JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Zinc supplementation protects against cadmium accumulation and cytotoxicity in Madin-Darby bovine kidney cells.
PLoS ONE
PUBLISHED: 08-08-2014
Show Abstract
Hide Abstract
Cadmium ions (Cd2+) have been reported to accumulate in bovine tissues, although Cd2+ cytotoxicity has not been investigated thoroughly in this species. Zinc ions (Zn2+) have been shown to antagonize the toxic effects of heavy metals such as Cd2+ in some systems. The present study investigated Cd2+ cytotoxicity in Madin-Darby bovine kidney (MDBK) epithelial cells, and explored whether this was modified by Zn2+. Exposure to Cd2+ led to a dose- and time-dependent increase in apoptotic cell death, with increased intracellular levels of reactive oxygen species and mitochondrial damage. Zn2+ supplementation alleviated Cd2+-induced cytotoxicity and this protective effect was more obvious when cells were exposed to a lower concentration of Cd2+ (10 ?M), as compared to 50 ?M Cd2+. This indicated that high levels of Cd2+ accumulation might induce irreversible damage in bovine kidney cells. Metallothioneins (MTs) are metal-binding proteins that play an essential role in heavy metal ion detoxification. We found that co-exposure to Zn2+ and Cd2+ synergistically enhanced RNA and protein expression of MT-1, MT-2, and the metal-regulatory transcription factor 1 in MDBK cells. Notably, addition of Zn2+ reduced the amounts of cytosolic Cd2+ detected following MDBK exposure to 10 ?M Cd2+. These findings revealed a protective role of Zn2+ in counteracting Cd2+ uptake and toxicity in MDBK cells, indicating that this approach may provide a means to protect livestock from excessive Cd2+ accumulation.
Related JoVE Video
Pro-inflammatory cytokines can act as intracellular modulators of commensal bacterial virulence.
Open Biol
PUBLISHED: 10-11-2013
Show Abstract
Hide Abstract
Interactions between commensal pathogens and hosts are critical for disease development but the underlying mechanisms for switching between the commensal and virulent states are unknown. We show that the human pathogen Neisseria meningitidis, the leading cause of pyogenic meningitis, can modulate gene expression via uptake of host pro-inflammatory cytokines leading to increased virulence. This uptake is mediated by type IV pili (Tfp) and reliant on the PilT ATPase activity. Two Tfp subunits, PilE and PilQ, are identified as the ligands for TNF-? and IL-8 in a glycan-dependent manner, and their deletion results in decreased virulence and increased survival in a mouse model. We propose a novel mechanism by which pathogens use the twitching motility mode of the Tfp machinery for sensing and importing host elicitors, aligning with the inflamed environment and switching to the virulent state.
Related JoVE Video
Identification of cell-penetrating peptides that are bactericidal to Neisseria meningitidis and prevent inflammatory responses upon infection.
Antimicrob. Agents Chemother.
PUBLISHED: 05-20-2013
Show Abstract
Hide Abstract
Meningococcal disease is characterized by a fast progression and a high mortality rate. Cell-penetrating peptides (CPPs), developed as vectors for cargo delivery into eukaryotic cells, share structural features with antimicrobial peptides. A screen identified two CPPs, transportan-10 (TP10) and model amphipathic peptide (MAP), with bactericidal action against Neisseria meningitidis. Both peptides were active in human whole blood at micromolar concentrations, while hemolysis remained negligible. Additionally, TP10 exhibited significant antibacterial activity in vivo. Uptake of SYTOX green into live meningococci was observed within minutes after TP10 treatment, suggesting that TP10 may act by membrane permeabilization. Apart from its bactericidal activity, TP10 suppressed inflammatory cytokine release from macrophages infected with N. meningitidis as well as from macrophages stimulated with enterobacterial and meningococcal lipopolysaccharide (LPS). Finally, incubation with TP10 reduced the binding of LPS to macrophages. This novel endotoxin-inhibiting property of TP10, together with its antimicrobial activity in vivo, indicates the possibility to design peptide-based therapies for infectious diseases.
Related JoVE Video
NafA negatively controls Neisseria meningitidis piliation.
PLoS ONE
PUBLISHED: 04-06-2011
Show Abstract
Hide Abstract
Bacterial auto-aggregation is a critical step during adhesion of N. meningitidis to host cells. The precise mechanisms and functions of bacterial auto-aggregation still remain to be fully elucidated. In this work, we characterize the role of a meningococcal hypothetical protein, NMB0995/NMC0982, and show that this protein, here denoted NafA, acts as an anti-aggregation factor. NafA was confirmed to be surface exposed and was found to be induced at a late stage of bacterial adherence to epithelial cells. A NafA deficient mutant was hyperpiliated and formed bundles of pili. Further, the mutant displayed increased adherence to epithelial cells when compared to the wild-type strain. In the absence of host cells, the NafA deficient mutant was more aggregative than the wild-type strain. The in vivo role of NafA in sepsis was studied in a murine model of meningococcal disease. Challenge with the NafA deficient mutant resulted in lower bacteremia levels and mortality when compared to the wild-type strain. The present study reveals that meningococcal NafA is an anti-aggregation factor with strong impact on the disease outcome. These data also suggest that appropriate bacterial auto-aggregation is controlled by both aggregation and anti-aggregation factors during Neisseria infection in vivo.
Related JoVE Video
The complement regulator CD46 is bactericidal to Helicobacter pylori and blocks urease activity.
Gastroenterology
PUBLISHED: 01-20-2011
Show Abstract
Hide Abstract
CD46 is a C3b/C4b binding complement regulator and a receptor for several human pathogens. We examined the interaction between CD46 and Helicobacter pylori (a bacterium that colonizes the human gastric mucosa and causes gastritis), peptic ulcers, and cancer.
Related JoVE Video
Olfactory nerve--a novel invasion route of Neisseria meningitidis to reach the meninges.
PLoS ONE
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
Neisseria meningitidis is a human-specific pathogen with capacity to cause septic shock and meningitis. It has been hypothesized that invasion of the central nervous system (CNS) is a complication of a bacteremic condition. In this study, we aimed to characterize the invasion route of N. meningitidis to the CNS. Using an intranasally challenged mouse disease model, we found that twenty percent of the mice developed lethal meningitis even though no bacteria could be detected in blood. Upon bacterial infection, epithelial lesions and redistribution of intracellular junction protein N-cadherin were observed at the nasal epithelial mucosa, especially at the olfactory epithelium, which is functionally and anatomically connected to the CNS. Bacteria were detected in the submucosa of the olfactory epithelium, along olfactory nerves in the cribriform plate, at the olfactory bulb and subsequently at the meninges and subarachnoid space. Furthermore, our data suggest that a threshold level of bacteremia is required for the development of meningococcal sepsis. Taken together, N. meningitidis is able to pass directly from nasopharynx to meninges through the olfactory nerve system. This study enhances our understanding how N. meningitidis invades the meninges. The nasal olfactory nerve system may be a novel target for disease prevention that can improve outcome and survival.
Related JoVE Video
The meningococcal adhesin NhhA provokes proinflammatory responses in macrophages via toll-like receptor 4-dependent and -independent pathways.
Infect. Immun.
Show Abstract
Hide Abstract
Activation of macrophages by Toll-like receptors (TLRs) and functionally related proteins is essential for host defense and innate immunity. TLRs recognize a wide variety of pathogen-associated molecules. Here, we demonstrate that the meningococcal outer membrane protein NhhA has immunostimulatory functions and triggers release of proinflammatory cytokines from macrophages. NhhA-induced cytokine release was found to proceed via two distinct pathways in RAW 264.7 macrophages. Interleukin-6 (IL-6) secretion was dependent on activation of TLR4 and required the TLR signaling adaptor protein MyD88. In contrast, release of tumor necrosis factor (TNF) was TLR4 and MyD88 independent. Both pathways involved NF-?B-dependent gene regulation. Using a PCR-based screen, we could identify additional targets of NhhA-dependent gene activation such as the cytokines and growth factors IL-1?, IL-1?, granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). In human monocyte-derived macrophages, G-CSF, GM-CSF, and IL-6 were found to be major targets of NhhA-dependent gene regulation. NhhA induced transcription of IL-6 and G-CSF mRNA via TLR4-dependent pathways, whereas GM-CSF transcription was induced via TLR4-independent pathways. These data provide new insights into the role of NhhA in host-pathogen interaction.
Related JoVE Video
Thyroid hormone enhances nitric oxide-mediated bacterial clearance and promotes survival after meningococcal infection.
PLoS ONE
Show Abstract
Hide Abstract
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin ?v?3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.
Related JoVE Video
Meningococcal outer membrane protein NhhA triggers apoptosis in macrophages.
PLoS ONE
Show Abstract
Hide Abstract
Phagocytotic cells play a fundamental role in the defense against bacterial pathogens. One mechanism whereby bacteria evade phagocytosis is to produce factors that trigger apoptosis. Here we identify for the first time a meningococcal protein capable of inducing macrophage apoptosis. The conserved meningococcal outer membrane protein NhhA (Neisseria hia/hsf homologue A, also known as Hsf) mediates bacterial adhesion and interacts with extracellular matrix components heparan sulphate and laminin. Meningococci lacking NhhA fail to colonise nasal mucosa in a mouse model of meningococcal disease. We found that exposure of macrophages to NhhA resulted in a highly increased rate of apoptosis that proceeded through caspase activation. Exposure of macrophages to NhhA also led to iNOS induction and nitric oxide production. However, neither nitric oxide production nor TNF-? signaling was found to be a prerequisite for NhhA-induced apoptosis. Macrophages exposed to wildtype NhhA-expressing meningococci were also found to undergo apoptosis whereas NhhA-deficient meningococci had a markedly decreased capacity to induce macrophage apoptosis. These data provide new insights on the role of NhhA in meningococcal disease. NhhA-induced macrophage apoptosis could be a mechanism whereby meningococci evade immunoregulatory and phagocytotic actions of macrophages.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.