JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Pim1 kinase is upregulated in glioblastoma multiforme and mediates tumor cell survival.
Neuro-oncology
PUBLISHED: 08-25-2014
Show Abstract
Hide Abstract
The current therapy for glioblastoma multiforme (GBM), the most aggressive and common primary brain tumor of adults, involves surgery and a combined radiochemotherapy that controls tumor progression only for a limited time window. Therefore, the identification of new molecular targets is highly necessary. Inhibition of kinases has become a standard of clinical oncology, and thus the oncogenic kinase Pim1 might represent a promising target for improvement of GBM therapy.
Related JoVE Video
Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas.
Acta Neuropathol.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
Anti-angiogenic therapy in glioblastoma (GBM) has unfortunately not led to the anticipated improvement in patient prognosis. We here describe how human GBM adapts to bevacizumab treatment at the metabolic level. By performing (13)C6-glucose metabolic flux analysis, we show for the first time that the tumors undergo metabolic re-programming toward anaerobic metabolism, thereby uncoupling glycolysis from oxidative phosphorylation. Following treatment, an increased influx of (13)C6-glucose was observed into the tumors, concomitant to increased lactate levels and a reduction of metabolites associated with the tricarboxylic acid cycle. This was confirmed by increased expression of glycolytic enzymes including pyruvate dehydrogenase kinase in the treated tumors. Interestingly, L-glutamine levels were also reduced. These results were further confirmed by the assessment of in vivo metabolic data obtained by magnetic resonance spectroscopy and positron emission tomography. Moreover, bevacizumab led to a depletion in glutathione levels indicating that the treatment caused oxidative stress in the tumors. Confirming the metabolic flux results, immunohistochemical analysis showed an up-regulation of lactate dehydrogenase in the bevacizumab-treated tumor core as well as in single tumor cells infiltrating the brain, which may explain the increased invasion observed after bevacizumab treatment. These observations were further validated in a panel of eight human GBM patients in which paired biopsy samples were obtained before and after bevacizumab treatment. Importantly, we show that the GBM adaptation to bevacizumab therapy is not mediated by clonal selection mechanisms, but represents an adaptive response to therapy.
Related JoVE Video
Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency.
Cancer Res.
PUBLISHED: 05-08-2014
Show Abstract
Hide Abstract
As cancer treatment tools, oncolytic viruses (OV) have yet to realize what some see as their ultimate clinical potential. In this study, we have engineered a chimeric vesicular stomatitis virus (VSV) that is devoid of its natural neurotoxicity while retaining potent oncolytic activity. The envelope glycoprotein (G) of VSV was replaced with a variant glycoprotein of the lymphocytic choriomeningitis virus (LCMV-GP), creating a replicating therapeutic, rVSV(GP), that is benign in normal brain but can effectively eliminate brain cancer in multiple preclinical tumor models in vivo. Furthermore, it can be safely administered systemically to mice and displays greater potency against a spectrum of human cancer cell lines than current OV candidates. Remarkably, rVSV(GP) escapes humoral immunity, thus, for the first time, allowing repeated systemic OV application without loss of therapeutic efficacy. Taken together, rVSV(GP) offers a considerably improved OV platform that lacks several of the major drawbacks that have limited the clinical potential of this technology to date.
Related JoVE Video
Molecular pathogenesis of polymerase ?-related neurodegeneration.
Ann. Neurol.
PUBLISHED: 03-17-2014
Show Abstract
Hide Abstract
Polymerase gamma (POLG) mutations are a common cause of mitochondrial disease and have also been linked to neurodegeneration and aging. We studied the molecular mechanisms underlying POLG-related neurodegeneration using postmortem tissue from a large number of patients.
Related JoVE Video
Expansive growth of two glioblastoma stem-like cell lines is mediated by bFGF and not by EGF.
Radiol Oncol
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
Patient-derived glioblastoma (GBM) stem-like cells (GSCs) represent a valuable model for basic and therapeutic research. GSCs are usually propagated in serum-free Neural Basal medium supplemented with bFGF and EGF. Yet, the exact influence of these growth factors on GSCs is still unclear. Recently it was suggested that GBM stem-like cells with amplified EGFR should be cultured in stem cell medium without EGF, as the presence of EGF induced rapid loss of EGFR amplification. However, patient biopsies are usually taken into culture before their genomic profiles are defined. Thus, an important question remains whether GBM cells without EGFR amplification also can be cultured in stem cell medium without EGF.
Related JoVE Video
Severe nigrostriatal degeneration without clinical parkinsonism in patients with polymerase gamma mutations.
Brain
PUBLISHED: 04-26-2013
Show Abstract
Hide Abstract
The role of mitochondria in the pathogenesis of neurodegeneration is an area of intense study. It is known that defects in proteins involved in mitochondrial quality control can cause Parkinsons disease, and there is increasing evidence linking mitochondrial dysfunction, and particularly mitochondrial DNA abnormalities, to neuronal loss in the substantia nigra. Mutations in the catalytic subunit of polymerase gamma are among the most common causes of mitochondrial disease and owing to its role in mitochondrial DNA homeostasis, polymerase gamma defects are often considered a paradigm for mitochondrial diseases generally. Yet, despite this, parkinsonism is uncommon with polymerase gamma defects. In this study, we investigated structural and functional changes in the substantia nigra of 11 patients with polymerase gamma encephalopathy. We characterized the mitochondrial DNA abnormalities and examined the respiratory chain in neurons of the substantia nigra. We also investigated nigrostriatal integrity and function using a combination of post-mortem and in vivo functional studies with dopamine transporter imaging and positron emission tomography. At the cellular level, dopaminergic nigral neurons of patients with polymerase gamma encephalopathy contained a significantly lower copy number of mitochondrial DNA (depletion) and higher levels of deletions than normal control subjects. A selective and progressive complex I deficiency was seen and this was associated with a severe and progressive loss of the dopaminergic neurons of the pars compacta. Dopamine transporter imaging and positron emission tomography showed that the degree of nigral neuronal loss and nigrostriatal depletion were severe and appeared greater even than that seen in idiopathic Parkinsons disease. Despite this, however, none of our patients showed any signs of parkinsonism. The additional presence of both thalamic and cerebellar dysfunction in our patients suggested that these may play a role in counteracting the effects of basal ganglia dysfunction and prevent the development of clinical parkinsonism.
Related JoVE Video
A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1.
PLoS ONE
PUBLISHED: 02-18-2013
Show Abstract
Hide Abstract
Oligodendroglioma poses a biological conundrum for malignant adult human gliomas: it is a tumor type that is universally incurable for patients, and yet, only a few of the human tumors have been established as cell populations in vitro or as intracranial xenografts in vivo. Their survival, thus, may emerge only within a specific environmental context. To determine the fate of human oligodendroglioma in an experimental model, we studied the development of an anaplastic tumor after intracranial implantation into enhanced green fluorescent protein (eGFP) positive NOD/SCID mice. Remarkably after nearly nine months, the tumor not only engrafted, but it also retained classic histological and genetic features of human oligodendroglioma, in particular cells with a clear cytoplasm, showing an infiltrative growth pattern, and harboring mutations of IDH1 (R132H) and of the tumor suppressor genes, FUBP1 and CIC. The xenografts were highly invasive, exhibiting a distinct migration and growth pattern around neurons, especially in the hippocampus, and following white matter tracts of the corpus callosum with tumor cells accumulating around established vasculature. Although tumors exhibited a high growth fraction in vivo, neither cells from the original patient tumor nor the xenograft exhibited significant growth in vitro over a six-month period. This glioma xenograft is the first to display a pure oligodendroglioma histology and expression of R132H. The unexpected property, that the cells fail to grow in vitro even after passage through the mouse, allows us to uniquely investigate the relationship of this oligodendroglioma with the in vivo microenvironment.
Related JoVE Video
EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis.
Acta Neuropathol.
PUBLISHED: 02-09-2013
Show Abstract
Hide Abstract
Angiogenesis is regarded as a hallmark of cancer progression and it has been postulated that solid tumor growth depends on angiogenesis. At present, however, it is clear that tumor cell invasion can occur without angiogenesis, a phenomenon that is particularly evident by the infiltrative growth of malignant brain tumors, such as glioblastomas (GBMs). In these tumors, amplification or overexpression of wild-type (wt) or truncated and constitutively activated epidermal growth factor receptor (EGFR) are regarded as important events in GBM development, where the complex downstream signaling events have been implicated in tumor cell invasion, angiogenesis and proliferation. Here, we show that amplification and in particular activation of wild-type EGFR represents an underlying mechanism for non-angiogenic, invasive tumor growth. Using a clinically relevant human GBM xenograft model, we show that tumor cells with EGFR gene amplification and activation diffusely infiltrate normal brain tissue independent of angiogenesis and that transient inhibition of EGFR activity by cetuximab inhibits the invasive tumor growth. Moreover, stable, long-term expression of a dominant-negative EGFR leads to a mesenchymal to epithelial-like transition and induction of angiogenic tumor growth. Analysis of human GBM biopsies confirmed that EGFR activation correlated with invasive/non-angiogenic tumor growth. In conclusion, our results indicate that activation of wild-type EGFR promotes invasion and glioblastoma development independent of angiogenesis, whereas loss of its activity results in angiogenic tumor growth.
Related JoVE Video
In vivo animal models for studying brain metastasis: value and limitations.
Clin. Exp. Metastasis
PUBLISHED: 01-07-2013
Show Abstract
Hide Abstract
Brain metastasis is associated with a particular poor prognosis. Novel insight into the brain metastatic process is therefore warranted. Several preclinical models of brain tumor metastasis have been developed during the last 60 years, and they have in part revealed some of the mechanisms underlying the metastatic process. This review discusses mechanisms of brain metastasis with a key focus of the development of animal model systems. This includes the use of rodent, syngeneic brain metastasis models (spontaneous, chemically induced and genetically engineered models) and human xenotransplantation models (ectopic inoculation and orthotopic models). Current information indicates that none of these fully reflect tumor development seen in patients with metastatic disease. The various model systems used, however, have provided important insight into specific mechanisms of the metastatic process related to the brain. By combining the knowledge obtained from animal models, new important information on the molecular mechanisms behind metastasis will be obtained, leading to the future development of new therapeutic strategies.
Related JoVE Video
Tumor versus Stromal Cells in Culture-Survival of the Fittest?
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Two of the signature genetic events that occur in human gliomas, EGFR amplification and IDH mutation, are poorly represented in experimental models in vitro. EGFR amplification, for example, occurs in 40 to 50% of GBM, and yet, EGFR amplification is rarely preserved in cell cultures derived from human tumors. To analyze the fate of EGFR amplified and IDH mutated cells in culture, we followed the development over time of cultures derived from human xenografts in nude rats enriched for tumor cells with EGFR amplification and of cultures derived from patient samples with IDH mutations, in serum monolayer and spheroid suspension culture, under serum and serum free conditions. We observed under serum monolayer conditions, that nestin positive or nestin and SMA double positive rat stromal cells outgrew EGFR amplified tumor cells, while serum spheroid cultures preserved tumor cells with EGFR amplification. Serum free suspension culture exhibited a more variable cell composition in that the resultant cell populations were either predominantly nestin/SOX2 co-expressing rat stromal cells or human tumor cells, or a mixture of both. The selection for nestin/SMA positive stromal cells under serum monolayer conditions was also consistently observed in human oligodendrogliomas and oligoastrocytomas with IDH mutations. Our results highlight for the first time that serum monolayer conditions can select for stromal cells instead of tumor cells in certain brain tumor subtypes. This result has an important impact on the establishment of new tumor cell cultures from brain tumors and raises the question of the proper conditions for the growth of the tumor cell populations of interest.
Related JoVE Video
Focal myositis--neurogenic phenomenon?
Neuromuscul. Disord.
PUBLISHED: 06-23-2011
Show Abstract
Hide Abstract
We report four cases of focal myositis. The patients, three men and one woman, had painful muscle hypertrophy, affecting four different sites. MRI confirmed the muscle enlargement and oedema. Electromyography revealed evidence of acute and chronic denervation in all four cases. Muscle biopsy was available in three and confirmed features suggestive of focal myositis. Based on our patient material, we suggest that chronic nerve irritation, such as compression, can lead to muscle hypertrophy which, when prolonged, provokes fibre necrosis and secondary inflammation. Our finding in four patients having hypertrophy involving four different sites, leads us further to suggest that this may be the common mechanism behind focal myositis.
Related JoVE Video
NUMB does not impair growth and differentiation status of experimental gliomas.
Exp. Cell Res.
PUBLISHED: 05-08-2011
Show Abstract
Hide Abstract
The cell fate determinant NUMB orchestrates asymmetric cell division in flies and mammals and has lately been suggested to have a tumor suppressor function in breast and lung cancer. Here, we studied NUMB in the context of malignant gliomas. We used ectopic expression of NUMB in order to inhibit proliferation and induce differentiation in glioma cells by alteration of Notch, Hedgehog and p53 signaling. We found that NUMB is consistently expressed in glioma biopsies with predominance of NUMB2/4 isoforms as determined by isoform-specific real-time PCR and Western blotting. Upon lentiviral overexpression, in vitro proliferation rate and the grade of differentiation as assessed by morphology and expression of neural and glial markers remained unchanged. Orthotopic xenografts of NUMB-transduced human U87 glioma cells could be established in nude rats without impairing engraftment or causing significant changes in morphology based on magnetic resonance imaging (MRI). The previously reported alteration of Hedgehog and p53 signaling by NUMB could not be recapitulated in glioma cells. We thus show that in experimental gliomas, NUMB overexpression most likely does not exert a tumor suppressor function such as seen in epithelial cancers.
Related JoVE Video
Visualization of CD44 and CD133 in normal pancreas and pancreatic ductal adenocarcinomas: non-overlapping membrane expression in cell populations positive for both markers.
J. Histochem. Cytochem.
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patients lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC.
Related JoVE Video
Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
Bevacizumab, an antibody against vascular endothelial growth factor (VEGF), is a promising, yet controversial, drug in human glioblastoma treatment (GBM). Its effects on tumor burden, recurrence, and vascular physiology are unclear. We therefore determined the tumor response to bevacizumab at the phenotypic, physiological, and molecular level in a clinically relevant intracranial GBM xenograft model derived from patient tumor spheroids. Using anatomical and physiological magnetic resonance imaging (MRI), we show that bevacizumab causes a strong decrease in contrast enhancement while having only a marginal effect on tumor growth. Interestingly, dynamic contrast-enhanced MRI revealed a significant reduction of the vascular supply, as evidenced by a decrease in intratumoral blood flow and volume and, at the morphological level, by a strong reduction of large- and medium-sized blood vessels. Electron microscopy revealed fewer mitochondria in the treated tumor cells. Importantly, this was accompanied by a 68% increase in infiltrating tumor cells in the brain parenchyma. At the molecular level we observed an increase in lactate and alanine metabolites, together with an induction of hypoxia-inducible factor 1? and an activation of the phosphatidyl-inositol-3-kinase pathway. These data strongly suggest that vascular remodeling induced by anti-VEGF treatment leads to a more hypoxic tumor microenvironment. This favors a metabolic change in the tumor cells toward glycolysis, which leads to enhanced tumor cell invasion into the normal brain. The present work underlines the need to combine anti-angiogenic treatment in GBMs with drugs targeting specific signaling or metabolic pathways linked to the glycolytic phenotype.
Related JoVE Video
Targeting the NG2/CSPG4 proteoglycan retards tumour growth and angiogenesis in preclinical models of GBM and melanoma.
PLoS ONE
PUBLISHED: 02-11-2011
Show Abstract
Hide Abstract
Aberrant expression of the progenitor marker Neuron-glia 2 (NG2/CSPG4) or melanoma proteoglycan on cancer cells and angiogenic vasculature is associated with an aggressive disease course in several malignancies including glioblastoma multiforme (GBM) and melanoma. Thus, we investigated the mechanism of NG2 mediated malignant progression and its potential as a therapeutic target in clinically relevant GBM and melanoma animal models. Xenografting NG2 overexpressing GBM cell lines resulted in increased growth rate, angiogenesis and vascular permeability compared to control, NG2 negative tumours. The effect of abrogating NG2 function was investigated after intracerebral delivery of lentivirally encoded shRNAs targeting NG2 in patient GBM xenografts as well as in established subcutaneous A375 melanoma tumours. NG2 knockdown reduced melanoma proliferation and increased apoptosis and necrosis. Targeting NG2 in two heterogeneous GBM xenografts significantly reduced tumour growth and oedema levels, angiogenesis and normalised vascular function. Vascular normalisation resulted in increased tumour invasion and decreased apoptosis and necrosis. We conclude that NG2 promotes tumour progression by multiple mechanisms and represents an amenable target for cancer molecular therapy.
Related JoVE Video
Differential activity of NADPH-producing dehydrogenases renders rodents unsuitable models to study IDH1R132 mutation effects in human glioblastoma.
J. Histochem. Cytochem.
PUBLISHED: 02-10-2011
Show Abstract
Hide Abstract
The somatic IDH1(R132) mutation in the isocitrate dehydrogenase 1 gene occurs in high frequency in glioma and in lower frequency in acute myeloid leukemia and thyroid cancer but not in other types of cancer. The mutation causes reduced NADPH production capacity in glioblastoma by 40% and is associated with prolonged patient survival. NADPH is a major reducing compound in cells that is essential for detoxification and may be involved in resistance of glioblastoma to treatment. IDH has never been considered important in NADPH production. Therefore, the authors investigated NADPH-producing dehydrogenases using in silico analysis of human cancer gene expression microarray data sets and metabolic mapping of human and rodent tissues to determine the role of IDH in total NADPH production. Expression of most NADPH-producing dehydrogenase genes was not elevated in 34 cancer data sets except for IDH1 in glioma and thyroid cancer, indicating an association with the IDH1 mutation. IDH activity was the main provider of NADPH in human normal brain and glioblastoma, but its role was modest in NADPH production in rodent brain and other tissues. It is concluded that rodents are a poor model to study consequences of the IDH1(R132) mutation in glioblastoma.
Related JoVE Video
Gene expression profiling-based identification of molecular subtypes in stage IV melanomas with different clinical outcome.
Clin. Cancer Res.
PUBLISHED: 05-11-2010
Show Abstract
Hide Abstract
The incidence of malignant melanoma is increasing worldwide in fair-skinned populations. Melanomas respond poorly to systemic therapy, and metastatic melanomas inevitably become fatal. Although spontaneous regression, likely due to immune defense activation, rarely occurs, we lack a biological rationale and predictive markers in selecting patients for immune therapy.
Related JoVE Video
Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma.
J. Nucl. Med.
PUBLISHED: 11-12-2009
Show Abstract
Hide Abstract
Methyl-L-(11)C-methionine ((11)C-MET) PET has been shown to detect brain tumors with a high sensitivity and specificity. In this study, we investigated the potential of (11)C-MET PET to noninvasively detect tumor progression in patients with gliomas. Moreover, we analyzed the relationship between changes in (11)C-MET uptake on PET and changes in various molecular immunohistochemical markers during progression of gliomas.
Related JoVE Video
Cancer stem cells and angiogenesis.
Semin. Cancer Biol.
PUBLISHED: 08-27-2009
Show Abstract
Hide Abstract
Most cancers contain tumor cells that display stem cell-like characteristics. How and when such cells appear in tumors are not clear, but may involve both stochastic as well as hierarchical events. Most likely, tumor cells that display stem cell-like characteristics can undergo asymmetric cell division giving rise to tumor cells that trigger angiogenic programs. As normal stem cells the cancer stem-like cells seem to adapt to hypoxic environments and will use metabolic pathways that involve increased conversion of glucose to pyruvate and lactate, and a concomitant decrease in mitochondrial metabolism and mitochondrial mass. The molecular pathways responsible for inducing glycolysis are now being explored. These pathways seem to mediate multiple metabolic functions in cancer stem-like cells, leading to a highly migratory and angiogenesis-independent phenotype. Future challenges will be to identify and validate molecular targets involved in anaerobic metabolic pathways active in cancer stem-like cells and to determine how these pathways differ from regulatory pathways involved in normal stem cell function.
Related JoVE Video
iTRAQ-based proteomics profiling reveals increased metabolic activity and cellular cross-talk in angiogenic compared with invasive glioblastoma phenotype.
Mol. Cell Proteomics
PUBLISHED: 08-12-2009
Show Abstract
Hide Abstract
Malignant gliomas (glioblastoma multiforme) have a poor prognosis with an average patient survival under current treatment regimens ranging between 12 and 14 months. The tumors are characterized by rapid cell growth, extensive neovascularization, and diffuse cellular infiltration of normal brain structures. We have developed a human glioblastoma xenograft model in nude rats that is characterized by a highly infiltrative non-angiogenic phenotype. Upon serial transplantation this phenotype will develop into a highly angiogenic tumor. Thus, we have developed an animal model where we are able to establish two characteristic tumor phenotypes that define human glioblastoma (i.e. diffuse infiltration and high neovascularization). Here we aimed at identifying potential biomarkers expressed by the non-angiogenic and the angiogenic phenotypes and elucidating the molecular pathways involved in the switch from invasive to angiogenic growth. Focusing on membrane-associated proteins, we profiled protein expression during the progression from an invasive to an angiogenic phenotype by analyzing serially transplanted glioma xenografts in rats. Applying isobaric peptide tagging chemistry (iTRAQ) combined with two-dimensional LC and MALDI-TOF/TOF mass spectrometry, we were able to identify several thousand proteins in membrane-enriched fractions of which 1460 were extracted as quantifiable proteins (isoform- and species-specific and present in more than one sample). Known and novel candidate proteins were identified that characterize the switch from a non-angiogenic to a highly angiogenic phenotype. The robustness of the data was corroborated by extensive bioinformatics analysis and by validation of selected proteins on tissue microarrays from xenograft and clinical gliomas. The data point to enhanced intercellular cross-talk and metabolic activity adopted by tumor cells in the angiogenic compared with the non-angiogenic phenotype. In conclusion, we describe molecular profiles that reflect the change from an invasive to an angiogenic brain tumor phenotype. The identified proteins could be further exploited as biomarkers or therapeutic targets for malignant gliomas.
Related JoVE Video
A reproducible brain tumour model established from human glioblastoma biopsies.
BMC Cancer
PUBLISHED: 06-23-2009
Show Abstract
Hide Abstract
Establishing clinically relevant animal models of glioblastoma multiforme (GBM) remains a challenge, and many commonly used cell line-based models do not recapitulate the invasive growth patterns of patient GBMs. Previously, we have reported the formation of highly invasive tumour xenografts in nude rats from human GBMs. However, implementing tumour models based on primary tissue requires that these models can be sufficiently standardised with consistently high take rates.
Related JoVE Video
Developmental potential of the murine embryonic stem cells transplanted into the healthy rat brain--novel insights into tumorigenesis.
Cell. Physiol. Biochem.
PUBLISHED: 04-20-2009
Show Abstract
Hide Abstract
Although engraftment of undifferentiated pluripotent embryonic stem cells (ESCs) into the injured central nervous system (CNS) may lead to targeted cell replacement of lost/damaged cells, sustained proliferative activity combined with uncontrolled differentiation of implanted cells presents a risk of tumor formation. As tumorigenic potential is thought to be associated with pluripotency of embryonic stem cells, pre-differentiation may circumvent this problem. Recently, it has been demonstrated that tumorigenesis occurs despite pre-differentiation if the neural precursor cells are implanted into the brain of a homologous animal (e.g., mouse to mouse). However, xenotransplantation (e.g., mouse to rat) without pre-differentiation, lead to the development of healthy neuronal cells, in absence of tumor formation, suggesting that tumor-suppressive effects of host tissue on engrafted ESCs may play a role in transplant tumorigenesis. We critically investigated tumorigenesis and possible mechanisms of anticipated tumor-suppressive effect under conditions analogous to previously published studies. Xenotransplantation of D-3 murine ESCs into uninjured adult rat brains lacking any preliminary inflammatory potential was found to lead to tumor formation in 5 out of 8 of animals within 2 weeks postimplantation. Tumor-suppressive effects, reflected by Erdo et. al could possibly be ascribed to immunomodulatory activity of macrophages scavenging the tumorigenic fraction of the implanted cells. The importance of number of engrafted cells, implantation site and immunosuppressive effects are discussed as possible variables determining tumorigenic outcome after ESC transplantation.
Related JoVE Video
Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms.
Expert Opin. Ther. Targets
PUBLISHED: 04-02-2009
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) has a very poor prognosis and novel treatment strategies are urgently needed. GBM appears to be an optimal target for anti-angiogenic therapy as the tumour shows a high degree of endothelial cell proliferation and pro-angiogenic growth factor expression.
Related JoVE Video
Remission of invasive, cancer stem-like glioblastoma xenografts using lentiviral vector-mediated suicide gene therapy.
PLoS ONE
PUBLISHED: 03-09-2009
Show Abstract
Hide Abstract
Glioblastoma is the most frequent and most malignant primary brain tumor with a poor prognosis. The translation of therapeutic strategies for glioblastoma from the experimental phase into the clinic has been limited by insufficient animal models, which lack important features of human tumors. Lentiviral gene therapy is an attractive therapeutic option for human glioblastoma, which we validated in a clinically relevant animal model.
Related JoVE Video
[11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors.
J. Neurooncol.
PUBLISHED: 03-04-2009
Show Abstract
Hide Abstract
Only a few Methyl-[11C]-L-methionine (MET) positron emission tomography (PET) studies have focused on children and young adults with brain neoplasm. Due to radiation exposure, long scan acquisition time, and the need for sedation in young children MET-PET studies should be restricted to this group of patients when a decision for further therapy is not possible from routine diagnostic procedures alone, e.g., structural imaging. We investigated the diagnostic accuracy of MET-PET for the differentiation between tumorous and non-tumorous lesions in this group of patients. Forty eight MET-PET scans from 39 patients aged from 2 to 21 years (mean 15 +/- 5.0 years) were analyzed. The MET tumor-uptake relative to a corresponding control region was calculated. A receiver operating characteristic (ROC) was performed to determine the MET-uptake value that best distinguishes tumorous from non-tumorous brain lesions. A differentiation between tumorous (n = 39) and non-tumorous brain lesions (n = 9) was possible at a threshold of 1.48 of relative MET-uptake with a sensitivity of 83% and a specificity of 92%, respectively. A differentiation between high grade malignant lesions (mean MET-uptake = 2.00 +/- 0.46) and low grade tumors (mean MET-uptake = 1.84 +/- 0.31) was not possible. There was a significant difference in MET-uptake between the histologically homogeneous subgroups of astrocytoma WHO grade II and anaplastic astrocytoma WHO grade III (P = 0.02). MET-PET might be a useful tool to differentiate tumorous from non-tumorous lesions in children and young adults when a decision for further therapy is difficult or impossible from routine structural imaging procedures alone.
Related JoVE Video
Related JoVE Video
In vivo models of primary brain tumors: pitfalls and perspectives.
Neuro-oncology
Show Abstract
Hide Abstract
Animal modeling for primary brain tumors has undergone constant development over the last 60 years, and significant improvements have been made recently with the establishment of highly invasive glioblastoma models. In this review we discuss the advantages and pitfalls of model development, focusing on chemically induced models, various xenogeneic grafts of human cell lines, including stem cell-like cell lines and biopsy spheroids. We then discuss the development of numerous genetically engineered models available to study mechanisms of tumor initiation and progression. At present it is clear that none of the current animal models fully reflects human gliomas. Yet, the various model systems have provided important insight into specific mechanisms of tumor development. In particular, it is anticipated that a combined comprehensive knowledge of the various models currently available will provide important new knowledge on target identification and the validation and development of new therapeutic strategies.
Related JoVE Video
Cellular host responses to gliomas.
PLoS ONE
Show Abstract
Hide Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant primary brain tumors in adults. Molecular and genetic analysis has advanced our understanding of glioma biology, however mapping the cellular composition of the tumor microenvironment is crucial for understanding the pathology of this dreaded brain cancer. In this study we identified major cell populations attracted by glioma using orthotopic rodent models of human glioma xenografts. Marker-specific, anatomical and morphological analyses revealed a robust influx of host cells into the main tumor bed and tumor satellites.
Related JoVE Video
Low expression levels of ATM may substitute for CHEK2 /TP53 mutations predicting resistance towards anthracycline and mitomycin chemotherapy in breast cancer.
Breast Cancer Res.
Show Abstract
Hide Abstract
Mutations affecting p53 or its upstream activator Chk2 are associated with resistance to DNA-damaging chemotherapy in breast cancer. ATM (Ataxia Telangiectasia Mutated protein) is the key activator of p53 and Chk2 in response to genotoxic stress. Here, we sought to evaluate ATMs potential role in resistance to chemotherapy.
Related JoVE Video
Elevated levels of the steroidogenic factor 1 are associated with over-expression of CYP19 in an oestrogen-producing testicular Leydig cell tumour.
Eur. J. Endocrinol.
Show Abstract
Hide Abstract
Testicular Leydig cell tumours (LCTs) are rare, steroid-secreting tumours. Elevated levels of aromatase (CYP19 or CYP19A1) mRNA have been previously described in LCTs; however, little is known about the mechanism(s) causing CYP19 over-expression. We report an LCT in a 29-year-old male with elevated plasma oestradiol caused by enhanced CYP19 transcription.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.