JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The cytosolic domain of Pex22p stimulates the Pex4p-dependent ubiquitination of the PTS1-receptor.
PLoS ONE
PUBLISHED: 08-27-2014
Show Abstract
Hide Abstract
Peroxisomal biogenesis is an ubiquitin-dependent process because the receptors required for the import of peroxisomal matrix proteins are controlled via their ubiquitination status. A key step is the monoubiquitination of the import receptor Pex5p by the ubiquitin-conjugating enzyme (E2) Pex4p. This monoubiquitination is supposed to take place after Pex5p has released the cargo into the peroxisomal matrix and primes Pex5p for the extraction from the membrane by the mechano-enzymes Pex1p/Pex6p. These two AAA-type ATPases export Pex5p back to the cytosol for further rounds of matrix protein import. Recently, it has been reported that the soluble Pex4p requires the interaction to its peroxisomal membrane-anchor Pex22p to display full activity. Here we demonstrate that the soluble C-terminal domain of Pex22p harbours its biological activity and that this activity is independent from its function as membrane-anchor of Pex4p. We show that Pex4p can be functionally fused to the trans-membrane segment of the membrane protein Pex3p, which is not directly involved in Pex5p-ubiquitination and matrix protein import. However, this Pex3(N)-Pex4p chimera can only complement the double-deletion strain pex4?/pex22? and ensure optimal Pex5p-ubiquitination when the C-terminal part of Pex22p is additionally expressed in the cell. Thus, while the membrane-bound portion Pex22(N)p is not required when Pex4p is fused to Pex3(N)p, the soluble Pex22(C)p is essential for peroxisomal biogenesis and efficient monoubiquitination of the import receptor Pex5p by the E3-ligase Pex12p in vivo and in vitro. The results merge into a picture of an ubiquitin-conjugating complex at the peroxisomal membrane consisting of three domains: the ubiquitin-conjugating domain (Pex4p), a membrane-anchor domain (Pex22(N)p) and an enhancing domain (Pex22(C)p), with the membrane-anchor domain being mutually exchangeable, while the Ubc- and enhancer-domains are essential.
Related JoVE Video
IGFBP1 in epithelial circulating tumor cells as a potential response marker to selective internal radiation therapy in hepatocellular carcinoma.
Biomark Med
PUBLISHED: 08-16-2014
Show Abstract
Hide Abstract
Local ablative techniques such as selective internal radiation therapy (SIRT) have become the mainstay of treating hepatocellular carcinoma (HCC) in the bridging-to-transplant and palliative setting. We recently demonstrated that epithelial circulating tumor cells (CTCs) correlate to an unfavorable outcome. We wanted to scrutinize whether molecular markers detected in this specific CTC subgroup may also have clinical implications.
Related JoVE Video
Identification of novel biomarker candidates for the immunohistochemical diagnosis of cholangiocellular carcinoma.
Mol. Cell Proteomics
PUBLISHED: 07-17-2014
Show Abstract
Hide Abstract
The aim of this study was the identification of novel biomarker candidates for the diagnosis of cholangiocellular carcinoma (CCC) and its immunohistochemical differentiation from benign liver and bile duct cells. CCC is a primary cancer that arises from the epithelial cells of bile ducts and is characterized by high mortality rates due to its late clinical presentation and limited treatment options. Tumorous tissue and adjacent non-tumorous liver tissue from eight CCC patients were analyzed by means of two-dimensional differential in-gel electrophoresis and mass-spectrometry-based label-free proteomics. After data analysis and statistical evaluation of the proteins found to be differentially regulated between the two experimental groups (fold change ? 1.5; p value ? 0.05), 14 candidate proteins were chosen for determination of the cell-type-specific expression profile via immunohistochemistry in a cohort of 14 patients. This confirmed the significant up-regulation of serpin H1, 14-3-3 protein sigma, and stress-induced phosphoprotein 1 in tumorous cholangiocytes relative to normal hepatocytes and non-tumorous cholangiocytes, whereas some proteins were detectable specifically in hepatocytes. Because stress-induced phosphoprotein 1 exhibited both sensitivity and specificity of 100%, an immunohistochemical verification examining tissue sections of 60 CCC patients was performed. This resulted in a specificity of 98% and a sensitivity of 64%. We therefore conclude that this protein should be considered as a potential diagnostic biomarker for CCC in an immunohistochemical application, possibly in combination with other candidates from this study in the form of a biomarker panel. This could improve the differential diagnosis of CCC and benign bile duct diseases, as well as metastatic malignancies in the liver.
Related JoVE Video
Intestinal amino acid availability via PEPT-1 affects TORC1/2 signaling and the unfolded protein response.
J. Proteome Res.
PUBLISHED: 07-16-2014
Show Abstract
Hide Abstract
The intestinal peptide transporter PEPT-1 plays an important role in development, growth, reproduction, and stress tolerance in Caenorhabditis elegans, as revealed by the severe phenotype of the pept-1-deficient strain. The reduced number of offspring and increased stress resistance were shown to result from changes in the insulin/IGF-signaling cascade. To further elucidate the regulatory network behind the phenotypic alterations in PEPT1-deficient animals, a quantitative proteome analysis combined with transcriptome profiling was applied. Various target genes of XBP-1, the major mediator of the unfolded protein response, were found to be downregulated at the mRNA and protein levels, accompanied by a reduction of spliced xbp-1 mRNA. Proteome analysis also revealed a markedly reduced content of numerous ribosomal proteins. This was associated with a reduction in the protein synthesis rate in pept-1 C. elegans, a process that is strictly regulated by the TOR (target of rapamycine) complex, the cellular sensor for free amino acids. These data argue for a central role of PEPT-1 in cellular amino acid homeostasis. In PEPT-1 deficiency, amino acid levels dropped systematically, leading to alterations in protein synthesis and in the IRE-1/XBP-1 pathway.
Related JoVE Video
Frontiers in neurodegeneration--new insights and prospects--20th HUPO BPP Workshop: 15 September 2013, Yokohama, Japan.
Proteomics
PUBLISHED: 06-07-2014
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 20th workshop in Yokohama, Japan, September 15, 2013. The focus of the autumn workshop was on new insights and prospects of neurodegenerative diseases.
Related JoVE Video
Quantitative phosphoproteomics reveals the protein tyrosine kinase Pyk2 as a central effector of olfactory receptor signaling in prostate cancer cells.
Biochim. Biophys. Acta
PUBLISHED: 06-05-2014
Show Abstract
Hide Abstract
The prostate-specific G-protein-coupled receptor 1 (PSGR1) is an olfactory receptor specifically expressed in the prostate gland. PSGR1 expression is elevated both in benign prostatic hyperplasia tissue and in prostate cancer. Stimulation of PSGR1 by the odorant ?-ionone leads to an increase in the intracellular Ca(2+) concentration, activation of mitogen-activated protein (MAP) kinases and a decrease in prostate cancer cell proliferation. To further extend our knowledge about PSGR1 signaling in prostate cancer cells, we performed a quantitative phosphoproteomics study using stable isotope labeling by amino acids in cell culture and mass spectrometry. We report 51 differentially regulated phosphorylation sites in 24 proteins with functions in cytoskeletal remodeling, signaling and ion transport. Activation of PSGR1 evoked an increase in intracellular pH mediated by the sodium/hydrogen exchanger NHE1. Furthermore, we report the protein tyrosine kinase Pyk2 as a central effector of PSGR1 signaling cascades in LNCaP cells. Our data show that phosphorylation of p38 MAP kinase is triggered by Pyk2. In addition, we confirmed dephosphorylation of the tumor suppressor protein N-myc downstream regulated gene 1 (NDRG1) at Ser330 downstream of Pyk2. Since NDRG1 impacts oncogenic signaling pathways interfering with tumor progression, we suggest that the Pyk2-NDRG1 axis is possibly involved in conveying the anti-proliferative effect of ?-ionone in prostate cancer cells. This article is part of a Special Issue entitled: Medical Proteomics.
Related JoVE Video
Proteome Analysis of a Hepatocyte-Specific BIRC5 (Survivin)-Knockout Mouse Model during Liver Regeneration.
J. Proteome Res.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.
Related JoVE Video
Lipidomic and proteomic characterization of platelet extracellular vesicle subfractions from senescent platelets.
Transfusion
PUBLISHED: 05-15-2014
Show Abstract
Hide Abstract
Platelets (PLTs) in stored PLT concentrates (PLCs) release PLT extracellular vesicles (PL-EVs) induced by senescence and activation, resembling the PLT storage lesion. No comprehensive classification or molecular characterization of senescence-induced PL-EVs exists to understand PL-EV heterogeneity.
Related JoVE Video
Developing new methods to answer old and new questions in neurodegenerative diseases: 21(st) Workshop of the HUPO Brain Proteome Project (HBPP) 23-24 January 2014, Honolulu, Hawaii.
Proteomics
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 21(st) workshop in Honolulu, Hawaii. During the 23-24 January 2014 the island became the center of the open workshop of the scientific community.
Related JoVE Video
The membrane proteome of sensory cilia to the depth of olfactory receptors.
Mol. Cell Proteomics
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
In the nasal cavity, the nonmotile cilium of olfactory sensory neurons (OSNs) constitutes the chemosensory interface between the ambient environment and the brain. The unique sensory organelle facilitates odor detection for which it includes all necessary components of initial and downstream olfactory signal transduction. In addition to its function in olfaction, a more universal role in modulating different signaling pathways is implicated, for example, in neurogenesis, apoptosis, and neural regeneration. To further extend our knowledge about this multifunctional signaling organelle, it is of high importance to establish a most detailed proteome map of the ciliary membrane compartment down to the level of transmembrane receptors. We detached cilia from mouse olfactory epithelia via Ca(2+)/K(+) shock followed by the enrichment of ciliary membrane proteins at alkaline pH, and we identified a total of 4,403 proteins by gel-based and gel-free methods in conjunction with high resolution LC/MS. This study is the first to report the detection of 62 native olfactory receptor proteins and to provide evidence for their heterogeneous expression at the protein level. Quantitative data evaluation revealed four ciliary membrane-associated candidate proteins (the annexins ANXA1, ANXA2, ANXA5, and S100A5) with a suggested function in the regulation of olfactory signal transduction, and their presence in ciliary structures was confirmed by immunohistochemistry. Moreover, we corroborated the ciliary localization of the potassium-dependent Na(+)/Ca(2+) exchanger (NCKX) 4 and the plasma membrane Ca(2+)-ATPase 1 (PMCA1) involved in olfactory signal termination, and we detected for the first time NCKX2 in olfactory cilia. Through comparison with transcriptome data specific for mature, ciliated OSNs, we finally delineated the membrane ciliome of OSNs. The membrane proteome of olfactory cilia established here is the most complete today, thus allowing us to pave new avenues for the study of diverse molecular functions and signaling pathways in and out of olfactory cilia and thus to advance our understanding of the biology of sensory organelles in general.
Related JoVE Video
High-fat diet induced isoform changes of the Parkinson's disease protein DJ-1.
J. Proteome Res.
PUBLISHED: 03-28-2014
Show Abstract
Hide Abstract
Genetic and environmental factors mediate via different physiological and molecular processes a shifted energy balance leading to overweight and obesity. To get insights into the underlying processes involved in energy intake and weight gain, we compared hypothalamic tissue of mice kept on a high-fat or control diet for 10 days by a proteomic approach. Using two-dimensional difference gel electrophoresis in combination with LC-MS/MS, we observed significant abundance changes in 15 protein spots. One isoform of the protein DJ-1 was elevated in the high-fat diet group in three different mouse strains SWR/J, C57BL/6N, and AKR/J analyzed. Large-scale validation of DJ-1 isoforms in individual samples and tissues confirmed a shift in the pattern of DJ-1 isoforms toward more acidic isoforms in several brain and peripheral tissues after feeding a high-fat diet for 10 days. The identification of oxidation of cysteine 106 as well as 2-succinyl modification of the same residue by mass spectrometry not only explains the isoelectric shift of DJ-1 but also links our results to similar shifts of DJ-1 observed in neurodegenerative disease states under oxidative stress. We hypothesize that DJ-1 is a common physiological sensor involved in both nutrition-induced effects and neurodegenerative disease states.
Related JoVE Video
Autoimmune profiling with protein microarrays in clinical applications.
Biochim. Biophys. Acta
PUBLISHED: 02-18-2014
Show Abstract
Hide Abstract
In recent years, knowledge about immune-related disorders has substantially increased, especially in the field of central nervous system (CNS) disorders. Recent innovations in protein-related microarray technology have enabled the analysis of interactions between numerous samples and up to 20,000 targets. Antibodies directed against ion channels, receptors and other synaptic proteins have been identified, and their causative roles in different disorders have been identified. Knowledge about immunological disorders is likely to expand further as more antibody targets are discovered. Therefore, protein microarrays may become an established tool for routine diagnostic procedures in the future. The identification of relevant target proteins requires the development of new strategies to handle and process vast quantities of data so that these data can be evaluated and correlated with relevant clinical issues, such as disease progression, clinical manifestations and prognostic factors. This review will mainly focus on new protein array technologies, which allow the processing of a large number of samples, and their various applications with a deeper insight into their potential use as diagnostic tools in neurodegenerative diseases and other diseases. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Related JoVE Video
Novel prognostic markers revealed by a proteomic approach separating benign from malignant insulinomas.
Mod. Pathol.
PUBLISHED: 01-19-2014
Show Abstract
Hide Abstract
The prognosis of pancreatic neuroendocrine tumors is related to size, histology and proliferation rate. However, this stratification needs to be refined further. We conducted a proteome study on insulinomas, a well-defined pancreatic neuroendocrine tumor entity, in order to identify proteins that can be used as biomarkers for malignancy. Based on a long follow-up, insulinomas were divided into those with metastases (malignant) and those without (benign). Microdissected cells from six benign and six malignant insulinomas were subjected to a procedure combining fluorescence dye saturation labeling with high-resolution two-dimensional gel electrophoresis. Differentially expressed proteins were identified using nano liquid chromatography-electrospray ionization/multi-stage mass spectrometry and validated by immunohistochemistry on tissue microarrays containing 62 insulinomas. Sixteen differentially regulated proteins were identified among 3000 protein spots. Immunohistochemical validation revealed that aldehyde dehydrogenase 1A1 and voltage-dependent anion-selective channel protein 1 showed significantly stronger expression in malignant insulinomas than in benign insulinomas, whereas tumor protein D52 (TPD52) binding protein was expressed less strongly in malignant insulinomas than in benign insulinomas. Using multivariate analysis, low TPD52 expression was identified as a strong independent prognostic factor for both recurrence-free and overall disease-related survival.Modern Pathology advance online publication, 20 June 2014; doi:10.1038/modpathol.2014.82.
Related JoVE Video
Analysis of U2 small nuclear RNA fragments in the bile differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders.
Dig. Dis. Sci.
PUBLISHED: 01-08-2014
Show Abstract
Hide Abstract
Up to now the diagnosis of early stage cholangiocarcinoma (CC) has remained difficult, with low sensitivities reported for current diagnostic methods. Based on recent promising findings about circulating U2 small nuclear RNA fragments (RNU2-1f) as novel blood-based biomarkers for pancreatic and colorectal adenocarcinoma, we studied the utility of RNU2-1f as a diagnostic marker of CC in bile fluid.
Related JoVE Video
Highly immunoreactive IgG antibodies directed against a set of twenty human proteins in the sera of patients with amyotrophic lateral sclerosis identified by protein array.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disorder, is characterized by the progressive and selective loss of upper and lower motor neurons. Diagnosis of this disorder is based on clinical assessment, and the average survival time is less than 3 years. Injections of IgG from ALS patients into mice are known to specifically mark motor neurons. Moreover, IgG has been found in upper and lower motor neurons in ALS patients. These results led us to perform a case-control study using human protein microarrays to identify the antibody profiles of serum samples from 20 ALS patients and 20 healthy controls. We demonstrated high levels of 20 IgG antibodies that distinguished the patients from the controls. These findings suggest that a panel of antibodies may serve as a potential diagnostic biomarker for ALS.
Related JoVE Video
FE65 interactomics revealed SV2A and SERCA2 as new binding proteins in the human brain.
Mol. Cell Proteomics
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
FE65 is a cytosolic adapter protein and an important binding partner of the amyloid precursor protein (APP). Dependent on Thr668 phosphorylation in APP, which influences amyloidogenic APP processing, FE65 undergoes nuclear translocation, thereby transmitting a signal from the cell membrane to the nucleus. As this translocation may be relevant in Alzheimer disease (AD) and as FE65 consists of three protein-protein interaction domains able to bind and affect a variety of other proteins and down-stream signaling pathways, the identification of the FE65 interactome is of central interest in AD research. In this study, we identified 123 proteins as new potential FE65 interacting proteins in a pulldown/mass spectrometry approach using human post-mortem brain samples as protein pools for recombinantly expressed FE65. Co-immunoprecipitation assays further validated the interaction of FE65 with the candidates SV2A and SERCA2. In parallel, we investigated the whole cell proteome of primary hippocampal neurons from FE65/FE65L1 double knockout mice. Notably, the validated FE65-binding proteins were also found to be differentially abundant in neurons derived from the FE65 knockout mice when compared to wild type control neurons. SERCA2 is an important player in cellular calcium homeostasis, which was found to be upregulated in DKO neurons. Indeed, knock-down of FE65 in HEK293T cells also evoked an elevated sensitivity to thapsigargin, a stressor specifically targeting the activity of SERCA2. Thus, our results suggest that FE65 is involved in the regulation of the intracellular calcium homeostasis. While transfection of FE65 alone caused a typical dot-like phenotype in the nucleus, co-transfection of SV2A significantly reduced the percentage of FE65 dot-positive cells, pointing to a possible role for SV2A in the modulation of FE65 intracellular targeting. Given that SV2A has a signaling function at the presynapse, its effect on FE65 intracellular localization suggests that the SV2A/FE65 interaction might play a role in synaptic signal transduction.
Related JoVE Video
Early diagnosis of neurodegenerative diseases - the long awaited Holy Grail and bottleneck of modern brain research - 19th HUPO BPP workshop: May 22-24, 2013, Dortmund, Germany.
Proteomics
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 19th workshop in Dortmund, Germany, from May 22 to 24, 2013. The focus of the spring workshop was on strategies and developments concerning early diagnosis of neurodegenerative diseases.
Related JoVE Video
Long-term incubation with mifepristone (MLTI) increases the spine density in developing Purkinje cells: new insights into progesterone receptor mechanisms.
Cell. Mol. Life Sci.
PUBLISHED: 08-05-2013
Show Abstract
Hide Abstract
Cerebellar Purkinje cells (PC) physiologically reveal an age-dependent expression of progesterone with high endogenous concentrations during the neonatal period. Even if progesterone has been previously shown to induce spinogenesis, dendritogenesis and synaptogenesis in immature PC, data about the effects of progesterone on mature PC are missing, even though they could be of significant therapeutic interest. The current study demonstrates for the first time a progesterone effect, depending on the developmental age of PC. Comparable with the physiological course of the progesterone concentration, experimental treatment with progesterone for 24 h achieves the highest effects on the dendritic tree during the early neonate, inducing an highly significant increase in dendritic length, spine number and spine area, while spine density in mature PC could not be further stimulated by progesterone incubation. Observed progesterone effects are certainly mediated by classical progesterone receptors, as spine area and number were comparable to controls when progesterone incubation was combined with mifepristone (incubation for 24 h), an antagonist of progesterone receptors A and B (PR-A/PR-B). In contrast, an increase in the spine number and area of both immature and mature PC was detected when slice cultures were incubated with mifepristone for more than 72 h (mifepristone long-time incubation, MLTI). By including time-lapse microscopy, electron microscopic techniques, PCR, western blot, and MALDI IMS receptor analysis, as well as specific antagonists like trilostane and AG 205, we were able to detect the underlying mechanism of this diverging mifepristone effect. Thus, our results provide new insights into the function and signaling mechanisms of the recently described progesterone receptor membrane component 1 (PGRMC1) in PC. It is highly suitable that progesterone does not just induce effects by the well-known genomic mechanisms of the classical progesterone receptors but also acts through PGRMC1 mediated non-genomic mechanisms. Thus, our results provide first proofs for a previously discussed progesterone-dependent induction of neurosteroidogenesis in PC by interaction with PGRMC1. But while genomic progesterone effects mediated through classical PR-A and PR-B seem to be restricted to the neonatal period of PC, PGRMC1 also transmits signals by non-genomic mechanisms like regulation of the neurosteroidogenesis in mature PC. Thus, PGRMC1 might be an interesting target for future clinical studies and therapeutic interventions.
Related JoVE Video
Individual profiling of circulating tumor cell composition and therapeutic outcome in patients with hepatocellular carcinoma.
Transl Oncol
PUBLISHED: 08-01-2013
Show Abstract
Hide Abstract
Circulating tumor cells (CTCs) have been proposed as a monitoring tool in patients with solid tumors. So far, automated approaches are challenged by the cellular heterogeneity of CTC, especially the epithelial-mesenchymal transition. Recently, Yu and colleagues showed that shifts in these cell populations correlated with response and progression, respectively, to chemotherapy in patients with breast cancer. In this study, we assessed which non-hematopoietic cell types were identifiable in the peripheral blood of hepatocellular carcinoma (HCC) patients and whether their distribution during treatment courses is associated with clinical characteristics.
Related JoVE Video
The fate of b-ions in the two worlds of collision-induced dissociation.
Biochim. Biophys. Acta
PUBLISHED: 06-26-2013
Show Abstract
Hide Abstract
Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss.
Related JoVE Video
Distinct ubiquitination cascades act on the peroxisomal targeting signal type 2 co-receptor Pex18p.
Traffic
PUBLISHED: 06-19-2013
Show Abstract
Hide Abstract
Peroxisomal matrix protein import is facilitated by cycling receptors that recognize their cargo proteins in the cytosol by a peroxisomal targeting sequence (PTS) and ferry them to the peroxisomal membrane. Subsequently, the cargo is translocated into the peroxisomal lumen, whereas the receptor is released to the cytosol for further rounds of protein import. This cycle is controlled by the ubiquitination status of the receptor, which is best understood for the PTS1-receptor. While polyubiquitination of PTS-receptors results in their proteasomal degradation, the monoubiquitinated PTS-receptors are exported to the cytosol and recycled for further rounds of protein import. Here, we describe the identification of two ubiquitination cascades acting on the PTS2 co-receptor Pex18p. Using in vivo and in vitro approaches, we demonstrate that the polyubiquitination of Pex18p requires the ubiquitin-conjugating enzyme (E2) Ubc4p, which cooperates with the RING (really interesting new gene)-type ubiquitin-protein ligases (E3) Pex2p as well as Pex10p. Monoubiquitination of Pex18p depends on the E2 enzyme Pex4p (Ubc10p), which functions in concert with the E3 enzymes Pex12p and Pex10p. Our findings for the PTS2-pathway complement the data on PTS1-receptor ubiquitination and add up to a unified concept of the ubiquitin-based regulation of peroxisomal import.
Related JoVE Video
Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress.
J. Biol. Chem.
PUBLISHED: 05-21-2013
Show Abstract
Hide Abstract
Peroxynitrite is a highly reactive chemical species with antibacterial properties that are synthesized in immune cells. In a proteomic approach, we identified specific target proteins of peroxynitrite-induced modifications in Escherichia coli. Although peroxynitrite caused a fairly indiscriminate nitration of tyrosine residues, reversible modifications of protein thiols were highly specific. We used a quantitative redox proteomic method based on isotope-coded affinity tag chemistry and identified four proteins consistently thiol-modified in cells treated with peroxynitrite as follows: AsnB, FrmA, MaeB, and RidA. All four were required for peroxynitrite stress tolerance in vivo. Three of the identified proteins were modified at highly conserved cysteines, and MaeB and FrmA are known to be directly involved in the oxidative and nitrosative stress response in E. coli. In in vitro studies, we could show that the activity of RidA, a recently discovered enamine/imine deaminase, is regulated in a specific manner by the modification of its single conserved cysteine. Mutation of this cysteine 107 to serine generated a constitutively active protein that was not susceptible to peroxynitrite.
Related JoVE Video
Comparison of label-free and label-based strategies for proteome analysis of hepatoma cell lines.
Biochim. Biophys. Acta
PUBLISHED: 05-14-2013
Show Abstract
Hide Abstract
Within the past decade numerous methods for quantitative proteome analysis have been developed of which all exhibit particular advantages and disadvantages. Here, we present the results of a study aiming for a comprehensive comparison of ion-intensity based label-free proteomics and two label-based approaches using isobaric tags incorporated at the peptide and protein levels, respectively. As model system for our quantitative analysis we used the three hepatoma cell lines HepG2, Hep3B and SK-Hep-1. Four biological replicates of each cell line were quantitatively analyzed using an RPLC-MS/MS setup. Each quantification experiment was performed twice to determine technical variances of the different quantification techniques. We were able to show that the label-free approach by far outperforms both TMT methods regarding proteome coverage, as up to threefold more proteins were reproducibly identified in replicate measurements. Furthermore, we could demonstrate that all three methods show comparable reproducibility concerning protein quantification, but slightly differ in terms of accuracy. Here, label-free was found to be less accurate than both TMT approaches. It was also observed that the introduction of TMT labels at the protein level reduces the effect of underestimation of protein ratios, which is commonly monitored in case of TMT peptide labeling. Previously reported differences in protein expression between the particular cell lines were furthermore reproduced, which confirms the applicability of each investigated quantification method to study proteomic differences in such biological systems. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Related JoVE Video
The amino acids backup bone - Storage solutions for proteomics facilities.
Biochim. Biophys. Acta
PUBLISHED: 05-14-2013
Show Abstract
Hide Abstract
Proteomics methods, especially high-throughput mass spectrometry analysis have been continually developed and improved over the years. The analysis of complex biological samples produces large volumes of raw data. Data storage and recovery management pose substantial challenges to biomedical or proteomic facilities regarding backup and archiving concepts as well as hardware requirements. In this article we describe differences between the terms backup and archive with regard to manual and automatic approaches. We also introduce different storage concepts and technologies from transportable media to professional solutions such as redundant array of independent disks (RAID) systems, network attached storages (NAS) and storage area network (SAN). Moreover, we present a software solution, which we developed for the purpose of long-term preservation of large mass spectrometry raw data files on an object storage device (OSD) archiving system. Finally, advantages, disadvantages, and experiences from routine operations of the presented concepts and technologies are evaluated and discussed. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Related JoVE Video
A combination of two electrophoretical approaches for detailed proteome-based characterization of SCLC subtypes.
Arch. Physiol. Biochem.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Small cell lung cancers (SCLC) are heterogeneous and tumours differ in growth characteristics and treatment resistance.
Related JoVE Video
Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2).
J. Cell. Sci.
PUBLISHED: 04-19-2013
Show Abstract
Hide Abstract
The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) is an important suppressor of hypoxia-inducible factor (HIF) activity. In addition to HIF-?, FIH-1 was previously shown to hydroxylate other substrates within a highly conserved protein interaction domain, termed the ankyrin repeat domain (ARD). However, to date, the biological role of FIH-1-dependent ARD hydroxylation could not be clarified for any ARD-containing substrate. The apoptosis-stimulating p53-binding protein (ASPP) family members were initially identified as highly conserved regulators of the tumour suppressor p53. In addition, ASPP2 was shown to be important for the regulation of cell polarity through interaction with partitioning defective 3 homolog (Par-3). Using mass spectrometry we identified ASPP2 as a new substrate of FIH-1 but inhibitory ASPP (iASPP) was not hydroxylated. We demonstrated that ASPP2 asparagine 986 (N986) is a single hydroxylation site located within the ARD. ASPP2 protein levels and stability were not affected by depletion or inhibition of FIH-1. However, FIH-1 depletion did lead to impaired binding of Par-3 to ASPP2 while the interaction between ASPP2 and p53, apoptosis and proliferation of the cancer cells were not affected. Depletion of FIH-1 and incubation with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) resulted in relocation of ASPP2 from cell-cell contacts to the cytosol. Our data thus demonstrate that protein interactions of ARD-containing substrates can be modified by FIH-1-dependent hydroxylation. The large cellular pool of ARD-containing proteins suggests that FIH-1 can affect a broad range of cellular functions and signalling pathways under certain conditions, for example, in response to severe hypoxia.
Related JoVE Video
Nonnative disulfide bond formation activates the ?32-dependent heat shock response in Escherichia coli.
J. Bacteriol.
PUBLISHED: 04-12-2013
Show Abstract
Hide Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli ?(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of ?(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of ?(32), we found that this constant induction can be attributed to an increase of the half-life of ?(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli ?(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes ?(32) by preventing its DnaK- and FtsH-dependent degradation.
Related JoVE Video
FE65 regulates and interacts with the Bloom syndrome protein in dynamic nuclear spheres - potential relevance to Alzheimers disease.
J. Cell. Sci.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
The intracellular domain of the amyloid precursor protein (AICD) is generated following cleavage of the precursor by the ?-secretase complex and is involved in membrane to nucleus signaling, for which the binding of AICD to the adapter protein FE65 is essential. Here we show that FE65 knockdown causes a downregulation of the protein Bloom syndrome protein (BLM) and the minichromosome maintenance (MCM) protein family and that elevated nuclear levels of FE65 result in stabilization of the BLM protein in nuclear mobile spheres. These spheres are able to grow and fuse, and potentially correspond to the nuclear domain 10. BLM plays a role in DNA replication and repair mechanisms and FE65 was also shown to play a role in DNA damage response in the cell. A set of proliferation assays in our work revealed that FE65 knockdown in HEK293T cells reduced cell replication. On the basis of these results, we hypothesize that nuclear FE65 levels (nuclear FE65/BLM containing spheres) may regulate cell cycle re-entry in neurons as a result of increased interaction of FE65 with BLM and/or an increase in MCM protein levels. Thus, FE65 interactions with BLM and MCM proteins may contribute to the neuronal cell cycle re-entry observed in brains affected by Alzheimers disease.
Related JoVE Video
Label-free quantification in clinical proteomics.
Biochim. Biophys. Acta
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Nowadays, proteomic studies no longer focus only on identifying as many proteins as possible in a given sample, but aiming for an accurate quantification of them. Especially in clinical proteomics, the investigation of variable protein expression profiles can yield useful information on pathological pathways or biomarkers and drug targets related to a particular disease. Over the time, many quantitative proteomic approaches have been established allowing researchers in the field of proteomics to refer to a comprehensive toolbox of different methodologies. In this review we will give an overview of different methods of quantitative proteomics with focus on label-free proteomics and its use in clinical proteomics.
Related JoVE Video
Proteomic differences between hepatocellular carcinoma and nontumorous liver tissue investigated by a combined gel-based and label-free quantitative proteomics study.
Mol. Cell Proteomics
PUBLISHED: 03-05-2013
Show Abstract
Hide Abstract
Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.
Related JoVE Video
Improving the default data analysis workflow for large autoimmune biomarker discovery studies with ProtoArrays.
Proteomics
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Contemporary protein microarrays such as the ProtoArray® are used for autoimmune antibody screening studies to discover biomarker panels. For ProtoArray data analysis, the software Prospector and a default workflow are suggested by the manufacturer. While analyzing a large data set of a discovery study for diagnostic biomarkers of the Parkinsons disease (ParkCHIP), we have revealed the need for distinct improvements of the suggested workflow concerning raw data acquisition, normalization and preselection method availability, batch effects, feature selection, and feature validation. In this work, appropriate improvements of the default workflow are proposed. It is shown that completely automatic data acquisition as a batch, a re-implementation of Prospectors pre-selection method, multivariate or hybrid feature selection, and validation of the selected protein panel using an independent test set define in combination an improved workflow for large studies.
Related JoVE Video
A practical data processing workflow for multi-OMICS projects.
Biochim. Biophys. Acta
PUBLISHED: 02-15-2013
Show Abstract
Hide Abstract
Multi-OMICS approaches aim on the integration of quantitative data obtained for different biological molecules in order to understand their interrelation and the functioning of larger systems. This paper deals with several data integration and data processing issues that frequently occur within this context. To this end, the data processing workflow within the PROFILE project is presented, a multi-OMICS project that aims on identification of novel biomarkers and the development of new therapeutic targets for seven important liver diseases. Furthermore, a software called CrossPlatformCommander is sketched, which facilitates several steps of the proposed workflow in a semi-automatic manner. Application of the software is presented for the detection of novel biomarkers, their ranking and annotation with existing knowledge using the example of corresponding Transcriptomics and Proteomics data sets obtained from patients suffering from hepatocellular carcinoma. Additionally, a linear regression analysis of Transcriptomics vs. Proteomics data is presented and its performance assessed. It was shown, that for capturing profound relations between Transcriptomics and Proteomics data, a simple linear regression analysis is not sufficient and implementation and evaluation of alternative statistical approaches are needed. Additionally, the integration of multivariate variable selection and classification approaches is intended for further development of the software. Although this paper focuses only on the combination of data obtained from quantitative Proteomics and Transcriptomics experiments, several approaches and data integration steps are also applicable for other OMICS technologies. Keeping specific restrictions in mind the suggested workflow (or at least parts of it) may be used as a template for similar projects that make use of different high throughput techniques. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Related JoVE Video
Controlled vocabularies and ontologies in proteomics: Overview, principles and practice.
Biochim. Biophys. Acta
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
This paper focuses on the use of controlled vocabularies (CVs) and ontologies especially in the area of proteomics, primarily related to the work of the Proteomics Standards Initiative (PSI). It describes the relevant proteomics standard formats and the ontologies used within them. Software and tools for working with these ontology files are also discussed. The article also examines the "mapping files" used to ensure correct controlled vocabulary terms that are placed within PSI standards and the fulfillment of the MIAPE (Minimum Information about a Proteomics Experiment) requirements. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Related JoVE Video
The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey.
PLoS ONE
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or ?-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD(+) becomes regenerated during fatty acid ?-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.
Related JoVE Video
Progresses in neuroproteomics of neurodegenerative diseases--18th HUPO BPP workshop: September 12, 2012, Boston, USA.
Proteomics
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 18(th) workshop in Boston, USA, September 12(th) 2012 during the HUPO 11th Annual Word Congress. The focus was on the progress on the Human Brain Proteome Atlas as well as ideas, strategies and methodological aspects.
Related JoVE Video
Challenges in modern biomarker discovery--17th HUPO BPP workshop: May 24-25, 2012, Sao Paulo, Brazil.
Proteomics
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 17(th) workshop in Sao Paulo, Brazil, on May 24 and 25, 2012. The focus was on the progress on the Human Brain Proteome Atlas as well as ideas, strategies and methodological aspects in clinical neuroproteomics.
Related JoVE Video
Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study.
FEBS Lett.
PUBLISHED: 01-16-2013
Show Abstract
Hide Abstract
A proteomics screen was initiated to identify Rab proteins regulating transport to and away from peroxisomes. Mass spectrometry-based protein correlation profiling of rat liver organelles and immunofluorescence analysis of the peroxisome candidate Rab proteins revealed Rab6, Rab10, Rab14 and Rab18 to associate with the peroxisomal membrane. While Rab14 localized to peroxisomes predominantly in its dominant-active form, other Rab proteins associated with peroxisomes in both their GTP- and GDP-bound state. In summary, our data suggest that Rab6, Rab10, Rab14 and Rab18 associate with the peroxisomal compartment and similar as previously shown for Rab8, Rab18 in its GDP-bound state favors peroxisome proliferation.
Related JoVE Video
Detection of patient subgroups with differential expression in omics data: a comprehensive comparison of univariate measures.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Detection of yet unknown subgroups showing differential gene or protein expression is a frequent goal in the analysis of modern molecular data. Applications range from cancer biology over developmental biology to toxicology. Often a control and an experimental group are compared, and subgroups can be characterized by differential expression for only a subgroup-specific set of genes or proteins. Finding such genes and corresponding patient subgroups can help in understanding pathological pathways, diagnosis and defining drug targets. The size of the subgroup and the type of differential expression determine the optimal strategy for subgroup identification. To date, commonly used software packages hardly provide statistical tests and methods for the detection of such subgroups. Different univariate methods for subgroup detection are characterized and compared, both on simulated and on real data. We present an advanced design for simulation studies: Data is simulated under different distributional assumptions for the expression of the subgroup, and performance results are compared against theoretical upper bounds. For each distribution, different degrees of deviation from the majority of observations are considered for the subgroup. We evaluate classical approaches as well as various new suggestions in the context of omics data, including outlier sum, PADGE, and kurtosis. We also propose the new FisherSum score. ROC curve analysis and AUC values are used to quantify the ability of the methods to distinguish between genes or proteins with and without certain subgroup patterns. In general, FisherSum for small subgroups and [Formula: see text]-test for large subgroups achieve best results. We apply each method to a case-control study on Parkinsons disease and underline the biological benefit of the new method.
Related JoVE Video
Diagnostic value of the impairment of olfaction in Parkinsons disease.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Olfactory impairment is increasingly recognized as an early symptom in the development of Parkinsons disease. Testing olfactory function is a non-invasive method but can be time-consuming which restricts its application in clinical settings and epidemiological studies. Here, we investigate odor identification as a supportive diagnostic tool for Parkinsons disease and estimate the performance of odor subsets to allow a more rapid testing of olfactory impairment.
Related JoVE Video
The HUPO proteomics standards initiative- mass spectrometry controlled vocabulary.
Database (Oxford)
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Controlled vocabularies (CVs), i.e. a collection of predefined terms describing a modeling domain, used for the semantic annotation of data, and ontologies are used in structured data formats and databases to avoid inconsistencies in annotation, to have a unique (and preferably short) accession number and to give researchers and computer algorithms the possibility for more expressive semantic annotation of data. The Human Proteome Organization (HUPO)-Proteomics Standards Initiative (PSI) makes extensive use of ontologies/CVs in their data formats. The PSI-Mass Spectrometry (MS) CV contains all the terms used in the PSI MS-related data standards. The CV contains a logical hierarchical structure to ensure ease of maintenance and the development of software that makes use of complex semantics. The CV contains terms required for a complete description of an MS analysis pipeline used in proteomics, including sample labeling, digestion enzymes, instrumentation parts and parameters, software used for identification and quantification of peptides/proteins and the parameters and scores used to determine their significance. Owing to the range of topics covered by the CV, collaborative development across several PSI working groups, including proteomics research groups, instrument manufacturers and software vendors, was necessary. In this article, we describe the overall structure of the CV, the process by which it has been developed and is maintained and the dependencies on other ontologies. Database URL: http://psidev.cvs.sourceforge.net/viewvc/psidev/psi/psi-ms/mzML/controlledVocabulary/psi-ms.obo.
Related JoVE Video
Sense and nonsense of pathway analysis software in proteomics.
J. Proteome Res.
PUBLISHED: 11-14-2011
Show Abstract
Hide Abstract
New developments in proteomics enable scientists to examine hundreds to thousands of proteins in parallel. Quantitative proteomics allows the comparison of different proteomes of cells, tissues, or body fluids with each other. Analyzing and especially organizing these data sets is often a Herculean task. Pathway Analysis software tools aim to take over this task based on present knowledge. Companies promise that their algorithms help to understand the significance of scientists data, but the benefit remains questionable, and a fundamental systematic evaluation of the potential of such tools has not been performed until now. Here, we tested the commercial Ingenuity Pathway Analysis tool as well as the freely available software STRING using a well-defined study design in regard to the applicability and value of their results for proteome studies. It was our goal to cover a wide range of scientific issues by simulating different established pathways including mitochondrial apoptosis, tau phosphorylation, and Insulin-, App-, and Wnt-signaling. Next to a general assessment and comparison of the pathway analysis tools, we provide recommendations for users as well as for software developers to improve the added value of a pathway study implementation in proteomic pipelines.
Related JoVE Video
Clinical aspects of neurodegenerative diseases - 15th HUPO BPP Workshop April 8-9, 2011, Bochum, Germany.
Proteomics
PUBLISHED: 11-03-2011
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 15th workshop in Bochum, Germany, from April 8th to 9th, 2011 directly after the Proteomic Forum 2011 in Berlin. Like on every spring workshop, the focus was more on clinical aspects, so that especially clinicians participated in this workshop.
Related JoVE Video
Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity.
Insect Biochem. Mol. Biol.
PUBLISHED: 08-16-2011
Show Abstract
Hide Abstract
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.
Related JoVE Video
No difference between alfacalcidol and paricalcitol in the treatment of secondary hyperparathyroidism in hemodialysis patients: a randomized crossover trial.
Kidney Int.
PUBLISHED: 08-10-2011
Show Abstract
Hide Abstract
Alfacalcidol and paricalcitol are vitamin D analogs used for the treatment of secondary hyperparathyroidism in patients with chronic kidney disease, but have known dose-dependent side effects that cause hypercalcemia and hyperphosphatemia. In this investigator-initiated multicenter randomized clinical trial, we originally intended two crossover study periods with a washout interval in 86 chronic hemodialysis patients. These patients received increasing intravenous doses of either alfacalcidol or paricalcitol for 16 weeks, until parathyroid hormone was adequately suppressed or calcium or phosphate levels reached an upper threshold. Unfortunately, due to a period effect, only the initial 16-week intervention period for 80 patients was statistically analyzed. The proportion of patients achieving a 30% decrease in parathyroid hormone levels over the last four weeks of study was statistically indistinguishable between the two groups. Paricalcitol was more efficient at correcting low than high baseline parathyroid hormone levels, whereas alfacalcidol was equally effective at all levels. There were no differences in the incidence of hypercalcemia and hyperphosphatemia. Thus, alfacalcidol and paricalcitol were equally effective in the suppression of secondary hyperparathyroidism in hemodialysis patients while calcium and phosphorus were kept in the desired range.
Related JoVE Video
Creating a human brain proteome atlas--14th HUPO BPP workshop September 20-21, 2010, Sydney, Australia.
Proteomics
PUBLISHED: 07-29-2011
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 14th workshop during the HUPO 9th Annual World Congress in Sydney, Australia. The principal aim of this project is to discover prognostic and diagnostic biomarkers associated with neurodegenerative diseases and brain aging, with the ultimate objective of obtaining a better understanding of these conditions and creating roads for the development of novel diagnostic techniques and effective treatments. The attendees came together to discuss progress in the human clinical neuroproteomics and to define the needs and guidelines required for more advanced proteomics approaches.
Related JoVE Video
Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis.
Dev. Cell
PUBLISHED: 07-03-2011
Show Abstract
Hide Abstract
The mitochondrial inner membrane consists of two domains, inner boundary membrane and cristae membrane that are connected by crista junctions. Mitofilin/Fcj1 was reported to be involved in formation of crista junctions, however, different views exist on its function and possible partner proteins. We report that mitofilin plays a dual role. Mitofilin is part of a large inner membrane complex, and we identify five partner proteins as constituents of the mitochondrial inner membrane organizing system (MINOS) that is required for keeping cristae membranes connected to the inner boundary membrane. Additionally, mitofilin is coupled to the outer membrane and promotes protein import via the mitochondrial intermembrane space assembly pathway. Our findings indicate that mitofilin is a central component of MINOS and functions as a multifunctional regulator of mitochondrial architecture and protein biogenesis.
Related JoVE Video
Creating a human brain proteome atlas--13th HUPO BPP Workshop March 30-31, 2010, Ochang, Korea.
Proteomics
PUBLISHED: 07-01-2011
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 13th workshop in Ochang from March 30th to 31st, 2010 prior to the Korean HUPO 10th Annual International Proteomics Conference. The principal aim of this project is to obtain a better understanding of neurodiseases and aging with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss progress in the clinical neuroproteomics of human and to define the needs and guidelines required for more advanced proteomics approaches.
Related JoVE Video
Ubp15p, a ubiquitin hydrolase associated with the peroxisomal export machinery.
J. Biol. Chem.
PUBLISHED: 06-10-2011
Show Abstract
Hide Abstract
Peroxisomal matrix protein import is facilitated by cycling receptors shuttling between the cytosol and the peroxisomal membrane. One crucial step in this cycle is the ATP-dependent release of the receptors from the peroxisomal membrane. This step is facilitated by the peroxisomal AAA (ATPases associated with various cellular activities) proteins Pex1p and Pex6p with ubiquitination of the receptor being the main signal for its export. Here we report that the AAA complex contains dislocase as well as deubiquitinating activity. Ubp15p, a ubiquitin hydrolase, was identified as a novel constituent of the complex. Ubp15p partially localizes to peroxisomes and is capable of cleaving off ubiquitin moieties from the type I peroxisomal targeting sequence (PTS1) receptor Pex5p. Furthermore, Ubp15p-deficient cells are characterized by a stress-related PTS1 import defect. The results merge into a picture in which removal of ubiquitin from the PTS1 receptor Pex5p is a specific event and might represent a vital step in receptor recycling.
Related JoVE Video
PEX14 is required for microtubule-based peroxisome motility in human cells.
J. Cell. Sci.
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
We have established a procedure for isolating native peroxisomal membrane protein complexes from cultured human cells. Protein-A-tagged peroxin 14 (PEX14), a central component of the peroxisomal protein translocation machinery was genomically expressed in Flp-In-293 cells and purified from digitonin-solubilized membranes. Size-exclusion chromatography revealed the existence of distinct multimeric PEX14 assemblies at the peroxisomal membrane. Using mass spectrometric analysis, almost all known human peroxins involved in protein import were identified as constituents of the PEX14 complexes. Unexpectedly, tubulin was discovered to be the major PEX14-associated protein, and direct binding of the proteins was demonstrated. Accordingly, peroxisomal remnants in PEX14-deficient cells have lost their ability to move along microtubules. In vivo and in vitro analyses indicate that the physical binding to tubulin is mediated by the conserved N-terminal domain of PEX14. Thus, human PEX14 is a multi-tasking protein that not only facilitates peroxisomal protein import but is also required for peroxisome motility by serving as membrane anchor for microtubules.
Related JoVE Video
Keratin 23, a novel DPC4/Smad4 target gene which binds 14-3-3?.
BMC Cancer
PUBLISHED: 04-14-2011
Show Abstract
Hide Abstract
Inactivating mutations of SMAD4 are frequent in metastatic colorectal carcinomas. In previous analyses, we were able to show that restoration of Smad4 expression in Smad4-deficient SW480 human colon carcinoma cells was adequate to suppress tumorigenicity and invasive potential, whereas in vitro cell growth was not affected. Using this cellular model system, we searched for new Smad4 targets comparing nuclear subproteomes derived from Smad4 re-expressing and Smad4 negative SW480 cells.
Related JoVE Video
Inter-lab proteomics: data mining in collaborative projects on the basis of the HUPO brain proteome projects pilot studies.
Methods Mol. Biol.
PUBLISHED: 02-16-2011
Show Abstract
Hide Abstract
Several projects were initiated by the Human Proteome Organisation (HUPO) focusing on the proteome analysis of distinct human organs. The initiative dedicated to the brain, its development and correlated diseases is the HUPO Brain Proteome Project (HUPO BPP). An objective data submission, storage, and reprocessing strategy have been established with the help of the results gained in a pilot study phase and within subsequent studies. The bioinformatic relevance of the data is drawn from the inter-laboratory comparisons as well as from the recalculation of all data sets submitted by the different groups. In the following, results of the single groups as well as the centralised reprocessing effort are summarised, demonstrating the added-value of this concerted work.
Related JoVE Video
Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer.
Anal. Chem.
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
Novel molecularly imprinted polymers (MIPs) designed to bind the side chain of phosphotyrosine can be used as artificial receptors for affinity-based enrichment of proteolytic peptides. In comparison with general enrichment methods for phosphorylated peptides such as TiO(2)-based methods, the pTyr-imprinted polymers offered high selectivity for pTyr-containing peptides down to the low fmol level. This suggests MIPs as a new tool for affinity-based proteomics.
Related JoVE Video
A53T-alpha-synuclein-overexpression in the mouse nigrostriatal pathway leads to early increase of 14-3-3 epsilon and late increase of GFAP.
J Neural Transm
PUBLISHED: 02-01-2011
Show Abstract
Hide Abstract
Parkinsons disease (PD) is a neurodegenerative disorder frequent at old age characterized by atrophy of the nigrostriatal projection. Overexpression and A53T-mutation of the presynaptic, vesicle-associated chaperone alpha-synuclein are known to cause early-onset autosomal dominant PD. We previously generated mice with transgenic overexpression of human A53T-alpha-synuclein (A53T-SNCA) in dopaminergic substantia nigra neurons as a model of early PD. To elucidate the early and late effects of A53T-alpha-synuclein on the proteome of dopaminergic nerve terminals in the striatum, we now investigated expression profiles of young and old mice using two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE) and mass spectrometry. In total, 15 proteins were upregulated and 2 downregulated. Mice before the onset of motor anomalies showed an upregulation of the spot containing 14-3-3 proteins, in particular the epsilon isoform, as well as altered levels of chaperones, vesicle trafficking and bioenergetics proteins. In old mice, the persistent upregulation of 14-3-3 proteins was aggravated by an increase of glial fibrillary acidic protein (GFAP) suggesting astrogliosis due to initial neurodegeneration. Independent immunoblots corroborated GFAP upregulation and 14-3-3 upregulation for the epsilon isoform, and also detected significant eta and gamma changes. Only for 14-3-3 epsilon a corresponding mRNA increase was observed in midbrain, suggesting it is transcribed in dopaminergic perikarya and accumulates as protein in presynapses, together with A53T-SNCA. 14-3-3 proteins associate with alpha-synuclein in vitro and in pathognomonic Lewy bodies of PD brains. They act as chaperones in signaling, dopamine synthesis and stress response. Thus, their early dysregulation probably reflects a response to alpha-synuclein toxicity.
Related JoVE Video
Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria.
J. Cell Biol.
PUBLISHED: 09-27-2010
Show Abstract
Hide Abstract
Regulation of eukaryotic cytochrome oxidase assembly occurs at the level of Cox1 translation, its central mitochondria-encoded subunit. Translation of COX1 messenger RNA is coupled to complex assembly in a negative feedback loop: the translational activator Mss51 is thought to be sequestered to assembly intermediates, rendering it incompetent to promote translation. In this study, we identify Coa3 (cytochrome oxidase assembly factor 3; Yjl062w-A), a novel regulator of mitochondrial COX1 translation and cytochrome oxidase assembly. We show that Coa3 and Cox14 form assembly intermediates with newly synthesized Cox1 and are required for Mss51 association with these complexes. Mss51 exists in equilibrium between a latent, translational resting, and a committed, translation-effective, state that are represented as distinct complexes. Coa3 and Cox14 promote formation of the latent state and thus down-regulate COX1 expression. Consequently, lack of Coa3 or Cox14 function traps Mss51 in the committed state and promotes Cox1 synthesis. Our data indicate that Coa1 binding to sequestered Mss51 in complex with Cox14, Coa3, and Cox1 is essential for full inactivation.
Related JoVE Video
Identification of PEX33, a novel component of the peroxisomal docking complex in the filamentous fungus Neurospora crassa.
Eur. J. Cell Biol.
PUBLISHED: 08-21-2010
Show Abstract
Hide Abstract
The docking complex of peroxisomal matrix protein import is composed of PEX13 and PEX14 in all species analyzed so far, whereas only yeast appears to possess an additional component, PEX17. In this report we isolated PEX14 complexes of Neurospora crassa. Among the complex constituents, one protein designated as PEX33 possessed homology to PEX14 but only in a short N-terminal domain. The PEX14/PEX33 interaction was verified by means of two-hybrid analysis. Moreover, PEX33 was shown to interact with itself and the PTS1-receptor PEX5. Localization studies demonstrated that PEX33 constitutes a glyoxysomal protein. Growth tests of the pex33 deletion strain revealed a defect of this strain in the biogenesis of glyoxysomes and Woronin bodies. As the function of PEX33 was not redundant to that of PEX14, it is a genuine novel peroxin. Based on our experimental data, the function of PEX33 seems to resemble that of yeast PEX17 despite clear structural differences.
Related JoVE Video
A proteomic approach towards the identification of the matrix protein content of the two types of microbodies in Neurospora crassa.
Proteomics
PUBLISHED: 08-14-2010
Show Abstract
Hide Abstract
Microbodies (peroxisomes) comprise a class of organelles with a similar biogenesis but remarkable biochemical heterogeneity. Here, we purified the two distinct microbody family members of filamentous fungi, glyoxysomes and Woronin bodies, from Neurospora crassa and analyzed their protein content by HPLC/ESI-MS/MS. In the purified Woronin bodies, we unambiguously identified only hexagonal 1 (HEX1), suggesting that the matrix is probably exclusively filled with the HEX1 hexagonal crystal. The proteomic analysis of highly purified glyoxysomes allowed the identification of 191 proteins. Among them were 16 proteins with a peroxisomal targeting signal type 1 (PTS1) and three with a PTS2. The collection also contained the previously described N. crassa glyoxysomal matrix proteins FOX2 and ICL1 that lack a typical PTS. Three PTS1 proteins were identified that likely represent the long sought glyoxysomal acyl-CoA dehydrogenases of filamentous fungi. Two of them were demonstrated by subcellular localization studies to be indeed glyoxysomal. Furthermore, two PTS proteins were identified that are suggested to be involved in the detoxification of nitroalkanes. Since the glyoxysomal localization was experimentally demonstrated for one of these enzymes, a new biochemical reaction is expected to be associated with microbody function.
Related JoVE Video
RhoA regulates peroxisome association to microtubules and the actin cytoskeleton.
PLoS ONE
PUBLISHED: 06-16-2010
Show Abstract
Hide Abstract
The current view of peroxisome inheritance provides for the formation of new peroxisomes by both budding from the endoplasmic reticulum and autonomous division. Here we investigate peroxisome-cytoskeleton interactions and show by proteomics, biochemical and immunofluorescence analyses that actin, non-muscle myosin IIA (NMM IIA), RhoA, Rho kinase II (ROCKII) and Rab8 associate with peroxisomes. Our data provide evidence that (i) RhoA in its inactive state, maintained for example by C. botulinum toxin exoenzyme C3, dissociates from peroxisomes enabling microtubule-based peroxisomal movements and (ii) dominant-active RhoA targets to peroxisomes, uncouples the organelles from microtubules and favors Rho kinase recruitment to peroxisomes. We suggest that ROCKII activates NMM IIA mediating local peroxisomal constrictions. Although our understanding of peroxisome-cytoskeleton interactions is still incomplete, a picture is emerging demonstrating alternate RhoA-dependent association of peroxisomes to the microtubular and actin cytoskeleton. Whereas association of peroxisomes to microtubules clearly serves bidirectional, long-range saltatory movements, peroxisome-acto-myosin interactions may support biogenetic functions balancing peroxisome size, shape, number, and clustering.
Related JoVE Video
Human Brain Proteome Project - 12th HUPO BPP Workshop. 26 September 2009, Toronto, Canada.
Proteomics
PUBLISHED: 06-02-2010
Show Abstract
Hide Abstract
The HUPO Brain Proteome Project (HUPO BPP) held its 12th workshop in Toronto on 26 September 2009 prior to the HUPO VIII World Congress. The principal aim of this project is to obtain a better understanding of neurodiseases and ageing, with the ultimate objective of discovering prognostic and diagnostic biomarkers, in addition to the development of novel diagnostic techniques and new medications. The attendees came together to discuss progress in the human clinical neuroproteomics and to define the needs and guidelines required for more advanced proteomic approaches.
Related JoVE Video
Proteome-wide identification of mycobacterial pupylation targets.
Mol. Syst. Biol.
PUBLISHED: 05-12-2010
Show Abstract
Hide Abstract
Mycobacteria use a unique system for covalently modifying proteins based on the conjugation of a small protein, referred to as prokaryotic ubiquitin-like protein (PUP). In this study, we report a proteome-wide analysis of endogenous pupylation targets in the model organism Mycobacterium smegmatis. On affinity capture, a total of 243 candidate pupylation targets were identified by two complementary proteomics approaches. For 41 of these protein targets, direct evidence for a total of 48 lysine-mediated pupylation acceptor sites was obtained by collision-induced dissociation spectra. For the majority of these pupylation targets (38 of 41), orthologous genes are found in the M. tuberculosis genome. Interestingly, approximately half of these proteins are involved in intermediary metabolism and respiration pathways. A considerable fraction of the remaining targets are involved in lipid metabolism, information pathways, and virulence, detoxification and adaptation. Approximately one-third of the genes encoding these targets are located in seven gene clusters, indicating functional linkages of mycobacterial pupylation targets. A comparison of the pupylome under different cell culture conditions indicates that substrate targeting for pupylation is rather dynamic.
Related JoVE Video
Peek a peak: a glance at statistics for quantitative label-free proteomics.
Expert Rev Proteomics
PUBLISHED: 04-10-2010
Show Abstract
Hide Abstract
Today, label-free mass spectrometry methods are frequently used for quantification of proteins and peptides. There have been several proposals of measurable parameters that best reflect quantities, such as peak areas as well as spectral counts. This review provides a systematic overview of the proposed methods. Owing to the shotgun proteomics approach generally used today for label-free mass spectrometry, any quantitative measure in the first place is a measure of peptide quantity. There has been no systematic research on how to best infer protein quantity from its measured peptides quantities. The way peptide identifications are assembled to protein lists may especially lead to significantly different results in protein quantification. A further focus of this review will thus be the assembly of measured peptide quantities to a protein quantity.
Related JoVE Video
Structure and function of intact photosystem 1 monomers from the cyanobacterium Thermosynechococcus elongatus.
Biochemistry
PUBLISHED: 04-03-2010
Show Abstract
Hide Abstract
Until now, the functional and structural characterization of monomeric photosystem 1 (PS1) complexes from Thermosynechococcus elongatus has been hampered by the lack of a fully intact PS1 preparation; for this reason, the three-dimensional crystal structure at 2.5 A resolution was determined with the trimeric PS1 complex [Jordan, P., et al. (2001) Nature 411 (6840), 909-917]. Here we show the possibility of isolating from this cyanobacterium the intact monomeric PS1 complex which preserves all subunits and the photochemical activity of the isolated trimeric complex. Moreover, the equilibrium between these complexes in the thylakoid membrane can be shifted by a high-salt treatment in favor of monomeric PS1 which can be quantitatively extracted below the phase transition temperature. Both monomers and trimers exhibit identical posttranslational modifications of their subunits and the same reaction centers but differ in the long-wavelength antenna chlorophylls. Their chlorophyll/P700 ratio (108 for the monomer and 112 for the trimer) is slightly higher than in the crystal structure, confirming mild preparation conditions. Interaction of antenna chlorophylls of the monomers within the trimer leads to a larger amount of long-wavelength chlorophylls, resulting in a higher photochemical activity of the trimers under red or far-red illumination. The dynamic equilibrium between monomers and trimers in the thylakoid membrane may indicate a transient monomer population in the course of biogenesis and could also be the basis for short-term adaptation of the cell to changing environmental conditions.
Related JoVE Video
Uncoupled responses of Smad4-deficient cancer cells to TNFalpha result in secretion of monomeric laminin-gamma2.
Mol. Cancer
PUBLISHED: 03-22-2010
Show Abstract
Hide Abstract
Functional loss of the tumor suppressor Smad4 is involved in pancreatic and colorectal carcinogenesis and has been associated with the acquisition of invasiveness. We have previously demonstrated that the heterotrimeric basement membrane protein laminin-332 is a Smad4 target. Namely, Smad4 functions as a positive transcriptional regulator of all three genes encoding laminin-332; its loss is thus implicated in the reduced or discontinuous deposition of the heterotrimeric basement membrane molecule as evident in carcinomas. Uncoupled expression of laminin genes, on the other hand, namely overexpression of the laminin-gamma2 chain is an impressive marker at invasive edges of carcinomas where tumor cells are maximally exposed to signals from stromal cell types like macrophages. As Smad4 is characterized as an integrator of multiple extracellular stimuli in a strongly contextual manner, we asked if loss of Smad4 may also be involved in uncoupled expression of laminin genes in response to altered environmental stimuli. Here, we address Smad4 dependent effects of the prominent inflammatory cytokine TNFalpha on tumor cells.
Related JoVE Video
Immunoscreening of the extracellular proteome of colorectal cancer cells.
BMC Cancer
PUBLISHED: 02-25-2010
Show Abstract
Hide Abstract
The release of proteins from tumors can trigger an immune response in cancer patients involving T lymphocytes and B lymphocytes, which results in the generation of antibodies to tumor-derived proteins. Many studies aim to use humoral immune responses, namely autoantibody profiles, directly, as clinical biomarkers. Alternatively, the antibody immune response as an amplification system for tumor associated alterations may be used to indicate putative protein biomarkers with high sensitivity. Aiming at the latter approach we here have implemented an autoantibody profiling strategy which particularly focuses on proteins released by tumor cells in vitro: the so-called secretome.
Related JoVE Video
Kazal-type inhibitors in the stomach of Panstrongylus megistus (Triatominae, Reduviidae).
Insect Biochem. Mol. Biol.
PUBLISHED: 02-22-2010
Show Abstract
Hide Abstract
Triatomines inhibit the clotting of ingested blood in the stomach (anterior midgut). After verifying this phenomenon in Panstrongylus megistus using coagulation assays, a full-length cDNA encoding a Kazal-like inhibitor was amplified by PCR. The open reading frame encodes a putative precursor protein of 412 amino acid residues, which was named PmStKaz and contains seven Kazal-like domains forming four Kazal-type inhibitors. A single domain inhibitor and three double-domain inhibitors possess sequence identities of up to 91% to the respective domains of Kazal-type inhibitors from other triatomines. The gene is expressed in the stomach (anterior midgut) but not in the small intestine (posterior midgut), salivary glands or haemocytes. After hydrophobic interaction chromatography of the stomach contents, four fractions (numbers 1-4) inhibited the activity of trypsin, fraction 2 that of subtilisin A, fractions 1, 3 and 4 that of plasmin, and fractions 3 and 4 that of thrombin. After ion exchange chromatography, MALDI-TOF-MS analysis of the intact proteins in fractions 3 and 4 showed diverse masses correlating to PmStKaz IV-V and PmStKaz II-III, respectively. Both proteins seem to be present in several isoforms with variant amino- and carboxy-terminal ends. In reverse zymography of the proteins of the stomach contents after separation by isoelectric focusing and non-reducing SDS-PAGE, much higher concentrations of isoforms of PmStKaz II-III and IV-V were evident than of PmStKaz I and VI-VII.
Related JoVE Video
Tmem16b is specifically expressed in the cilia of olfactory sensory neurons.
Chem. Senses
PUBLISHED: 01-25-2010
Show Abstract
Hide Abstract
Calcium-activated chloride channels (CaCCs) are involved in many physiological processes, including sensory signal transduction, but only little is known to date about their structure and function. We performed a proteome analysis of the olfactory epithelium (OE) membrane proteome and identified so far uncharacterized membrane proteins as candidate channels. One of the most abundant membrane proteins in olfactory sensory neurons (OSNs) was Tmem16b, a member of a recently identified family of CaCCs. In addition to former studies performed on Tmem16b, we show here that Tmem16b expression is highly specific for the OE, in contrast to the closely related Tmem16a, which shows a broad expression pattern in secretory epithelial cells. Native Tmem16b is localized in the cilia of the OSNs, which is in agreement with previous electrophysiological recordings.
Related JoVE Video
Using Laboratory Information Management Systems as central part of a proteomics data workflow.
Proteomics
PUBLISHED: 01-16-2010
Show Abstract
Hide Abstract
The organization and storage of proteomics data are challenging issues today and even more for the rising amount of information in the future. This review article describes the advantages of using Laboratory Information Management Systems (LIMS) in proteomics laboratories. Seven typical LIMS are explored in detail to describe their role in an even bigger interrelation. They are a central part of the proteomics data workflow, starting with data generation and ending with the publication in journals and repositories. Therefore, they enable community-wide data utilization and further Systems Biology discoveries.
Related JoVE Video
Differential proteome analysis of human gliomas stratified for loss of heterozygosity on chromosomal arms 1p and 19q.
Neuro-oncology
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Combined deletion of chromosomal arms 1p and 19q is an independent prognostic marker in patients with oligodendroglial brain tumors, including oligodendrogliomas and oligoastrocytomas. However, the relevant genes in these chromosome arms and the molecular mechanisms underlying the prognostic significance of 1p/19q deletion are yet unknown. We used two-dimensional difference gel electrophoresis followed by mass spectrometry to perform a proteome-wide profiling of low-grade oligoastrocytomas stratified for the presence or absence of 1p/19q deletions. Thereby, we identified 22 different proteins showing differential expression in tumors with or without combined deletions of 1p and 19q. Four of the differentially expressed proteins, which are vimentin, villin 2 (ezrin), annexin A1, and glial fibrillary acidic protein, were selected for further analysis. Lower relative expression levels of these proteins in 1p/19q-deleted gliomas were confirmed at the protein level by Western blot analysis and immunohistochemistry. Furthermore, sequencing of sodium bisulfite-treated tumor DNA revealed more frequent methylation of 5-CpG islands associated with the VIM and VIL2 genes in 1p/19q-deleted gliomas when compared with gliomas without these deletions. In summary, we confirm proteome-wide profiling as a powerful means to identify candidate biomarkers in gliomas. In addition, our data support the hypothesis that 1p/19q-deleted gliomas frequently show epigenetic down-regulation of multiple genes due to aberrant methylation of the 5-CpG islands.
Related JoVE Video
Simultaneous extraction of nucleic acids and proteins from tissue specimens by ultracentrifugation: A protocol using the high-salt protein fraction for quantitative proteome analysis.
Proteomics
PUBLISHED: 10-08-2009
Show Abstract
Hide Abstract
Comprehensive molecular profiling of human tumor tissue specimens at the DNA, mRNA and protein level is often obstructed by a limited amount of available material. Homogenization of frozen tissue samples in guanidine isothiocyanate followed by ultracentrifugation over cesium chloride allows the simultaneous extraction of high-molecular weight DNA and RNA. Here, we present a protocol for quantitative proteome analysis using the high-salt protein fraction obtained as supernatant after ultracentrifugation for nucleic acid extraction. We applied this method to extracts from primary human brain tumors and demonstrate its successful application for protein expression profiling in these tumors using 2-D DIGE, MS and Western blotting.
Related JoVE Video
Identification and functional characterization of microRNAs involved in the malignant progression of gliomas.
Brain Pathol.
PUBLISHED: 09-19-2009
Show Abstract
Hide Abstract
Diffuse astrocytoma of World Health Organization (WHO) grade II has an inherent tendency to spontaneously progress to anaplastic astrocytoma WHO grade III or secondary glioblastoma WHO grade IV. We explored the role of microRNAs (miRNAs) in glioma progression by investigating the expression profiles of 157 miRNAs in four patients with primary WHO grade II gliomas that spontaneously progressed to WHO grade IV secondary glioblastomas. Thereby, we identified 12 miRNAs (miR-9, miR-15a, miR-16, miR-17, miR-19a, miR-20a, miR-21, miR-25, miR-28, miR-130b, miR-140 and miR-210) showing increased expression, and two miRNAs (miR-184 and miR-328) showing reduced expression upon progression. Validation experiments on independent series of primary low-grade and secondary high-grade astrocytomas confirmed miR-17 and miR-184 as promising candidates, which were selected for functional analyses. These studies revealed miRNA-specific influences on the viability, proliferation, apoptosis and invasive growth properties of A172 and T98G glioma cells in vitro. Using mRNA and protein expression profiling, we identified distinct sets of transcripts and proteins that were differentially expressed after inhibition of miR-17 or overexpression of miR-184 in glioma cells. Taken together, our results support an important role of altered miRNA expression in gliomas, and suggest miR-17 and miR-184 as interesting candidates contributing to glioma progression.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.