JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Sensitive detection of A? protofibrils by proximity ligation--relevance for Alzheimers disease.
BMC Neurosci
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
Protein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of A? peptides are cornerstones in the pathology of Alzheimers disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of A? protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.
Related JoVE Video
Genetic inactivation of the vesicular glutamate transporter 2 (VGLUT2) in the mouse: what have we learnt about functional glutamatergic neurotransmission?
Ups. J. Med. Sci.
PUBLISHED: 03-02-2010
Show Abstract
Hide Abstract
During the past decade, three proteins that possess the capability of packaging glutamate into presynaptic vesicles have been identified and characterized. These three vesicular glutamate transporters, VGLUT1-3, are encoded by solute carrier genes Slc17a6-8. VGLUT1 (Slc17a7) and VGLUT2 (Slc17a6) are expressed in glutamatergic neurons, while VGLUT3 (Slc17a8) is expressed in neurons classically defined by their use of another transmitter, such as acetylcholine and serotonin. As glutamate is both a ubiquitous amino acid and the most abundant neurotransmitter in the adult central nervous system, the discovery of the VGLUTs made it possible for the first time to identify and specifically target glutamatergic neurons. By molecular cloning techniques, different VGLUT isoforms have been genetically targeted in mice, creating models with alterations in their glutamatergic signalling. Glutamate signalling is essential for life, and its excitatory function is involved in almost every neuronal circuit. The importance of glutamatergic signalling was very obvious when studying full knockout models of both VGLUT1 and VGLUT2, none of which were compatible with normal life. While VGLUT1 full knockout mice die after weaning, VGLUT2 full knockout mice die immediately after birth. Many neurological diseases have been associated with altered glutamatergic signalling in different brain regions, which is why conditional knockout mice with abolished VGLUT-mediated signalling only in specific circuits may prove helpful in understanding molecular mechanisms behind such pathologies. We review the recent studies in which mouse genetics have been used to characterize the functional role of VGLUT2 in the central nervous system.
Related JoVE Video
Heavy-chain complementarity-determining regions determine conformation selectivity of anti-a? antibodies.
Neurodegener Dis
PUBLISHED: 01-14-2010
Show Abstract
Hide Abstract
Amyloid-? (A?) protofibrils are neurotoxic soluble intermediates in the A? aggregation process eventually forming senile plaques in Alzheimers disease. This A? species is a potential biomarker for Alzheimers disease and also a promising target for immunotherapy. In this study, we investigated the characteristics of conformation-dependent A? antibodies specific for A? protofibrils.
Related JoVE Video
An amyloid-beta protofibril-selective antibody prevents amyloid formation in a mouse model of Alzheimers disease.
Neurobiol. Dis.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
Human genetics link Alzheimers disease pathogenesis to excessive accumulation of amyloid-beta (Abeta) in brain, but the symptoms do not correlate with senile plaque burden. Since soluble Abeta aggregates can cause synaptic dysfunctions and memory deficits, these species could contribute to neuronal dysfunction and dementia. Here we explored selective targeting of large soluble aggregates, Abeta protofibrils, as a new immunotherapeutic strategy. The highly protofibril-selective monoclonal antibody mAb158 inhibited in vitro fibril formation and protected cells from Abeta protofibril-induced toxicity. When the mAb158 antibody was administered for 4 months to plaque-bearing transgenic mice with both the Arctic and Swedish mutations (tg-ArcSwe), Abeta protofibril levels were lowered while measures of insoluble Abeta were unaffected. In contrast, when treatment began before the appearance of senile plaques, amyloid deposition was prevented and Abeta protofibril levels diminished. Therapeutic intervention with mAb158 was however not proven functionally beneficial, since place learning depended neither on treatment nor transgenicity. Our findings suggest that Abeta protofibrils can be selectively cleared with immunotherapy in an animal model that display highly insoluble Abeta deposits, similar to those of Alzheimers disease brain.
Related JoVE Video
Oligomerization partially explains the lowering of Abeta42 in Alzheimers disease cerebrospinal fluid.
Neurodegener Dis
PUBLISHED: 03-16-2009
Show Abstract
Hide Abstract
The lowering of natively analyzed Abeta42 in cerebrospinal fluid (CSF) is used as a diagnostic tool in Alzheimers disease (AD). The presence of Abeta oligomers can interfere with such analyses causing underestimation of Abeta levels due to epitope masking. The aim was to investigate if the lowering of CSF Abeta42 seen in AD is caused by oligomerization.
Related JoVE Video
Amyloid-beta protofibril levels correlate with spatial learning in Arctic Alzheimers disease transgenic mice.
FEBS J.
PUBLISHED: 02-14-2009
Show Abstract
Hide Abstract
Oligomeric assemblies of amyloid-beta (Abeta) are suggested to be central in the pathogenesis of Alzheimers disease because levels of soluble Abeta correlate much better with the extent of cognitive dysfunctions than do senile plaque counts. Moreover, such Abeta species have been shown to be neurotoxic, to interfere with learned behavior and to inhibit the maintenance of hippocampal long-term potentiation. The tg-ArcSwe model (i.e. transgenic mice with the Arctic and Swedish Alzheimer mutations) expresses elevated levels of Abeta protofibrils in the brain, making tg-ArcSwe a highly suitable model for investigating the pathogenic role of these Abeta assemblies. In the present study, we estimated Abeta protofibril levels in the brain and cerebrospinal fluid of tg-ArcSwe mice, and also assessed their role with respect to cognitive functions. Protofibril levels, specifically measured with a sandwich ELISA, were found to be elevated in young tg-ArcSwe mice compared to several transgenic models lacking the Arctic mutation. In aged tg-ArcSwe mice with considerable plaque deposition, Abeta protofibrils were approximately 50% higher than in younger mice, whereas levels of total Abeta were exponentially increased. Young tg-ArcSwe mice showed deficits in spatial learning, and individual performances in the Morris water maze were correlated inversely with levels of Abeta protofibrils, but not with total Abeta levels. We conclude that Abeta protofibrils accumulate in an age-dependent manner in tg-ArcSwe mice, although to a far lesser extent than total Abeta. Our findings suggest that increased levels of Abeta protofibrils could result in spatial learning impairment.
Related JoVE Video
Large aggregates are the major soluble A? species in AD brain fractionated with density gradient ultracentrifugation.
PLoS ONE
Show Abstract
Hide Abstract
Soluble amyloid-? (A?) aggregates of various sizes, ranging from dimers to large protofibrils, have been associated with neurotoxicity and synaptic dysfunction in Alzheimers Disease (AD). To investigate the properties of biologically relevant A? species, brain extracts from amyloid ? protein precursor (A?PP) transgenic mice and AD patients as well as synthetic A? preparations were separated by size under native conditions with density gradient ultracentrifugation. The fractionated samples were then analyzed with atomic force microscopy (AFM), ELISA, and MTT cell viability assay. Based on AFM appearance and immunoreactivity to our protofibril selective antibody mAb158, synthetic A?42 was divided in four fractions, with large aggregates in fraction 1 and the smallest species in fraction 4. Synthetic A? aggregates from fractions 2 and 3 proved to be most toxic in an MTT assay. In A?PP transgenic mouse brain, the most abundant soluble A? species were found in fraction 2 and consisted mainly of A?40. Also in AD brains, A? was mainly found in fraction 2 but primarily as A?42. All biologically derived A? from fraction 2 was immunologically discriminated from smaller species with mAb158. Thus, the predominant species of biologically derived soluble A?, natively separated by density gradient ultracentrifugation, were found to match the size of the neurotoxic, 80-500 kDa synthetic A? protofibrils and were equally detected with mAb158.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.