLCs to be utilized as therapeutic targets in treatment of a wide variety of diseases and disorders, such as major depression, ADHD, osteoporosis and hypertension. Drugs targeting SLCs for treatment of diabetes, constipation and hypercholesterolaemia are currently in clinical trials. SLC drug targets have also been explored in clinical trials for cardioprotection after an ischemic event. SLCs are of particular interest as targets in antineoplastic treatment and for the targeted transport of cytotoxic drugs into tumors, e.g. via the glucose transporters GLUT1-5 and SGLT1-3.
Related JoVE Video
Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects.
Mol. Aspects Med.
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
About 25% of all solute carriers (SLCs) are likely to transport amino acids as their primary substrate. One of the major phylogenetic clusters of amino acid transporters from the SLC family is the ?-family, which is part of the PFAM APC clan. The ?-family includes three SLC families, SLC32, SLC36 and SLC38 with one, four and eleven members in humans, respectively. The most well characterized genes within these families are the vesicular inhibitory amino acid transporter (VIAAT, SLC32A1), PAT1 (SLC36A1), PAT2 (SLC36A2), PAT4 (SLC36A4), SNAT1 (SLC38A1), SNAT2 (SLC38A2), SNAT3 (SLC38A3), and SNAT4 (SLC38A4). Here we review the structural characteristics and functional role of these transporters. We also mined the complete protein sequence datasets for nine different genomes to clarify the evolutionary history of the ?-family of transporters. We show that all three main branches of the this family are found as far back as green algae suggesting that genes from these families existed in the early eukaryote before the split of animals and plants and that they are present in most animal species. We also address the potential of further drug development within this field highlighting the important role of these transporters in neurotransmission and transport of amino acids as nutrients.
Related JoVE Video
Polymorphisms in FTO and near TMEM18 associate with type 2 diabetes and predispose to younger age at diagnosis of diabetes.
Gene
PUBLISHED: 03-18-2013
Show Abstract
Hide Abstract
Variations in the FTO gene and near the TMEM18 gene are risk factors for common form of obesity, but have also been linked with type 2 diabetes (T2D). Our aim was to investigate the contribution of these variants to risk of T2D in a population in Latvia. Four single nucleotide polymorphisms (SNP) in the first and fourth intronic regions of FTO and one close to TMEM18 were genotyped in 987 patients with T2D and 1080 controls selected from the Latvian Genome Data Base (LGDB). We confirmed association of SNPs in the first intron (rs11642015, rs62048402 and rs9939609) of FTO and rs7561317 representing the TMEM18 locus with T2D. Association between SNP in FTO and T2D remained significant after correction for body mass index (BMI). The rs57103849 located in the fourth intron of FTO and rs7561317 in TMEM18 showed BMI independent association with younger age at diagnosis of T2D. Our results add to the evidence that BMI related variants in and near FTO and TMEM18 may increase the risk for T2D not only through secondary effects of obesity. The influence of variants in the fourth intron of the FTO gene on development of T2D may be mediated by mechanisms other than those manifested by SNPs in the first intron of the same gene.
Related JoVE Video
Late-life alcohol consumption and cognitive function in elderly men.
Age (Dordr)
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
Moderate alcohol consumption (one to two drinks per day) has been associated with better cognitive function and lower risk of developing dementia in the elderly. In light of alcohols well-known neurotoxic properties, more evidence from well-controlled population-based studies is required. The objective of this study was to examine whether self-reported alcohol intake at age 70 is linked to cognitive function (assessed by trail making tests (TMTs) A and B, which are measures of attention, mental speed, and flexibility) in a population-based cohort consisting of 652 cognitively healthy elderly men. Linear regression models were used to assess both cross-sectional (i.e., age 70) and prospective (i.e., age 77) associations between alcohol intake and cognitive function. The analyses were adjusted for education, body mass index, energy intake, self-reported physical activity, smoking, a history of hypertension or diabetes, apolipoprotein E ?4 status, and cholesterol levels at the age of 70. Baseline data were obtained from 1990 to 1996. Self-reported alcohol intake (mean 6.9?±?7.1 g/day) was associated with better performance on TMT-B at ages 70 and 77 (??=?-0.87, p?
Related JoVE Video
B(0)AT2 (SLC6A15) is localized to neurons and astrocytes, and is involved in mediating the effect of leucine in the brain.
PLoS ONE
PUBLISHED: 02-07-2013
Show Abstract
Hide Abstract
The B(0)AT2 protein is a product of the SLC6A15 gene belonging to the SLC6 subfamily and has been shown to be a transporter of essential branched-chain amino acids. We aimed to further characterize the B(0)AT2 transporter in CNS, and to use Slc6a15 knock out (KO) mice to investigate whether B(0)AT2 is important for mediating the anorexigenic effect of leucine. We used the Slc6a15 KO mice to investigate the role of B(0)AT2 in brain in response to leucine and in particular the effect on food intake. Slc6a15 KO mice show lower reduction of food intake as well as lower neuronal activation in the ventromedial hypothalamic nucleus (VMH) in response to leucine injections compared to wild type mice. We also used RT-PCR on rat tissues, in situ hybridization and immunohistochemistry on mouse CNS tissues to document in detail the distribution of SLC6A15 on gene and protein levels. We showed that B(0)AT2 immunoreactivity is mainly neuronal, including localization in many GABAergic neurons and spinal cord motor neurons. B(0)AT2 immunoreactivity was also found in astrocytes close to ventricles, and co-localized with cytokeratin and diazepam binding inhibitor (DBI) in epithelial cells of the choroid plexus. The data suggest that B(0)AT2 play a role in leucine homeostasis in the brain.
Related JoVE Video
Acute sleep deprivation increases portion size and affects food choice in young men.
Psychoneuroendocrinology
PUBLISHED: 01-25-2013
Show Abstract
Hide Abstract
Acute sleep loss increases food intake in adults. However, little is known about the influence of acute sleep loss on portion size choice, and whether this depends on both hunger state and the type of food (snack or meal item) offered to an individual. The aim of the current study was to compare portion size choice after a night of sleep and a period of nocturnal wakefulness (a condition experienced by night-shift workers, e.g. physicians and nurses). Sixteen men (age: 23 ± 0.9 years, BMI: 23.6 ± 0.6 kg/m(2)) participated in a randomized within-subject design with two conditions, 8-h of sleep and total sleep deprivation (TSD). In the morning following sleep interventions, portion size, comprising meal and snack items, was measured using a computer-based task, in both fasted and sated state. In addition, hunger as well as plasma levels of ghrelin were measured. In the morning after TSD, subjects had increased plasma ghrelin levels (13%, p=0.04), and chose larger portions (14%, p=0.02), irrespective of the type of food, as compared to the sleep condition. Self-reported hunger was also enhanced (p<0.01). Following breakfast, sleep-deprived subjects chose larger portions of snacks (16%, p=0.02), whereas the selection of meal items did not differ between the sleep interventions (6%, p=0.13). Our results suggest that overeating in the morning after sleep loss is driven by both homeostatic and hedonic factors. Further, they show that portion size choice after sleep loss depend on both an individuals hunger status, and the type of food offered.
Related JoVE Video
Genome-wide analysis shows association of epigenetic changes in regulators of Rab and Rho GTPases with spinal muscular atrophy severity.
Eur. J. Hum. Genet.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Spinal muscular atrophy (SMA) is a monogenic disorder that is subdivided into four different types and caused by survival motor neuron gene 1 (SMN1) deletion. Discordant cases of SMA suggest that there exist additional severity modifying factors, apart from the SMN2 gene copy number. Here we performed the first genome-wide methylation profiling of SMA patients and healthy individuals to study the association of DNA methylation status with the severity of the SMA phenotype. We identified strong significant differences in methylation level between SMA patients and healthy controls in CpG sites close to the genes CHML, ARHGAP22, CYTSB, CDK2AP1 and SLC23A2. Interestingly, the CHML and ARHGAP22 genes are associated with the activity of Rab and Rho GTPases, which are important regulators of vesicle formation, actin dynamics, axonogenesis, processes that could be critical for SMA development. We suggest that epigenetic modifications may influence the severity of SMA and that these novel genetic positions could prove to be valuable biomarkers for the understanding of SMA pathogenesis.
Related JoVE Video
Early vertebrate origin of melanocortin 2 receptor accessory proteins (MRAPs).
Gen. Comp. Endocrinol.
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
The melanocortin 2 receptor (MC2R) accessory proteins, MRAP, along with its homolog, MRAP2, are two among a growing number of G protein-coupled receptor accessory proteins that have been identified in recent years. These proteins interact directly with MC2R and are essential for trafficking of this receptor from the endoplasmic reticulum to the cell surface, where it mediates the effects of ACTH. lthough earlier studies have identified MRAP and MRAP2 subtypes in distant species, an overall evolutionary analysis of these families is still missing. Here, we performed a comprehensive evolutionary analysis of the MRAP and MRAP2 homologs based on whole genome sequences. We systematically mined and analyzed the genomes of metazoans to identify these genes. Overall, we identified 70 sequences of MRAP and MRAP2 from 44 species belonging to several vertebrate lineages, including at least 40 new sequences previously not reported in the literature. Herein, we provide evidence that MRAP2 is likely to be the ancestor of the MRAP family because MRAP2-like protein, but not MRAP, was identified in Petromyzon marinus (sea lamprey), which belong to an ancient basal vertebrate lineage. Later in vertebrate evolution, MRAP2 duplicated and gave rise to MRAP in an event before the emergence of actinopterygii (ray-finned fishes). However, we observed losses of MRAP in sarcopterygii (lobe-finned fish), amphibians and reptiles while both subtypes are present in chicken and most mammals studied. Synteny analysis showed a conserved synteny within same lineages and an inversion of gene order between lineages. An evolutionary rate shift analysis indicated that these genes were under high purifying selection. Overall, this study provides a comprehensive analysis of the evolution and gene repertoire of MRAP and MRAP2.
Related JoVE Video
Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet.
Lipids Health Dis
PUBLISHED: 01-05-2013
Show Abstract
Hide Abstract
Fatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions. However, it is unclear to what extent desaturase activity in different lipid fractions contribute to obesity susceptibility. Our aim was to test whether desaturase activity and FA composition are linked to an obese phenotype in rats that are either obesity prone (OP) or resistant (OR) on a high-fat diet (HFD).
Related JoVE Video
Involvement of the neutral amino acid transporter SLC6A15 and leucine in obesity-related phenotypes.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Brain pathways, including those in hypothalamus and nucleus of the solitary tract, influence food intake, nutrient preferences, metabolism and development of obesity in ways that often differ between males and females. Branched chain amino acids, including leucine, can suppress food intake, alter metabolism and change vulnerability to obesity. The SLC6A15 (v7-3) gene encodes a sodium-dependent transporter of leucine and other branched chain amino acids that is expressed by neurons in hypothalamus and nucleus of the solitary tract. We now report that SLC6A15 knockout attenuates leucines abilities to reduce both: a) intake of normal chow and b) weight gain produced by access to a high fat diet in gender-selective fashions. We identify SNPs in the human SLC6A15 that are associated with body mass index and insulin resistance in males. These observations in mice and humans support a novel, gender-selective role for brain amino acid compartmentalization mediated by SLC6A15 in diet and obesity-associated phenotypes.
Related JoVE Video
The STK33-linked SNP rs4929949 is associated with obesity and BMI in two independent cohorts of Swedish and Greek children.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Recent genome wide association studies (GWAS) have identified a locus on chromosome 11p15.5, closely associated with serine/threonine kinase 33 (STK33), to be associated with body mass. STK33, a relatively understudied protein, has been linked to KRAS mutation-driven cancers and explored as a potential antineoplastic drug target. The strongest association with body mass observed at this loci in GWAS was rs4929949, a single nucleotide polymorphism located within intron 1 of the gene encoding STK33. The functional implications of rs4929949 or related variants have not been explored as of yet. We have genotyped rs4929949 in two cohorts, an obesity case-control cohort of 991 Swedish children, and a cross-sectional cohort of 2308 Greek school children. We found that the minor allele of rs4929949 was associated with obesity in the cohort of Swedish children and adolescents (OR?=?1.199 (95%CI: 1.002-1.434), p?=?0.047), and with body mass in the cross-sectional cohort of Greek children (??=?0.08147 (95% CI: 0.1345-0.1618), p?=?0.021). We observe the effects of rs4929949 on body mass to be detectable already at adolescence. Subsequent analysis did not detect any association of rs4929949 to phenotypic measurements describing body adiposity or to metabolic factors such as insulin levels, triglycerides and insulin resistance (HOMA).
Related JoVE Video
Increased prefrontal and parahippocampal activation with reduced dorsolateral prefrontal and insular cortex activation to food images in obesity: a meta-analysis of fMRI studies.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli.
Related JoVE Video
Identification and analysis of functionally important amino acids in human purinergic 12 receptor using a Saccharomyces cerevisiae expression system.
FEBS J.
PUBLISHED: 11-23-2011
Show Abstract
Hide Abstract
The purinergic 12 receptor (P2Y12) is a major drug target for anticoagulant therapies, but little is known about the regions involved in ligand binding and activation of this receptor. We generated four randomized P2Y12 libraries and investigated their ligand binding characteristics. P2Y12 was expressed in a Saccharomyces cerevisiae model system. Four libraries were generated with randomized amino acids at positions 181, 256, 265 and 280. Mutant variants were screened for functional activity in yeast using the natural P2Y12 ligand ADP. Activation results were investigated using quantitative structure-activity relationship (QSAR) models and ligand-receptor docking. We screened four positions in P2Y12 for functional activity by substitution with amino acids with diverse physiochemical properties. This analysis revealed that positions E181, R256 and R265 alter the functional activity of P2Y12 in a specific manner. QSAR models for E181 and R256 mutant libraries strongly supported the experimental data. All substitutions of amino acid K280 were completely inactive, highlighting the crucial role of this residue in P2Y12 function. Ligand-receptor docking revealed that K280 is likely to be a key element in the ligand-binding pocket of P2Y12. The results of this study demonstrate that positions 181, 256, 265 and 280 of P2Y12 are important for the functional integrity of the receptor. Moreover, K280 appears to be a crucial feature of the P2Y12 ligand-binding pocket. These results are important for rational design of novel antiplatelet agents.
Related JoVE Video
Diurnal rhythm of circulating nicotinamide phosphoribosyltransferase (Nampt/visfatin/PBEF): impact of sleep loss and relation to glucose metabolism.
J. Clin. Endocrinol. Metab.
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
Animal studies indicate that nicotinamide phosphoribosyltransferase [Nampt/visfatin/pre-B-cell colony-enhancing factor (PBEF)] contributes to the circadian fine-tuning of metabolic turnover. However, it is unknown whether circulating Nampt concentrations, which are elevated in type 2 diabetes and obesity, display a diurnal rhythm in humans.
Related JoVE Video
Functional coupling analysis suggests link between the obesity gene FTO and the BDNF-NTRK2 signaling pathway.
BMC Neurosci
PUBLISHED: 11-16-2011
Show Abstract
Hide Abstract
The Fat mass and obesity gene (FTO) has been identified through genome wide association studies as an important genetic factor contributing to a higher body mass index (BMI). However, the molecular context in which this effect is mediated has yet to be determined. We investigated the potential molecular network for FTO by analyzing co-expression and protein-protein interaction databases, Coxpresdb and IntAct, as well as the functional coupling predicting multi-source database, FunCoup. Hypothalamic expression of FTO-linked genes defined with this bioinformatics approach was subsequently studied using quantitative real time-PCR in mouse feeding models known to affect FTO expression.
Related JoVE Video
The G protein coupled receptor Gpr153 shares common evolutionary origin with Gpr162 and is highly expressed in central regions including the thalamus, cerebellum and the arcuate nucleus.
FEBS J.
PUBLISHED: 10-31-2011
Show Abstract
Hide Abstract
The Rhodopsin family of G protein coupled receptors (GPCRs) includes the phylogenetic ?-group consisting of about 100 human members. The ?-group is the only group of GPCRs that has many receptors for biogenic amines which are major drug targets. Several members of this group are orphan receptors and their functions are elusive. In this study we present a detailed phylogenetic and anatomical characterization of the Gpr153 receptor and also attempt to study its functional role. We identified the homologue of Gpr153 in the elephant shark genome and phylogenetic and synteny analyses revealed that Gpr162 and Gpr153 share a common ancestor that split most likely through a duplication event before the divergence of the tetrapods and the teleost lineage. A quantitative real-time PCR study reveals widespread expression of Gpr153 in the central nervous system and all the peripheral tissues investigated. Detailed in?situ hybridization on mouse brain showed specifically high expression in the thalamus, cerebellum and the arcuate nucleus. The antisense oligodeoxynucleotide knockdown of Gpr153 caused a slight reduction in food intake and the elevated plus maze test showed significant reduction in the percentage of time spent in the centre square, which points towards a probable role in decision making. This report provides the first detailed characterization of the evolution, expression and primary functional properties of the Gpr153 gene.
Related JoVE Video
Brain insulin signaling and Alzheimers disease: current evidence and future directions.
Mol. Neurobiol.
PUBLISHED: 10-12-2011
Show Abstract
Hide Abstract
Insulin receptors in the brain are found in high densities in the hippocampus, a region that is fundamentally involved in the acquisition, consolidation, and recollection of new information. Using the intranasal method, which effectively bypasses the blood-brain barrier to deliver and target insulin directly from the nose to the brain, a series of experiments involving healthy humans has shown that increased central nervous system (CNS) insulin action enhances learning and memory processes associated with the hippocampus. Since Alzheimers disease (AD) is linked to CNS insulin resistance, decreased expression of insulin and insulin receptor genes and attenuated permeation of blood-borne insulin across the blood-brain barrier, impaired brain insulin signaling could partially account for the cognitive deficits associated with this disease. Considering that insulin mitigates hippocampal synapse vulnerability to amyloid beta and inhibits the phosphorylation of tau, pharmacological strategies bolstering brain insulin signaling, such as intranasal insulin, could have significant therapeutic potential to deter AD pathogenesis.
Related JoVE Video
Association of TMEM18 variants with BMI and waist circumference in children and correlation of mRNA expression in the PFC with body weight in rats.
Eur. J. Hum. Genet.
PUBLISHED: 09-28-2011
Show Abstract
Hide Abstract
Genome-wide association studies have shown a strong association of single-nucleotide polymorphisms (SNPs) in the near vicinity of the TMEM18 gene. The effects of the TMEM18-associated variants are more readily observed in children. TMEM18 encodes a 3TM protein, which locates to the nuclear membrane. The functional context of TMEM18 and the effects of its associated variants are as of yet undetermined. To further explore the effects of near-TMEM18 variants, we have genotyped two TMEM18-associated SNPs, rs6548238 and rs4854344, in a cohort of 2352 Greek children (Healthy Growth Study). Included in this study are data on anthropomorphic traits body weight, BMI z-score and waist circumference. Also included are dietary energy and macronutrient intake as measured via 24-h recall interviews. Major alleles of rs6548238 and rs4854344 were significantly associated with an increased risk of obesity (odds ratio = 1.489 (1.161-1.910) and 1.494 (1.165-1.917), respectively), and positively correlated to body weight (P = 0.017, P = 0.010) and waist circumference (P = 0.003, P = 0.003). An association to energy and macronutrient intake was not observed in this cohort. We also correlated food intake and body weight in a food choice model in rats to Tmem18 expression in central regions involved in feeding behavior. We observed a strong positive correlation between TMEM18 expression and body weight in the prefrontal cortex (PFC) (r = 0.5694, P = 0.0003) indicating a potential role for TMEM18 in higher functions related to feeding involving the PFC.
Related JoVE Video
Identification of somatostatin receptor type 5 gene polymorphisms associated with acromegaly.
Eur. J. Endocrinol.
PUBLISHED: 08-02-2011
Show Abstract
Hide Abstract
The aim of this study was to characterize the genetic variance of somatostatin receptor 5 (SSTR5) and investigate the possible correlation of such variants with acromegaly risk and different disease characteristics.
Related JoVE Video
Trends in the exploitation of novel drug targets.
Nat Rev Drug Discov
PUBLISHED: 08-02-2011
Show Abstract
Hide Abstract
The discovery and exploitation of new drug targets is a key focus for both the pharmaceutical industry and academic biomedical research. To provide an insight into trends in the exploitation of new drug targets, we have analysed the drugs that were approved by the US Food and Drug Administration during the past three decades and examined the interactions of these drugs with therapeutic targets that are encoded by the human genome, using the DrugBank database and extensive manual curation. We have identified 435 effect-mediating drug targets in the human genome, which are modulated by 989 unique drugs, through 2,242 drug-target interactions. We also analyse trends in the introduction of drugs that modulate previously unexploited targets, and discuss the network pharmacology of the drugs in our data set.
Related JoVE Video
Comprehensive analysis of localization of 78 solute carrier genes throughout the subsections of the rat gastrointestinal tract.
Biochem. Biophys. Res. Commun.
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Solute carriers (SLCs), the second largest super-family of membrane proteins in the human genome, transport amino acids, sugars, fatty acids, inorganic ions, essential metals and drugs over membranes. To date no study has provided a comprehensive analysis of SLC localization along the entire GI tract. The aim of the present study was to provide a comprehensive, segment-specific description of the localization of SLC genes along the rat GI tract by employing bioinformatics and molecular biology methods. The Unigene database was screened for rat SLC entries in the intestinal tissue. Using qPCR we measured expression of the annotated genes in the GI tract divided into the following segments: the esophagus, the corpus and the antrum of the stomach, the proximal and distal parts of the duodenum, ileum, jejunum and colon, and the cecum. Our Unigene-derived gene pool was expanded with data from in-house tissue panels and a literature search. We found 44 out of 78 (56%) of gut SLC transcripts to be expressed in all GI tract segments, whereas the majority of remaining SLCs were detected in more than five segments. SLCs are predominantly expressed in gut regions with absorptive functions although expression was also found in segments unrelated to absorption. The proximal jejunum had the highest number of differentially expressed SLCs. In conclusion, SLCs are a crucial molecular component of the GI tract, with many of them expressed along the entire GI tract. This work presents the first overall road map of localization of transporter genes in the GI tract.
Related JoVE Video
Restraint of appetite and reduced regional brain volumes in anorexia nervosa: a voxel-based morphometric study.
BMC Psychiatry
PUBLISHED: 05-10-2011
Show Abstract
Hide Abstract
Previous Magnetic Resonance Imaging (MRI) studies of people with anorexia nervosa (AN) have shown differences in brain structure. This study aimed to provide preliminary extensions of this data by examining how different levels of appetitive restraint impact on brain volume.
Related JoVE Video
Genetic and expression studies of SMN2 gene in Russian patients with spinal muscular atrophy type II and III.
BMC Med. Genet.
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Spinal muscular atrophy (SMA type I, II and III) is an autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron gene (SMN1). SMN2 is a centromeric copy gene that has been characterized as a major modifier of SMA severity. SMA type I patients have one or two SMN2 copies while most SMA type II patients carry three SMN2 copies and SMA III patients have three or four SMN2 copies. The SMN1 gene produces a full-length transcript (FL-SMN) while SMN2 is only able to produce a small portion of the FL-SMN because of a splice mutation which results in the production of abnormal SMN?7 mRNA.
Related JoVE Video
Acute sleep deprivation reduces energy expenditure in healthy men.
Am. J. Clin. Nutr.
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Epidemiologic evidence indicates that chronic sleep curtailment increases risk of developing obesity, but the mechanisms behind this relation are largely unknown.
Related JoVE Video
Differential neural responses to food images in women with bulimia versus anorexia nervosa.
PLoS ONE
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.
Related JoVE Video
Opioids as facilitators of feeding: can any food be rewarding?
Physiol. Behav.
PUBLISHED: 04-01-2011
Show Abstract
Hide Abstract
Palatability is one of the most rewarding aspects of consummatory behavior. Opioids, potent facilitators of intake of sweet and fat tastants, are thought to mediate hedonics of feeding. However, the rewarding context of consumption is not limited to palatability, and gratification can be achieved through other means, e.g., eating to satisfy hunger. The current review discusses the role of opioid peptides in food intake regulation by incorporating this expanded concept of feeding reward. We present evidence that, aside from increasing sugar/fat consumption, opioids propel the intake of diets whose gustatory value is low but are nonetheless consumed under circumstances allowing feeding gratification to occur. Opioids enhance reward-driven consumption by acting within the classical reward circuitry and also by signaling reward at sites that regulate other aspects of food intake, such as satiety and aversion. We conclude that, due to the complexity of neural and functional interactions, opioids are capable of enhancing pleasure of eating any food--palatable, bland or even aversive--making any meal into a more rewarding experience, despite possible consequences.
Related JoVE Video
Fto colocalizes with a satiety mediator oxytocin in the brain and upregulates oxytocin gene expression.
Biochem. Biophys. Res. Commun.
PUBLISHED: 03-31-2011
Show Abstract
Hide Abstract
Single nucleotide polymorphisms in the fat mass and obesity-associated (FTO) gene have been associated with obesity in humans. Alterations in Fto expression in transgenic animals affect body weight, energy expenditure and food intake. Fto, a nuclear protein and proposed transcription co-factor, has been speculated to affect energy balance through a functional relationship with specific genes encoding feeding-related peptides. Herein, we employed double immunohistochemistry and showed that the majority of neurons synthesizing a satiety mediator, oxytocin, coexpress Fto in the brain of male and female mice. We then overexpressed Fto in a murine hypothalamic cell line and, using qPCR, detected a 50% increase in the level of oxytocin mRNA. Expression levels of several other feeding-related genes, including neuropeptide Y (NPY) and Agouti-related protein (AgRP), were unaffected by the FTO transfection. Addition of 10 and 100 nmol oxytocin to the cell culture medium did not affect Fto expression in hypothalamic cells. We conclude that Fto, a proposed transcription co-factor, influences expression of the gene encoding a satiety mediator, oxytocin.
Related JoVE Video
Independent HHsearch, Needleman--Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families.
Mol. Biol. Evol.
PUBLISHED: 03-14-2011
Show Abstract
Hide Abstract
Several families of G protein-coupled receptors (GPCRs) show no significant sequence similarities to each other, and it has been debated which of them share a common origin. We developed and performed integrated and independent HHsearch, Needleman--Wunsch-based and motif analyses on more than 6,600 unique GPCRs from 12 species. Moreover, we mined the evolutionary important Trichoplax adhaerens, Nematostella vectensis, Thalassiosira pseudonana, and Strongylocentrotus purpuratus genomes, revealing remarkably rich vertebrate-like GPCR repertoires already in the early Metazoan species. We found strong evidence that the Adhesion and Frizzled families are children to the cyclic AMP (cAMP) family with HHsearch homology probabilities of 99.8% and 99.4%, respectively, also supported by the Needleman--Wunsch analysis and several motifs. We also found that the large Rhodopsin family is likely a child of the cAMP family with an HHsearch homology probability of 99.4% and conserved motifs. Therefore, we suggest that the Adhesion and Frizzled families originated from the cAMP family in an event close to that which gave rise to the Rhodopsin family. We also found convincing evidence that the Rhodopsin family is parent to the important sensory families; Taste 2 and Vomeronasal type 1 as well as the Nematode chemoreceptor families. The insect odorant, gustatory, and Trehalose receptors, frequently referred to as GPCRs, form a separate cluster without relationship to the other families, and we propose, based on these and others results, that these families are ligand-gated ion channels rather than GPCRs. Overall, we suggest common descent of at least 97% of the GPCRs sequences found in humans.
Related JoVE Video
Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae.
BMC Evol. Biol.
PUBLISHED: 03-11-2011
Show Abstract
Hide Abstract
The drug/metabolite transporter superfamily comprises a diversity of protein domain families with multiple functions including transport of nucleotide sugars. Drug/metabolite transporter domains are contained in both solute carrier families 30, 35 and 39 proteins as well as in acyl-malonyl condensing enzyme proteins. In this paper, we present an evolutionary analysis of nucleotide sugar transporters in relation to the entire superfamily of drug/metabolite transporters that considers crucial intra-protein duplication events that have shaped the transporters. We use a method that combines the strengths of hidden Markov models and maximum likelihood to find relationships between drug/metabolite transporter families, and branches within families.
Related JoVE Video
Expression levels of genes encoding melanin concentrating hormone (MCH) and MCH receptor change in taste aversion, but MCH injections do not alleviate aversive responses.
Pharmacol. Biochem. Behav.
PUBLISHED: 03-06-2011
Show Abstract
Hide Abstract
Melanin concentrating hormone (MCH) stimulates feeding driven by energy needs and reward and modifies anxiety behavior. Orexigenic peptides of similar characteristics, including nociceptin/orphanin FQ, Agouti-related protein and opioids, increase consumption also by reducing avoidance of potentially tainted food in animals displaying a conditioned taste aversion (CTA). Herein, using real-time PCR, we assessed whether expression levels of genes encoding MCH and its receptor, MCHR1, were affected in CTA in the rat. We also investigated whether injecting MCH intracerebroventricularly (ICV) during the acquisition and retrieval of LiCl-induced CTA, would alleviate aversive responses. MCHR1 gene was upregulated in the hypothalamus and brain stem of aversive animals, MCH mRNA was significantly higher in the hypothalamus, whereas a strong trend suggesting upregulation of MCH and MCHR1 genes was detected in the amygdala. Despite these expression changes associated with aversion, MCH injected prior to the induction of CTA with LiCl as well as later, during the CTA retrieval upon subsequent presentations of the aversive tastant, did not reduce the magnitude of CTA. We conclude that MCH and its receptor form an orexigenic system whose expression is affected in CTA. This altered MCH expression may contribute to tastant-targeted hypophagia in CTA. However, changing the MCH tone in the brain by exogenous peptide was insufficient to prevent the onset or facilitate extinction of LiCl-induced CTA. This designates MCH as one of many accessory molecules associated with shaping an aversive response, but not a critical one for LiCl-dependent CTA to occur.
Related JoVE Video
Single nucleotide polymorphisms of the purinergic 1 receptor are not associated with myocardial infarction in a Latvian population.
Mol. Biol. Rep.
PUBLISHED: 03-01-2011
Show Abstract
Hide Abstract
The purinergic 1 receptor (P2RY1) has been implicated in development of heart disease and in individual pharmacodynamic response to anticoagulant therapies. However, the association of polymorphisms in the P2RY1 gene with myocardial infarction (MI), and its associated conditions, has yet to be reported in the literature. We evaluated seven known SNPs in P2RY1 for association with MI in a Latvian population. Seven independent parameters that are related to MI [body mass index (BMI), type 2 diabetes (T2D), angina pectoris, hypertension, hyperlipidemia, atrial fibrillation and heart failure] were investigated. No significant association with MI was observed for any of the polymorphisms. Those SNPs for which the P value was close to significance were located in coding or promoter regions. Intriguingly, carriers of the minor allele in the P2RY1 gene locus showed a tendency towards higher onset age for MI, suggesting a possible protective effect of these SNPs against MI or their contribution in progression as opposed to onset. Finally, a linkage disequilibrium (LD) plot was generated for these polymorphisms in the Latvian population. The results of this study suggest that the role of P2RY1 in individuals from Latvian population is likely to be principally involved in platelet aggregation and thromboembolic diseases, and not as a significant contributing factor to the global metabolic syndrome.
Related JoVE Video
Ghrelin inhibited serotonin release from hippocampal slices.
Peptides
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
Ghrelin (Ghr) is a peptide produced peripherally and centrally. It participates in the modulation of different biological processes. In our laboratory we have shown that (a) Ghr administration, either intracerebroventricular or directly into the hippocampus enhanced memory consolidation in a step down test in rats (b) the effect of Ghr upon memory decreases in animals pretreated with a serotonin (5-HT) reuptake inhibitor, Fluoxetine, suggesting that Ghr effects in the hippocampus could be related to the availability of 5-HT. It has been demonstrated that Ghr inhibits 5-HT release from rat hypothalamic synaptosomes. Taking in mint these evidences, we studied the release of radioactive 5-HT to the superfusion medium from hippocampal slices treated with two doses of Ghr (0.3 and 3 nm/?l). Ghr inhibited significantly the 5-HT release in relation to those superfused with artificial cerebrospinal fluid (ACSF) (H = 9.48, df = 2, p ? 0.05). In another set of experiments, Ghr was infused into the CA1 area of hippocampus of the rats immediately after training in the step down test and the 5-HT release from slices was studied 24h after Ghr injection showing that in this condition also the 5-HT release was inhibited (H = 11.72, df = 1, p ? 0.05). In conclusion, results provide additional evidence about the neurobiological bases of Ghr action in hippocampus.
Related JoVE Video
Fto immunoreactivity is widespread in the rodent brain and abundant in feeding-related sites, but the number of Fto-positive cells is not affected by changes in energy balance.
Physiol. Behav.
PUBLISHED: 01-14-2011
Show Abstract
Hide Abstract
A single nucleotide polymorphism in the FTO gene is associated with obesity in humans. Evidence gathered in animals mainly relates energy homeostasis to the central FTO mRNA levels, but our knowledge of the Fto protein distribution and regulation is limited. Fto, a demethylase and transcriptional coactivator, is thought to regulate expression of other genes. Herein, we examined Fto immunoreactivity (IR) in the mouse and rat brain with emphasis on sites governing energy balance. We also studied whether energy status affects central Fto IR. We report that Fto IR, limited to nuclear profiles, is widespread in the brain, in- and outside feeding circuits; it shows a very similar distribution in feeding-related sites in mice and rats. Several areas regulating energy homeostasis display enhanced intensity of Fto staining: the arcuate, paraventricular, supraoptic, dorsomedial, ventromedial nuclei, and dorsal vagal complex. Some regions mediating feeding reward, including the bed nucleus of the stria terminalis, have ample Fto IR. We found that differences in energy status between rats fed ad libitum, deprived or refed following deprivation, did not affect the number of Fto-positive nuclei in 10 sites governing consumption for energy or reward. We conclude that Fto IR, widespread in the rodent brain, is particularly abundant in feeding circuits, but the number of Fto-positive neurons is unaffected by changes in energy balance.
Related JoVE Video
The fat mass and obesity gene is linked to reduced verbal fluency in overweight and obese elderly men.
Neurobiol. Aging
PUBLISHED: 01-07-2011
Show Abstract
Hide Abstract
Humans carrying the prevalent rs9939609 A allele of the fat mass and obesity-associated (FTO) gene are more susceptible to developing obesity than noncarries. Recently, polymorphisms in the FTO gene of elderly subjects have also been linked to a reduced volume in the frontal lobe as well as increased risk for incident Alzheimer disease. However, so far there is no evidence directly linking the FTO gene to functional cognitive processes. Here we examined whether the FTO rs9939609 A allele is associated with verbal fluency performance in 355 elderly men at the age of 82 years who have no clinically apparent cognitive impairment. Retrieval of verbal memory is a good surrogate measure reflecting frontal lobe functioning. Here we found that obese and overweight but not normal weight FTO A allele carriers showed a lower performance on verbal fluency than non-carriers (homozygous for rs9939609 T allele). This effect was not observed for a measure of general cognitive performance (i.e., Mini-Mental State Examination score), thereby indicating that the FTO gene primarily affects frontal lobe-dependent cognitive processes in elderly men.
Related JoVE Video
Detailed analysis of variants in FTO in association with body composition in a cohort of 70-year-olds suggests a weakened effect among elderly.
PLoS ONE
PUBLISHED: 01-05-2011
Show Abstract
Hide Abstract
The rs9939609 single-nucleotide polymorphism (SNP) in the fat mass and obesity (FTO) gene has previously been associated with higher BMI levels in children and young adults. In contrast, this association was not found in elderly men. BMI is a measure of overweight in relation to the individuals height, but offers no insight into the regional body fat composition or distribution.
Related JoVE Video
The early origin of melanocortin receptors, agouti-related peptide, agouti signalling peptide, and melanocortin receptor-accessory proteins, with emphasis on pufferfishes, elephant shark, lampreys, and amphioxus.
Eur. J. Pharmacol.
PUBLISHED: 01-03-2011
Show Abstract
Hide Abstract
There are conflicting theories about the evolution of melanocortin MC receptors while only few studies have addressed the evolution of agouti-related peptide (AgRP) and agouti signalling peptide (ASIP), which are antagonists at the melanocortin receptors (MCRs), or the melanocortin MC(2) receptor accessory proteins (MRAP1 and MRAP2). Previously we have cloned melanocortin MC receptors (MC(a) and MC(b)) genes in river lamprey and here we identify orthologues to these melanocortin MC receptor sequences in the sea lamprey. We investigate the putative presence of the melanocortin MC receptor genes in lancelet (amphioxus; Branchiostoma floridae) but we find it unlikely that such gene exists, due to a sharp drop in sequence similarity beyond sequence clusters of known receptors. We show the presence of AgRP and ASIP in elephant shark, a cartilaginous fish belonging to the subclass of Elasmobranchii. However, we do not find any of these genes in lamprey or lancelet after detailed analysis of both targeted and whole proteome regular expression scans. We found MRAP2, but not MRAP1, to be present in elephant shark and sea lamprey while Fugu (T. rubripes) has both genes. This study shows that the most ancient presence of these melanocortin-related sequences is found in elephant shark and lampreys considering the current available sequence data.
Related JoVE Video
The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species.
Mol. Biol. Evol.
PUBLISHED: 12-24-2010
Show Abstract
Hide Abstract
The Solute Carriers (SLCs) are membrane proteins that regulate transport of many types of substances over the cell membrane. The SLCs are found in at least 46 gene families in the human genome. Here, we performed the first evolutionary analysis of the entire SLC family based on whole genome sequences. We systematically mined and analyzed the genomes of 17 species to identify SLC genes. In all, we identified 4,813 SLC sequences in these genomes, and we delineated the evolutionary history of each of the subgroups. Moreover, we also identified ten new human sequences not previously classified as SLCs, which most likely belong to the SLC family. We found that 43 of the 46 SLC families found in Homo sapiens were also found in Caenorhabditis elegans, whereas 42 of them were also found in insects. Mammals have a higher number of SLC genes in most families, perhaps reflecting important roles for these in central nervous system functions. This study provides a systematic analysis of the evolutionary history of the SLC families in Eukaryotes showing that the SLC superfamily is ancient with multiple branches that were present before early divergence of Bilateria. The results provide foundation for overall classification of SLC genes and are valuable for annotation and prediction of substrates for the many SLCs that have not been tested in experimental transport assays.
Related JoVE Video
Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men.
Diabetes
PUBLISHED: 09-28-2010
Show Abstract
Hide Abstract
Animal studies indicate a prominent role of brain insulin signaling in the regulation of peripheral energy metabolism. We determined the effect of intranasal insulin, which directly targets the brain, on glucose metabolism and energy expenditure in humans.
Related JoVE Video
Melanocortin receptor subtypes in interrenal cells and corticotropic activity of ?-melanocyte-stimulating hormones in barfin flounder, Verasper moseri.
Gen. Comp. Endocrinol.
PUBLISHED: 09-17-2010
Show Abstract
Hide Abstract
The aim of this study was to characterize the pituitary-interrenal axis in barfin flounder, a flatfish. Adrenocorticotropic hormone (ACTH) and melanocortin 2 receptor (MC2R) have been shown to be indispensable substances in pituitary and interrenal cells for cortisol release, respectively. We previously identified ACTH in the pars distalis of the barfin flounder pituitary gland, and detected transcripts of Mc1r, Mc4r, and Mc5r in the head kidney wherein interrenal cells are located. We have now demonstrated the presence of MC2R, which is a specific receptor for ACTH, in interrenal cells by molecular cloning of Mc2r cDNA and in situ hybridization, and confirmation of the in vitro cortisol-releasing activity of ACTH. These results show the presence of a classical pituitary-interrenal axis in this fish. We also evaluated the role of ?-melanocyte-stimulating hormone (?-MSH) and its related peptides. In situ hybridization was used to demonstrate the expression of Mc5r in interrenal cells; both desacetyl-?-MSH and diacetyl-?-MSH showed in vitro cortisol-releasing activities, while the activity of ?-MSH was negligible. These findings indicate the presence of an additional pituitary-interrenal axis consisting of ?-MSH-like peptides secreted from the neurointermediate lobe of the pituitary and MC5R in the interrenal cells. The cortisol-releasing activity of desacetyl-?-MSH and diacetyl-?-MSH, compared with the low activity of ?-MSH, suggest a unique and specific functional role of these forms of MSH peptides. The interrenal co-expression of two subtypes of Mcrs may play a role in this specialization.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.