JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Effect of (a)synchronous light fluctuation on diversity, functional and structural stability of a marine phytoplankton metacommunity.
Oecologia
PUBLISHED: 07-13-2014
Show Abstract
Hide Abstract
Disentangling the mechanisms that maintain the stability of communities and ecosystem properties has become a major research focus in ecology in the face of anthropogenic environmental change. Dispersal plays a pivotal role in maintaining diversity in spatially subdivided communities, but only a few experiments have simultaneously investigated how dispersal and environmental fluctuation affect community dynamics and ecosystem stability. We performed an experimental study using marine phytoplankton species as model organisms to test these mechanisms in a metacommunity context. We established three levels of dispersal and exposed the phytoplankton to fluctuating light levels, where fluctuations were either spatially asynchronous or synchronous across patches of the metacommunity. Dispersal had no effect on diversity and ecosystem function (biomass), while light fluctuations affected both evenness and community biomass. The temporal variability of community biomass was reduced by fluctuating light and temporal beta diversity was influenced interactively by dispersal and fluctuation, whereas spatial variability in community biomass and beta diversity were barely affected by treatments. Along the establishing gradient of species richness and dominance, community biomass increased but temporal variability of biomass decreased, thus highest stability was associated with species-rich but highly uneven communities and less influenced by compensatory dynamics. In conclusion, both specific traits (dominance) and diversity (richness) affected the stability of metacommunities under fluctuating conditions.
Related JoVE Video
Isolation and characterisation of the trichocysts of the dinophyte Prorocentrum micans.
Protoplasma
PUBLISHED: 04-28-2014
Show Abstract
Hide Abstract
Trichocyst-enriched fractions were isolated from the marine dinophyte Prorocentrum micans. Transmission electron microscopy revealed that most of the trichocysts were discharged and had elongated to long filaments. Some trichocysts were still condensed. Fragments of discharged trichocysts measured up to 20 ?m in length and 260 nm in width, those still condensed measured up to 1 ?m in width and 16 ?m in length. A distinct banding pattern with a transversal periodicity of approximately 16-18 nm and a periodic longitudinal striation of 3-4 nm could be measured along the trichocyst filaments. At higher magnifications, a fragile, alveolated, net-like organisation became obvious which resembled the one shown for the trichocysts of ciliates. When trichocyst-enriched fractions were treated with sodium dodecyl sulfate and centrifuged subsequently, no trichocysts were registered any longer in the sodium dodecyl sulfate-insoluble fraction by electron microscopy. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of trichocyst-enriched fractions and of the SDS-soluble fractions revealed a protein banding pattern which was dominated by polypeptides of 50-30, 12.5, and approximately 8.5 kDa. The polypeptide banding pattern deviated significantly from those registered for ejectisomes of cryptophytes and of the prasinophyte Pyramimonas grossii, for the Reb polypeptides which constitute the R-bodies of Caedibacter taeniospiralis, and also from the banding pattern of trichocysts of Paramecium. An antiserum directed against trichocysts of Paramecium did not cross-react with the polypeptides present in the trichocyst-enriched fraction of Prorocentrum micans.
Related JoVE Video
Herbivores and nutrients control grassland plant diversity via light limitation.
Nature
PUBLISHED: 02-11-2014
Show Abstract
Hide Abstract
Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.
Related JoVE Video
Cyanobacteria dominance influences resource use efficiency and community turnover in phytoplankton and zooplankton communities.
Ecol. Lett.
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Freshwater biodiversity loss potentially disrupts ecosystem services related to water quality and may negatively impact ecosystem functioning and temporal community turnover. We analysed a data set containing phytoplankton and zooplankton community data from 131 lakes through 9 years in an agricultural region to test predictions that plankton communities with low biodiversity are less efficient in their use of limiting resources and display greater community turnover (measured as community dissimilarity). Phytoplankton resource use efficiency (RUE = biomass per unit resource) was negatively related to phytoplankton evenness (measured as Pielou's evenness), whereas zooplankton RUE was positively related to phytoplankton evenness. Phytoplankton and zooplankton RUE were high and low, respectively, when Cyanobacteria, especially Microcystis sp., dominated. Phytoplankton communities displayed slower community turnover rates when dominated by few genera. Our findings, which counter findings of many terrestrial studies, suggest that Cyanobacteria dominance may play important roles in ecosystem functioning and community turnover in nutrient-enriched lakes.
Related JoVE Video
Eutrophication weakens stabilizing effects of diversity in natural grasslands.
Nature
PUBLISHED: 01-10-2014
Show Abstract
Hide Abstract
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.
Related JoVE Video
Further investigations on the polypeptides and reconstitution of prasinophycean ejectisomes.
Eur. J. Protistol.
PUBLISHED: 01-06-2014
Show Abstract
Hide Abstract
Ejectisome fragments were isolated from the prasinophyte Pyramimonas grossii and subjected to different treatments, i.e. Percoll density gradient centrifugation, incubation at pH 2.5 or at pH 10.8, or incubation in 6M guanidine hydrochloride. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that Percoll density gradient centrifugation did not improve the purity of the ejectisome fragment-enriched fractions. The ejectisome fragments withstood pH 2.5 and pH 10.8 treatment, and no loosely bound polypeptides became detached. The disintegration of ejectisome fragments was achieved in 6M guanidine hydrochloride, and reassembly into filamentous, ejectisome-like structures occurred after dialysis against distilled water. Fractions enriched either in ejectisome fragments or in reconstituted ejectisome-like structures were dominated by three polypeptides with relative molecular weights of approximately 12.5-19kDa and two additional polypeptides of 23 and 26kDa. A polyclonal antiserum directed against an ejectisome fragment-enriched fraction weakly cross-reacted with these polypeptides, and no significant immuno-labelling of ejectisome fragments was registered. A positive immuno-label was achieved using immunoglobulin (IgG) fractions which were gained by selectively incubating nitrocellulose stripes of these polypeptides with the antiserum.
Related JoVE Video
Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.
Related JoVE Video
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
Glob Chang Biol
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species relative abundance will more rapidly advance our understanding of invasions.
Related JoVE Video
Nutrient loading associated with agriculture land use dampens the importance of consumer-mediated niche construction.
Ecol. Lett.
PUBLISHED: 04-22-2013
Show Abstract
Hide Abstract
The linkages between biological communities and ecosystem function remain poorly understood along gradients of human-induced stressors. We examined how resource provisioning (nutrient recycling), mediated by native freshwater mussels, influences the structure and function of benthic communities by combining observational data and a field experiment. We compared the following: (1) elemental and community composition (algal pigments and macroinvertebates) on live mussel shells and on nearby rocks across a gradient of catchment agriculture and (2) experimental colonisation of benthic communities on live vs. sham shells controlling for initial community composition and colonisation duration. We show that in near pristine systems, nutrient heterogeneity mediated by mussels relates to greater biodiversity of communities, which supports the notion that resource heterogeneity can foster biological diversity. However, with increased nutrients from the catchment, the relevance of mussel-provisioned nutrients was nearly eliminated. While species can persist in disturbed systems, their functional relevance may be diminished or lost.
Related JoVE Video
Nutritional indicators and their uses in ecology.
Ecol. Lett.
PUBLISHED: 02-13-2013
Show Abstract
Hide Abstract
The nutrition of animal consumers is an important regulator of ecological processes due to its effects on their physiology, life-history and behaviour. Understanding the ecological effects of poor nutrition depends on correctly diagnosing the nature and strength of nutritional limitation. Despite the need to assess nutritional limitation, current approaches to delineating nutritional constraints can be non-specific and imprecise. Here, we consider the need and potential to develop new complementary approaches to the study of nutritional constraints on animal consumers by studying and using a suite of established and emerging biochemical and molecular responses. These nutritional indicators include gene expression, transcript regulators, protein profiling and activity, and gross biochemical and elemental composition. The potential applications of nutritional indicators to ecological studies are highlighted to demonstrate the value that this approach would have to future studies in community and ecosystem ecology.
Related JoVE Video
Biodiversity effects on plant stoichiometry.
PLoS ONE
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
In the course of the biodiversity-ecosystem functioning debate, the issue of multifunctionality of species communities has recently become a major focus. Elemental stoichiometry is related to a variety of processes reflecting multiple plant responses to the biotic and abiotic environment. It can thus be expected that the diversity of a plant assemblage alters community level plant tissue chemistry. We explored elemental stoichiometry in aboveground plant tissue (ratios of carbon, nitrogen, phosphorus, and potassium) and its relationship to plant diversity in a 5-year study in a large grassland biodiversity experiment (Jena Experiment). Species richness and functional group richness affected community stoichiometry, especially by increasing C:P and N:P ratios. The primacy of either species or functional group richness effects depended on the sequence of testing these terms, indicating that both aspects of richness were congruent and complementary to expected strong effects of legume presence and grass presence on plant chemical composition. Legumes and grasses had antagonistic effects on C:N (-27.7% in the presence of legumes, +32.7% in the presence of grasses). In addition to diversity effects on mean ratios, higher species richness consistently decreased the variance of chemical composition for all elemental ratios. The diversity effects on plant stoichiometry has several non-exclusive explanations: The reduction in variance can reflect a statistical averaging effect of species with different chemical composition or a optimization of nutrient uptake at high diversity, leading to converging ratios at high diversity. The shifts in mean ratios potentially reflect higher allocation to stem tissue as plants grew taller at higher richness. By showing a first link between plant diversity and stoichiometry in a multiyear experiment, our results indicate that losing plant species from grassland ecosystems will lead to less reliable chemical composition of forage for herbivorous consumers and belowground litter input.
Related JoVE Video
Life-history constraints in grassland plant species: a growth-defence trade-off is the norm.
Ecol. Lett.
PUBLISHED: 01-24-2013
Show Abstract
Hide Abstract
Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Related JoVE Video
More diverse plant communities have higher functioning over time due to turnover in complementary dominant species.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 09-26-2011
Show Abstract
Hide Abstract
More diverse communities have been shown to have higher and more temporally stable ecosystem functioning than less diverse ones, suggesting they should also have a consistently higher level of functioning over time. Diverse communities could maintain consistently high function because the species driving function change over time (functional turnover) or because they are more likely to contain key species with temporally stable functioning. Across 7 y in a large biodiversity experiment, we show that more diverse plant communities had consistently higher productivity, that is, a higher level of functioning over time. We identify the mechanism for this as turnover in the species driving biomass production; this was substantial, and species that were rare in some years became dominant and drove function in other years. Such high turnover allowed functionally more diverse communities to maintain high biomass over time and was associated with higher levels of complementarity effects in these communities. In contrast, turnover in communities composed of functionally similar species did not promote high biomass production over time. Thus, turnover in species promotes consistently high ecosystem function when it sustains functionally complementary interactions between species. Our results strongly reinforce the argument for conservation of high biodiversity.
Related JoVE Video
Productivity is a poor predictor of plant species richness.
Science
PUBLISHED: 09-24-2011
Show Abstract
Hide Abstract
For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters(-2)) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity and richness.
Related JoVE Video
The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems.
Oecologia
PUBLISHED: 08-18-2011
Show Abstract
Hide Abstract
Biological diversity comprises both species richness, i.e., the number of species in a community, and evenness, measuring how similar species are in their abundances. The relationship between species richness and evenness (RRE) across communities remains, however, a controversial issue in ecology because no consistent pattern has been reported. We conducted a systematic meta-review of RRE in aquatic ecosystems along regional to continental gradients and across trophic groups, differing in body size by 13 orders of magnitude. Hypotheses that RRE responded to latitudinal and scale variability across trophic groups were tested by regression analyses. Significant correlations of species richness and evenness only existed in 71 out of 229 datasets. Among the RRE, 89 were negative and 140 were positive. RRE did not vary with latitude but showed a positive response to scale. In a meta-analysis with ecosystem type as a single explaining variable, RRE did not vary among ecosystem types, i.e. between marine and freshwater. Finally, autotrophs had more positive RRE than heterotrophs. The weak RRE in many aquatic datasets suggests that richness and evenness often reflect independent components of biodiversity, highlighting that richness alone may be an incomplete surrogate for biodiversity. Our results further elucidate that RRE is driven by organismal and environmental properties, both of which must be considered to gain a deeper understanding of large-scale patterns of biodiversity.
Related JoVE Video
Resource stoichiometry and consumers control the biodiversity-productivity relationship in pelagic metacommunities.
Am. Nat.
PUBLISHED: 07-14-2011
Show Abstract
Hide Abstract
Recent theory suggests that both biodiversity and productivity are constrained by resource supply rates and ratios and that resource stoichiometry is the key to understanding the relationship between biodiversity and productivity. We experimentally tested this theory using pelagic metacommunities. We amended existing predictions by explicitly considering evenness as an aspect of biodiversity and including control of algal biomass by consumption in addition to competition. The metacommunities received a different phosphorus (P) supply and the three patches within each metacommunity differed in their nitrogen (N) supply, which created different N?P ratios (2, 16, and 128). All patches were inoculated with a phytoplankton assemblage consisting of five species, and half of the metacommunities received two ciliate species as consumers. At the level of the entire metacommunity, algal biomass increased with increasing P supply, whereas species richness and evenness decreased with increasing P supply. Without consumers, resource use efficiency (RUE; realized biomass per unit of P) increased with increasing richness and evenness. Consumer presence reduced overall biomass and richness and precluded a correlation between RUE and biodiversity. At the patch level, local evenness correlated with higher RUE at both imbalanced N?P ratios (2 and 128) but not at a balanced N?P ratio. In conclusion, overall P supply constrained realized biomass and altered diversity, whereas resource stoichiometry shaped the relationship between biodiversity and RUE.
Related JoVE Video
Nutrient co-limitation of primary producer communities.
Ecol. Lett.
PUBLISHED: 07-12-2011
Show Abstract
Hide Abstract
Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which are predicted by various theories. Herein, we summarise multiple-resource limitation responses in plant communities using a dataset of 641 studies that applied factorial addition of nitrogen (N) and phosphorus (P) in freshwater, marine and terrestrial systems. We found that more than half of the studies displayed some type of synergistic response to N and P addition. We found support for strict definitions of co-limitation in 28% of the studies: i.e. community biomass responded to only combined N and P addition, or to both N and P when added separately. Our results highlight the importance of interactions between N and P in regulating primary producer community biomass and point to the need for future studies that address the multiple mechanisms that could lead to different types of co-limitation.
Related JoVE Video
Invasion by mobile aquatic consumers enhances secondary production and increases top-down control of lower trophic levels.
Oecologia
PUBLISHED: 06-17-2011
Show Abstract
Hide Abstract
Increased biological diversity due to invasion by non-indigenous species (NIS) is a global phenomenon with potential effects on trophic interactions and ecosystem processes in the invaded habitat. We assessed the effects of resource availability and invasion of three non-indigenous invertebrate grazers (two crustaceans and a snail) on secondary production, relative dominance of NIS grazers and resource depletion in experimental freshwater mesocosms. The relative dominance of NIS grazers increased with increasing initial resource availability, although the effect was largest for one of the three species. The effect was due to the fact that all the included non-indigenous grazers were able to expand their populations quickly in response to resource addition. For the most dominating species, the increased grazer diversity due to invasion in turn resulted in higher production of grazer biomass and a more efficient depletion of the periphyton resource. The effect was largest at high initial resource availability, where NIS dominance was most pronounced. Our results show that an invasion-induced increase in species diversity can increase resource depletion and consequently production, but that the effect depends on identity of the introduced species. The results also suggest that properties of the recipient system, such as resource availability, can modulate ecosystem effects of NIS by affecting invader success and dominance.
Related JoVE Video
Empirical approaches to metacommunities: a review and comparison with theory.
Trends Ecol. Evol. (Amst.)
PUBLISHED: 04-28-2011
Show Abstract
Hide Abstract
Metacommunity theory has advanced understanding of how spatial dynamics and local interactions shape community structure and biodiversity. Here, we review empirical approaches to metacommunities, both observational and experimental, pertaining to how well they relate to and test theoretical metacommunity paradigms and how well they capture the realities of natural ecosystems. First, we show that the species-sorting and mass-effects paradigms are the most commonly tested and supported paradigms. Second, the dynamics observed can often be ascribed to two or more of the four non-exclusive paradigms. Third, empirical approaches relate only weakly to the concise assumptions and predictions made by the paradigms. Consequently, we suggest major avenues of improvement for empirical metacommunity approaches, including the integration across theoretical approaches and the incorporation of evolutionary and meta-ecosystem dynamics. We hope for metacommunity ecology to thereby bridge existing gaps between empirical and theoretical work, thus becoming a more powerful framework to understand dynamics across ecosystems.
Related JoVE Video
Effects of total resources, resource ratios, and species richness on algal productivity and evenness at both metacommunity and local scales.
PLoS ONE
PUBLISHED: 02-08-2011
Show Abstract
Hide Abstract
The study of the interrelationship between productivity and biodiversity is a major research field in ecology. Theory predicts that if essential resources are heterogeneously distributed across a metacommunity, single species may dominate productivity in individual metacommunity patches, but a mixture of species will maximize productivity across the whole metacommunity. It also predicts that a balanced supply of resources within local patches should favor species coexistence, whereas resource imbalance would favor the dominance of one species. We performed an experiment with five freshwater algal species to study the effects of total supply of resources, their ratios, and species richness on biovolume production and evenness at the scale of both local patches and metacommunities. Generally, algal biovolume increased, whereas algal resource use efficiency (RUE) and evenness decreased with increasing total supply of resources in mixed communities containing all five species. In contrast to predictions for biovolume production, the species mixtures did not outperform all monocultures at the scale of metacommunities. In other words, we observed no general transgressive overyielding. However, RUE was always higher in mixtures than predicted from monocultures, and analyses indicate that resource partitioning or facilitation in mixtures resulted in higher-than-expected productivity at high resource supply. Contrasting our predictions for the local scale, balanced supply of resources did not generally favor higher local evenness, however lowest evenness was confined to patches with the most imbalanced supply. Thus, our study provides mixed support for recent theoretical advancements to understand biodiversity-productivity relationships.
Related JoVE Video
A quantitative analysis of temporal turnover in aquatic species assemblages across ecosystems.
Ecology
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
Recent meta-analyses have shown that beta diversity through space is jointly driven by species traits, geographical gradients, and ecosystem properties. Spatial variation is, however, only one aspect of beta diversity. The other component is variation in species assemblages through time, that is, temporal turnover. We examined the decrease of assemblage similarity in time in aquatic ecosystems in relation to several ecological, physical, and geographical factors using an extensive data set derived from the literature. The data set was first divided into intra-annual and interannual studies depending on the temporal extent of the studies. Sampling duration was one the most significant variables affecting the degree of temporal turnover, and we found that turnover was faster in studies with shorter temporal extent. Our results further suggested that the rate of temporal turnover increased with increasing ecosystem size, thus contradicting the general species-time-area relationship. Temporal turnover also varied among the ecosystem types: lake assemblages showed faster turnover than stream or marine assemblages in the interannual data set. We found that temporal turnover exhibited large-scale geographical variation, as there was a latitudinal gradient in turnover. Turnover was faster in the tropics in the intra-annual data set, but the pattern was reversed in the interannual data set, where turnover was faster at high latitudes. Finally, we found that the degree of temporal turnover was related to organism characteristics, as larger organisms with active mobility showed slower temporal turnover than smaller organisms. Our results suggest that the degree of species turnover in time is jointly driven by several ecological, physical, and geographical factors in aquatic ecosystems and that the turnover is not uniform across taxonomic groups. Our findings have important consequences for understanding how different biotic assemblages track temporal changes in the environment and how resilient assemblages are toward such changes.
Related JoVE Video
Biodiversity in a complex world: consolidation and progress in functional biodiversity research.
Ecol. Lett.
PUBLISHED: 10-22-2009
Show Abstract
Hide Abstract
The global decline of biodiversity caused by human domination of ecosystems worldwide is supposed to alter important process rates and state variables in these ecosystems. However, there is considerable debate on the prevalence and importance of biodiversity effects on ecosystem function (BDEF). Here, we argue that much of the debate stems from two major shortcomings. First, most studies do not directly link the traits leading to increased or decreased function to the traits needed for species coexistence and dominance. We argue that implementing a trait-based approach and broadening the perception of diversity to include trait dissimilarity or trait divergence will result in more realistic predictions on the consequences of altered biodiversity. Second, the empirical and theoretical studies do not reflect the complexity of natural ecosystems, which makes it difficult to transfer the results to natural situations of species loss. We review how different aspects of complexity (trophic structure, multifunctionality, spatial or temporal heterogeneity, and spatial population dynamics) alter our perception of BDEF. We propose future research avenues concisely testing whether acknowledging this complexity will strengthen the observed biodiversity effects. Finally, we propose that a major future task is to disentangle biodiversity effects on ecosystem function from direct changes in function due to human alterations of abiotic constraints.
Related JoVE Video
Separating the influence of resource availability from resource imbalance on productivity-diversity relationships.
Ecol. Lett.
PUBLISHED: 06-04-2009
Show Abstract
Hide Abstract
One of the oldest and richest questions in biology is that of how species diversity is related to the availability of resources that limit the productivity of ecosystems. Researchers from a variety of disciplines have pursued this question from at least three different theoretical perspectives. Species energy theory has argued that the summed quantities of all resources influence species richness by controlling population sizes and the probability of stochastic extinction. Resource ratio theory has argued that the imbalance in the supply of two or more resources, relative to the stoichiometric needs of the competitors, can dictate the strength of competition and, in turn, the diversity of coexisting species. In contrast to these, the field of Biodiversity and Ecosystem Functioning has argued that species diversity acts as an independent variable that controls how efficiently limited resources are utilized and converted into new tissue. Here we propose that all three of these fields give necessary, but not sufficient, conditions to explain productivity-diversity relationships (PDR) in nature. However, when taken collectively, these three paradigms suggest that PDR can be explained by interactions among four distinct, non-interchangeable variables: (i) the overall quantity of limiting resources, (ii) the stoichiometric ratios of different limiting resources, (iii) the summed biomass produced by a group of potential competitors and (iv) the richness of co-occurring species in a local competitive community. We detail a new multivariate hypothesis that outlines one way in which these four variables are directly and indirectly related to one another. We show how the predictions of this model can be fit to patterns of covariation relating the richness and biomass of lake phytoplankton to three biologically essential resources (N, P and light) in a large number of Norwegian lakes.
Related JoVE Video
Spatial autocorrelation and dispersal limitation in freshwater organisms.
Oecologia
PUBLISHED: 05-29-2009
Show Abstract
Hide Abstract
Dispersal can limit the ranges of species and the diversity of communities. Despite its importance, little is known about its role in freshwater habitats and its relation to habitat type (lentic vs. lotic), especially for organisms with cryptic dispersal methods such as plankton. Poor dispersers are expected to show more clumped distributions or greater spatial autocorrelation (SA) in community composition than good dispersers. We examined patterns of SA across freshwater taxa with different dispersal modes (active vs. passive) and their association with habitat type (lake vs. stream) using 18 spatially explicit community composition data sets. We found significant relationships between SA and body size among taxa in lake habitats, but not in streams. However, the increase in SA with body size in lakes was driven entirely by fishes-organisms ranging in size from diatoms to macro-invertebrates showed equivalent levels of SA. These results support the idea that large organisms are less effective dispersers in aquatic environments, resulting in greater SA in community structure over broad scales. Streams may be effectively more connected than lakes as patterns of SA and body size were weaker in lotic habitats. Our data suggest that the critical threshold where greater body size increases dispersal limitation seems to come at the juncture between invertebrates and vertebrates rather than that between unicellular and multicellular organisms as has been previously suggested.
Related JoVE Video
Herbivore metabolism and stoichiometry each constrain herbivory at different organizational scales across ecosystems.
Ecol. Lett.
PUBLISHED: 04-22-2009
Show Abstract
Hide Abstract
Plant-herbivore interactions mediate the trophic structure of ecosystems. We use a comprehensive data set extracted from the literature to test the relative explanatory power of two contrasting bodies of ecological theory, the metabolic theory of ecology (MTE) and ecological stoichiometry (ES), for per-capita and population-level rates of herbivory across ecosystems. We found that ambient temperature and herbivore body size (MTE) as well as stoichiometric mismatch (ES) both constrained herbivory, but at different scales of biological organization. Herbivore body size, which varied over 11 orders of magnitude, was the primary factor explaining variation in per-capita rates of herbivory. Stoichiometric mismatch explained more variation in population-level herbivory rates and also in per-capita rates when we examined data from within functionally similar trophic groups (e.g. zooplankton). Thus, predictions from metabolic and stoichiometric theories offer complementary explanations for patterns of herbivory that operate at different scales of biological organization.
Related JoVE Video
Ejectisins: tough and tiny polypeptides are a major component of cryptophycean ejectisomes.
Protoplasma
Show Abstract
Hide Abstract
Fragments of discharged ejectisomes were isolated from two Cryptomonas and a Chroomonas species by detergent treatment followed by Percoll density gradient centrifugation. The fragments withstand high concentrated detergent solutions, reducing agents and freeze-thawing. Disintegration was achieved in 6 M guanidine hydrochloride. Reassembly into long, filamentous, ejectisome-like structures occurred after dialysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed that the polypeptide patterns of isolated ejectisome fragments and of reconstituted ejectisome-like structures were dominated by polypeptides with relative molecular weights of approximately 6 kDa. The polypeptides were not glycosylated and did not cross-react with antisera directed against recombinant Reb polypeptides which constitute the R-bodies of Caedibacter taeniospiralis. A polyclonal antiserum directed against reconstituted, ejectisome-like filaments cross-reacted with the 6-kDa polypeptides and immunolabeled extruded ejectisome filaments. Twenty amino acid residues, obtained by N-terminal amino acid sequence analysis, matched to polypeptide sequences deduced from cDNA sequences of the cryptophyte Guillardia theta. The term "ejectisins" is introduced for the 6-kDa polypeptides which represent a major component of cryptophycean ejectisomes.
Related JoVE Video
Reciprocal subsidies between freshwater and terrestrial ecosystems structure consumer resource dynamics.
Ecology
Show Abstract
Hide Abstract
Cross-ecosystem movements of material and energy, particularly reciprocal resource fluxes across the freshwater-land interface, have received major attention. Freshwater ecosystems may receive higher amounts of subsidies (i.e., resources produced outside the focal ecosystem) than terrestrial ecosystems, potentially leading to increased secondary production in freshwaters. Here we used a meta-analytic approach to quantify the magnitude and direction of subsidy inputs across the freshwater-land interface and to determine subsequent responses in recipient animals. Terrestrial and freshwater ecosystems differed in the magnitude of subsidies they received, with aquatic ecosystems generally receiving higher subsidies than terrestrial ecosystems. Surprisingly, and despite the large discrepancy in magnitude, the contribution of these subsidies to animal carbon inferred from stable isotope composition did not differ between freshwater and terrestrial ecosystems, likely due to the differences in subsidy quality. The contribution of allochthonous subsidies was highest to primary consumers and predators, suggesting that bottom-up and top-down effects may be affected considerably by the input of allochthonous resources. Future work on subsidies will profit from a food web dynamic approach including indirect trophic interactions and propagating effects.
Related JoVE Video
Shorter food chain length in ancient lakes: evidence from a global synthesis.
PLoS ONE
Show Abstract
Hide Abstract
Food webs may be affected by evolutionary processes, and effective evolutionary time ultimately affects the probability of species evolving to fill the niche space. Thus, ecosystem history may set important evolutionary constraints on community composition and food web structure. Food chain length (FCL) has long been recognized as a fundamental ecosystem attribute. We examined historical effects on FCL in large lakes spanning >6 orders of magnitude in age. We found that food chains in the worlds ancient lakes (n?=?8) were significantly shorter than in recently formed lakes (n?=?10) and reservoirs (n?=?3), despite the fact that ancient lakes harbored much higher species richness, including many endemic species. One potential factor leading to shorter FCL in ancient lakes is an increasing diversity of trophic omnivores and herbivores. Speciation could simply broaden the number of species within a trophic group, particularly at lower trophic levels and could also lead to a greater degree of trophic omnivory. Our results highlight a counter-intuitive and poorly-understood role of evolutionary history in shaping key food web properties such as FCL.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.