JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The Top 10 oomycete pathogens in molecular plant pathology.
Mol. Plant Pathol.
PUBLISHED: 09-01-2014
Show Abstract
Hide Abstract
Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens that threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. The article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.
Related JoVE Video
Development of a bipartite ecdysone-responsive gene switch for the oomycete Phytophthora infestans and its use to manipulate transcription during axenic culture and plant infection.
Mol. Plant Pathol.
PUBLISHED: 05-30-2014
Show Abstract
Hide Abstract
Conditional expression systems have been proven to be useful tools for the elucidation of gene function in many taxa. Here, we report the development of the first useful inducible promoter system for an oomycete, based on an ecdysone receptor (EcR) and the ecdysone analogue methoxyfenozide. In Phytophthora infestans, the potato late blight pathogen, a monopartite transactivator containing the VP16 activation domain from herpes simplex virus, the GAL4 DNA-binding domain from yeast and the EcR receptor domain from the spruce budworm enabled high levels of expression of a ?-glucuronidase (GUS) reporter gene, but unacceptable basal activity in the absence of the methoxyfenozide inducer. Greatly improved performance was obtained using a bipartite system in which transcription is activated by a heterodimer between a chimera of VP16 and the migratory locust retinoid X receptor, and a separate EcR-DNA-binding domain chimera. Transformants were obtained that exhibited >100-fold activation of the reporter by methoxyfenozide, with low basal levels of expression and induced activity approaching that of the strong ham34 promoter. Performance varied between transformants, probably as a result of position effects. The addition of methoxyfenozide enabled strong induction during hyphal growth, zoosporogenesis and colonization of tomato. No significant effects of the inducer or transactivators on growth, development or pathogenicity were observed. The technology should therefore be a useful addition to the arsenal of methods for the study of oomycete plant pathogens.
Related JoVE Video
Myb transcription factors and light regulate sporulation in the oomycete Phytophthora infestans.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Life cycle progression in eukaryotic microbes is often influenced by environment. In the oomycete Phytophthora infestans, which causes late blight on potato and tomato, sporangia have been reported to form mostly at night. By growing P. infestans under different light regimes at constant temperature and humidity, we show that light contributes to the natural pattern of sporulation by delaying sporulation until the following dark period. However, illumination does not permanently block sporulation or strongly affect the total number of sporangia that ultimately form. Based on measurements of sporulation-induced genes such as those encoding protein kinase Pks1 and Myb transcription factors Myb2R1 and Myb2R3, it appears that most spore-associated transcripts start to rise four to eight hours before sporangia appear. Their mRNA levels oscillate with the light/dark cycle and increase with the amount of sporangia. An exception to this pattern of expression is Myb2R4, which is induced several hours before the other genes and declines after cultures start to sporulate. Transformants over-expressing Myb2R4 produce twice the number of sporangia and ten-fold higher levels of Myb2R1 mRNA than wild-type, and chromatin immunoprecipitation showed that Myb2R4 binds the Myb2R1 promoter in vivo. Myb2R4 thus appears to be an early regulator of sporulation. We attempted to silence eight Myb genes by DNA-directed RNAi, but succeeded only with Myb2R3, which resulted in suppressed sporulation. Ectopic expression studies of seven Myb genes revealed that over-expression frequently impaired vegetative growth, and in the case of Myb3R6 interfered with sporangia dormancy. We observed that the degree of silencing induced by a hairpin construct was correlated with its copy number, and ectopic expression was often unstable due to epigenetic silencing and transgene excision.
Related JoVE Video
bZIP transcription factors in the oomycete phytophthora infestans with novel DNA-binding domains are involved in defense against oxidative stress.
Eukaryotic Cell
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
Transcription factors of the basic leucine zipper (bZIP) family control development and stress responses in eukaryotes. To date, only one bZIP has been described in any oomycete; oomycetes are members of the stramenopile kingdom. In this study, we describe the identification of 38 bZIPs from the Phytophthora infestans genome. Half contain novel substitutions in the DNA-binding domain at a site that in other eukaryotes is reported to always be Asn. Interspecific comparisons indicated that the novel substitutions (usually Cys, but also Val and Tyr) arose after oomycetes diverged from other stramenopiles. About two-thirds of P. infestans bZIPs show dynamic changes in mRNA levels during the life cycle, with many of the genes being upregulated in sporangia, zoospores, or germinated zoospore cysts. One bZIP with the novel Cys substitution was shown to reside in the nucleus throughout growth and development. Using stable gene silencing, the functions of eight bZIPs with the Cys substitution were tested. All but one were found to play roles in protecting P. infestans from hydrogen peroxide-induced injury, and it is proposed that the novel Cys substitution serves as a redox sensor. A ninth bZIP lacking the novel Asn-to-Cys substitution, but having Cys nearby, was also shown through silencing to contribute to defense against peroxide. Little effect on asexual development, plant pathogenesis, or resistance to osmotic stress was observed in transformants silenced for any of the nine bZIPs.
Related JoVE Video
Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans.
PLoS Pathog.
PUBLISHED: 03-14-2013
Show Abstract
Hide Abstract
Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors.
Related JoVE Video
Oomycete pathogens encode RNA silencing suppressors.
Nat. Genet.
PUBLISHED: 02-03-2013
Show Abstract
Hide Abstract
Effectors are essential virulence proteins produced by a broad range of parasites, including viruses, bacteria, fungi, oomycetes, protozoa, insects and nematodes. Upon entry into host cells, pathogen effectors manipulate specific physiological processes or signaling pathways to subvert host immunity. Most effectors, especially those of eukaryotic pathogens, remain functionally uncharacterized. Here, we show that two effectors from the oomycete plant pathogen Phytophthora sojae suppress RNA silencing in plants by inhibiting the biogenesis of small RNAs. Ectopic expression of these Phytophthora suppressors of RNA silencing enhances plant susceptibility to both a virus and Phytophthora, showing that some eukaryotic pathogens have evolved virulence proteins that target host RNA silencing processes to promote infection. These findings identify RNA silencing suppression as a common strategy used by pathogens across kingdoms to cause disease and are consistent with RNA silencing having key roles in host defense.
Related JoVE Video
Novel core promoter elements in the oomycete pathogen Phytophthora infestans and their influence on expression detected by genome-wide analysis.
BMC Genomics
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
The core promoter is the region flanking the transcription start site (TSS) that directs formation of the pre-initiation complex. Core promoters have been studied intensively in mammals and yeast, but not in more diverse eukaryotes. Here we investigate core promoters in oomycetes, a group within the Stramenopile kingdom that includes important plant and animal pathogens. Prior studies of a small collection of genes proposed that oomycete core promoters contain a 16 to 19 nt motif bearing an Initiator-like sequence (INR) flanked by a novel sequence named FPR, but this has not been extended to whole-genome analysis.
Related JoVE Video
Vectors for fluorescent protein tagging in Phytophthora: tools for functional genomics and cell biology.
Fungal Biol
PUBLISHED: 04-26-2011
Show Abstract
Hide Abstract
Fluorescent tagging has become the strategy of choice for examining the subcellular localisation of proteins. To develop a versatile community resource for this method in oomycetes, plasmids were constructed that allow the expression of either of four spectrally distinct proteins [cyan fluorescent protein (CFP), green fluorescent protein (GFP), yellow fluorescent protein (YFP), and mCherry], alone or fused at their N- or C-termini, to sequences of interest. Equivalent sets of plasmids were made using neomycin or hygromycin phosphotransferases (nptII, hpt) as selectable markers, to facilitate double-labelling and aid work in diverse species. The fluorescent proteins and drug-resistance markers were fused to transcriptional regulatory sequences from the oomycete Bremia lactucae, which are known to function in diverse oomycetes, although the promoter in the fluorescence cassette (ham34) can be replaced easily by a promoter of interest. The function of each plasmid was confirmed in Phytophthora infestans. Moreover, fusion proteins were generated using targeting sequences for the endoplasmic reticulum, Golgi, mitochondria, nuclei, and peroxisomes. Studies of the distribution of the fusions in mycelia and sporangia provided insight into cellular organisation at different stages of development. This toolbox of vectors should advance studies of gene function and cell biology in Phytophthora and other oomycetes.
Related JoVE Video
New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella.
PLoS ONE
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar ?-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.
Related JoVE Video
Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome.
Science
PUBLISHED: 12-15-2010
Show Abstract
Hide Abstract
Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.
Related JoVE Video
The kinome of Phytophthora infestans reveals oomycete-specific innovations and links to other taxonomic groups.
BMC Genomics
PUBLISHED: 05-18-2010
Show Abstract
Hide Abstract
Oomycetes are a large group of economically and ecologically important species. Its most notorious member is Phytophthora infestans, the cause of the devastating potato late blight disease. The life cycle of P. infestans involves hyphae which differentiate into spores used for dispersal and host infection. Protein phosphorylation likely plays crucial roles in these stages, and to help understand this we present here a genome-wide analysis of the protein kinases of P. infestans and several relatives. The study also provides new insight into kinase evolution since oomycetes are taxonomically distant from organisms with well-characterized kinomes.
Related JoVE Video
An RNA symbiont enhances heat tolerance and secondary homothallism in the oomycete Phytophthora infestans.
Microbiology (Reading, Engl.)
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
Some strains of Phytophthora infestans, the potato late blight pathogen, harbour a small extrachromosomal RNA called PiERE1. A previous study reported that this RNA symbiont does not noticeably affect its host. Here it is revealed that PiERE1 exerts subtle effects on P. infestans, which result in greater thermotolerance during growth and an increase in secondary homothallism, i.e. oospore formation in the absence of the opposite mating type. The interaction can be considered mutualistic since these traits may increase the fitness of P. infestans in nature. Assays of biomarkers for cellular stress revealed that an Hsp70 chaperone was upregulated by PiERE1. A genome-wide search for more members of the Hsp70 family identified ten belonging to the DnaK subfamily, one in the Hsp110/SSE subfamily, and pseudogenes. Four DnaK subfamily genes encoding predicted cytoplasmic or endoplasmic reticulum proteins were upregulated in strains harbouring PiERE1. This may explain the greater thermotolerance conferred by the RNA element, and suggests that Hsp70 may be a useful biomarker for testing organisms for the cellular effects of symbiotic elements.
Related JoVE Video
Myb transcription factors in the oomycete Phytophthora with novel diversified DNA-binding domains and developmental stage-specific expression.
Gene
PUBLISHED: 01-07-2010
Show Abstract
Hide Abstract
Transcription factors containing two or three imperfect tandem repeats of the Myb DNA-binding domain (named R2R3 and R1R2R3, respectively) regulate important processes in growth and development. This study characterizes the structure, evolution, and expression of these proteins in the potato pathogen Phytophthora infestans and other oomycetes. P. infestans was found to encode five R2R3 and nine R1R2R3 transcription factor-like proteins, plus several with additional configurations of Myb domains. Sets of R2R3 and R1R2R3 orthologs are well-conserved in three Phytophthora species. Analyses of sites that bind DNA in canonical Myb transcription factors, such as mammalian c-Myb, revealed unusual diversification in the DNA recognition helices of the oomycete proteins. While oomycete R2R3 proteins contain c-Myb-like helices, R1R2R3 proteins exhibit either c-Myb-like or novel sequences. This suggests divergence in their DNA-binding specificities, which was confirmed by electrophoretic mobility shift assays. Eight of the P. infestans R2R3 and R1R2R3 genes are up-regulated during sporulation and three during zoospore release, which suggests their involvement in spore development. This is supported by the observation that an oomycete that does not form zoospores, Hyaloperonospora arabidopsidis, contains one-third fewer of these genes than Phytophthora.
Related JoVE Video
Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media.
Mol. Plant Pathol.
PUBLISHED: 10-24-2009
Show Abstract
Hide Abstract
Efficient nutrient acquisition is critical to the fitness of plant pathogens. To address how the late blight agent Phytophthora infestans adapts to nutrients offered by its hosts, genes in glycolytic, gluconeogenic and amino acid pathways were mined from its genome and their expression in different plant tissues and artificial media was measured. Evidence for conventional glycolytic and gluconeogenic processes was obtained, although several steps involved pyrophosphate-linked transformations which are uncommon in eukaryotes. In media manipulation studies, nearly all genes in the pathways were subject to strong transcriptional control. However in rye-sucrose media, tomato leaflets, potato tubers and, at both early and late stages of infection, most glycolytic genes were expressed similarly, which indicated that each plant tissue presented a nutrient-rich environment. Biochemical analyses also demonstrated that sporulation occurred from host material in which sugars were abundant, with fructose and glucose increasing at the expense of sucrose late in the disease cycle. The expression of only a few genes changed late in infection, with the most notable example being lower invertase levels in the sucrose-reduced leaves. Interestingly, most gluconeogenic genes were up-regulated in tubers compared with other tissues. Rather than reflecting a starvation response, this probably reveals the role of such enzymes in converting carbon skeletons from the abundant free amino acids of tubers into citric acid cycle and glycolysis intermediates, as genes involved in amino acid catabolism were also more highly expressed in tubers. The corresponding enzymes also displayed higher activities in defined media when amino acids were abundant, as in tubers.
Related JoVE Video
Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages.
Mol. Genet. Genomics
PUBLISHED: 05-20-2009
Show Abstract
Hide Abstract
Transcriptional changes during asexual sporangia formation by the late blight pathogen Phytophthora infestans were identified using microarrays representing 15,646 genes and RNA from sporulation time-courses, purified spores, and sporulation-defective strains. Results were confirmed by reverse transcription-polymerase chain reaction analyses of sporulation on artificial media and infected tomato. During sporulation, about 12% of genes were up-regulated compared to vegetative hyphae and 5% were down-regulated. The most prevalent induced genes had functions in signal transduction, flagella assembly, cellular organization, metabolism, and molecular or vesicular transport. Distinct patterns of expression were discerned based on the kinetics of mRNA induction and their persistence in sporangia. For example, most flagella-associated transcripts were induced very early in sporulation and maintained in sporangia, while many participants in metabolism or small molecule transport were also induced early but had low levels in sporangia. Data from this study are a resource for understanding sporogenesis, which is critical to the pathogenic success of P. infestans and other oomycetes.
Related JoVE Video
Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans.
Brian J Haas, Sophien Kamoun, Michael C Zody, Rays H Y Jiang, Robert E Handsaker, Liliana M Cano, Manfred Grabherr, Chinnappa D Kodira, Sylvain Raffaele, Trudy Torto-Alalibo, Tolga O Bozkurt, Audrey M V Ah-Fong, Lucia Alvarado, Vicky L Anderson, Miles R Armstrong, Anna Avrova, Laura Baxter, Jim Beynon, Petra C Boevink, Stephanie R Bollmann, Jorunn I B Bos, Vincent Bulone, Guohong Cai, Cahid Cakir, James C Carrington, Megan Chawner, Lucio Conti, Stefano Costanzo, Richard Ewan, Noah Fahlgren, Michael A Fischbach, Johanna Fugelstad, Eleanor M Gilroy, Sante Gnerre, Pamela J Green, Laura J Grenville-Briggs, John Griffith, Niklaus J Grünwald, Karolyn Horn, Neil R Horner, Chia-Hui Hu, Edgar Huitema, Dong-Hoon Jeong, Alexandra M E Jones, Jonathan D G Jones, Richard W Jones, Elinor K Karlsson, Sridhara G Kunjeti, Kurt Lamour, Zhenyu Liu, Lijun Ma, Daniel MacLean, Marcus C Chibucos, Hayes McDonald, Jessica McWalters, Harold J G Meijer, William Morgan, Paul F Morris, Carol A Munro, Keith O'Neill, Manuel Ospina-Giraldo, Andrés Pinzón, Leighton Pritchard, Bernard Ramsahoye, Qinghu Ren, Silvia Restrepo, Sourav Roy, Ari Sadanandom, Alon Savidor, Sebastian Schornack, David C Schwartz, Ulrike D Schumann, Ben Schwessinger, Lauren Seyer, Ted Sharpe, Cristina Silvar, Jing Song, David J Studholme, Sean Sykes, Marco Thines, Peter J I van de Vondervoort, Vipaporn Phuntumart, Stephan Wawra, Rob Weide, Joe Win, Carolyn Young, Shiguo Zhou, William Fry, Blake C Meyers, Pieter van West, Jean Ristaino, Francine Govers, Paul R J Birch, Stephen C Whisson, Howard S Judelson, Chad Nusbaum.
Nature
PUBLISHED: 04-23-2009
Show Abstract
Hide Abstract
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the worlds population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Related JoVE Video
A motif within a complex promoter from the oomycete Phytophthora infestans determines transcription during an intermediate stage of sporulation.
Fungal Genet. Biol.
PUBLISHED: 01-26-2009
Show Abstract
Hide Abstract
Sporulation in Phytophthora infestans is associated with a major remodeling of the transcriptome. To better understand promoter structure and how sporulation-specific expression is determined in this organism, the Pks1 gene was analyzed. Pks1 encodes a protein kinase that is induced at an intermediate stage of sporulation, prior to sporangium maturation. Major and minor transcription start sites mapped throughout the promoter, which contains many T-rich stretches and Inr-like elements. Within the T-rich region are several motifs which bound nuclear proteins in EMSA. Tests of modified promoters in transformants implicated a CCGTTG located 110-nt upstream of the transcription start point as a major regulator of sporulation-specific transcription. The motif also bound a sporulation-specific nuclear protein complex. A bioinformatics analysis indicated that the motif is highly over-represented within co-expressed promoters, in which it predominantly resides 100-300-nt upstream of transcription start sites. Other sequences, such as a CATTTGTT motif, also bound nuclear proteins but did not play an essential role in spore-specific expression.
Related JoVE Video
Decay of genes encoding the oomycete flagellar proteome in the downy mildew Hyaloperonospora arabidopsidis.
PLoS ONE
Show Abstract
Hide Abstract
Zoospores are central to the life cycles of most of the eukaryotic microbes known as oomycetes, but some genera have lost the ability to form these flagellated cells. In the plant pathogen Phytophthora infestans, genes encoding 257 proteins associated with flagella were identified by comparative genomics. These included the main structural components of the axoneme and basal body, proteins involved in intraflagellar transport, regulatory proteins, enzymes for maintaining ATP levels, and others. Transcripts for over three-quarters of the genes were up-regulated during sporulation, and persisted to varying degrees in the pre-zoospore stage (sporangia) and motile zoospores. Nearly all of these genes had orthologs in other eukaryotes that form flagella or cilia, but not species that lack the organelle. Orthologs of 211 of the genes were also absent from a sister taxon to P. infestans that lost the ability to form flagella, the downy mildew Hyaloperonospora arabidopsidis. Many of the genes retained in H. arabidopsidis were also present in other non-flagellates, suggesting that they play roles both in flagella and other cellular processes. Remnants of the missing genes were often detected in the H. arabidopsidis genome. Degradation of the genes was associated with local compaction of the chromosome and a heightened propensity towards genome rearrangements, as such regions were less likely to share synteny with P. infestans.
Related JoVE Video
Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution.
Eukaryotic Cell
Show Abstract
Hide Abstract
The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.