JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Production of Water-Soluble Few-Layer Graphene Mesosheets by Dry Milling with Hydrophobic Drug.
Langmuir
PUBLISHED: 11-20-2014
Show Abstract
Hide Abstract
A novel, fast and easy mechano-chemistry-based (dry milling) method has been developed to exfoliate graphene with hydrophobic drugs generating few layer graphene mesosheets (< 10 nm in thickness and ~ 1 µm in width). The electronic properties of the graphitic structure were partially preserved after the milling treatment compared to Graphene Oxide (GO) prepared by Hummers' method. Several characterization techniques such as thermogravimetric analysis (TGA), Raman spectroscopy, atomic force microscopy (AFM), Electron Microscopy (EM) and molecular dynamics simulation were used to characterize this material. The drug-exfoliated mesosheets were pharmacologically inactive offering a new approach for making water-soluble few-layer graphene mesosheets upon dry milling with hydrophobic drugs, mainly used as exfoliating agents.
Related JoVE Video
Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo.
ACS Nano
PUBLISHED: 01-23-2014
Show Abstract
Hide Abstract
In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and (1)H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs in vivo.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.