JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Enhancing E. coli isobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP).
Biotechnol. Bioeng.
PUBLISHED: 05-15-2013
Show Abstract
Hide Abstract
The limited isobutanol tolerance of Escherichia coli is a major drawback during fermentative isobutanol production. Different from classical strain engineering approaches, this work was initiated to improve E. coli isobutanol tolerance from its transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP). Random mutagenesis libraries were generated by error-prone PCR of crp, and the libraries were subjected to isobutanol stress for selection. Variant IB2 (S179P, H199R) was isolated and exhibited much better growth (0.18?h(-1) ) than the control (0.05?h(-1) ) in 1.2% (v/v) isobutanol (9.6?g/L). Genome-wide DNA microarray analysis revealed that 58 and 308 genes in IB2 had differential expression (>2-fold, p?
Related JoVE Video
Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP).
PLoS ONE
PUBLISHED: 01-21-2013
Show Abstract
Hide Abstract
A major challenge in bioethanol fermentation is the low tolerance of the microbial host towards the end product bioethanol. Here we report to improve the ethanol tolerance of E. coli from the transcriptional level by engineering its global transcription factor cAMP receptor protein (CRP), which is known to regulate over 400 genes in E. coli. Three ethanol tolerant CRP mutants (E1- E3) were identified from error-prone PCR libraries. The best ethanol-tolerant strain E2 (M59T) had the growth rate of 0.08 h(-1) in 62 g/L ethanol, higher than that of the control at 0.06 h(-1). The M59T mutation was then integrated into the genome to create variant iE2. When exposed to 150 g/l ethanol, the survival of iE2 after 15 min was about 12%, while that of BW25113 was <0.01%. Quantitative real-time reverse transcription PCR analysis (RT-PCR) on 444 CRP-regulated genes using OpenArray® technology revealed that 203 genes were differentially expressed in iE2 in the absence of ethanol, whereas 92 displayed differential expression when facing ethanol stress. These genes belong to various functional groups, including central intermediary metabolism (aceE, acnA, sdhD, sucA), iron ion transport (entH, entD, fecA, fecB), and general stress response (osmY, rpoS). Six up-regulated and twelve down-regulated common genes were found in both iE2 and E2 under ethanol stress, whereas over one hundred common genes showed differential expression in the absence of ethanol. Based on the RT-PCR results, entA, marA or bhsA was knocked out in iE2 and the resulting strains became more sensitive towards ethanol.
Related JoVE Video
Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP).
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring its global regulator cAMP receptor protein (CRP), which is reported to regulate 444 genes. Error-prone PCR method was employed to modify crp and the mutagenesis libraries (~3×10(6)) were subjected to M9 minimal medium supplemented with 5-10 g/L sodium acetate for selection. Mutant A2 (D138Y) was isolated and its growth rate in 15 g/L sodium acetate was found to be 0.083 h(-1), much higher than that of the control (0.016 h(-1)). Real-time PCR analysis via OpenArray(®) system revealed that over 400 CRP-regulated genes were differentially expressed in A2 with or without acetate stress, including those involved in the TCA cycle, phosphotransferase system, etc. Eight genes were chosen for overexpression and the overexpression of uxaB was found to lead to E. coli acetate sensitivity.
Related JoVE Video
Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance.
Biotechnol. Bioeng.
PUBLISHED: 09-14-2011
Show Abstract
Hide Abstract
The naturally existing microbial hosts can rarely satisfy industrial requirements, thus there has always been an intense effort in strain engineering to meet the needs of these bioprocesses. Here, in this work, we want to prove the concept that engineering global transcription factor cAMP receptor protein (CRP) of Escherichia coli can improve cell phenotypes. CRP is one of the global regulatory proteins that can regulate the transcription of over 400 genes in E. coli. The target phenotype in this study is strain osmotolerance. Amino acid mutations were introduced to CRP by either error-prone PCR or DNA shuffling, and the random mutagenesis libraries were subjected to enrichment selection under NaCl stress. Five CRP mutants (MT1-MT5) were selected from the error-prone PCR libraries with enhanced osmotolerance. DNA shuffling technique was employed to generate mutant MT6 with MT1-MT5 as templates. All of these variants showed much better growth in the presence of NaCl compared to the wild type, and MT6 presented the best tolerance towards NaCl. In the presence of 0.9 M NaCl, the growth rate of MT6 is 0.113 h(-1), while that of WT is 0.077 h(-1). MT6 also exhibited resistance to other osmotic stressors, such as KCl, glucose, and sucrose. DNA microarray analysis showed that genes involved in colanic acid biosynthesis are up-regulated in the absence of salt stress, whereas carbohydrate metabolic genes are differentially expressed under NaCl stress when comparing MT6 to WT. Scanning electron microscopy images confirmed the elongation of both WT and MT6 when exposed to NaCl but the cell surface of MT6 was relatively smooth.
Related JoVE Video
Comparison of alkyl hydroperoxide reductase and two water-forming NADH oxidases from Bacillus cereus ATCC 14579.
Appl. Microbiol. Biotechnol.
Show Abstract
Hide Abstract
Bacillus cereus (B. cereus) is an ubiquitous facultative anaerobic bacterium, and its growth in aerobic environment correlates to the functions of its oxygen defense system. Water-forming NADH oxidase (nox-2) can catalyze the conversion of oxygen to water with concomitant NADH oxidation in anaerobic microorganisms. Here, we report the cloning and characterization of two annotated nox-2 s (nox-2(444) and nox-2(554)) from B. cereus ATCC 14579 and their comparison with another oxidative stress defense system alkyl hydroperoxide reductase (AhpR) from this microbe, which composed of two enzymes-hydrogen peroxide-forming NADH oxidase (nox-1) and peroxidase. Both nox-2 and AhpR catalyze the same reaction in the presence of oxygen. With the stimulation of exogenously added FAD, the maximum activity of nox-1, nox-2(444), and nox-2(554) could reach 27.7 U/mg, 22.9 U/mg, and 2.4 U/mg, respectively, at pH 7.0, 30 °C. Different from nox-1, both nox-2 s were thermotolerant enzymes and could maintain above 87% of their optimum activity at 80 °C, which was not found in other nox-2 s. As for operational stability, all are turnover-limited. Exogenously added reductive reagent dithiothreitol could dramatically increase the total turnover number of nox-2(444) and nox-2(554) by twofold and threefold, respectively, but had no effect on AhpR or nox-1.
Related JoVE Video
Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.
Appl. Microbiol. Biotechnol.
Show Abstract
Hide Abstract
One major challenge in biofuel production, including biobutanol production, is the low tolerance of the microbial host towards increasing biofuel concentration during fermentation. Here, we have demonstrated that Escherichia coli 1-butanol tolerance can be greatly enhanced through random mutagenesis of global transcription factor cyclic AMP receptor protein (CRP). Four mutants (MT1-MT4) with elevated 1-butanol tolerance were isolated from error-prone PCR libraries through an enrichment screening. A DNA shuffling library was then constructed using MT1-MT4 as templates and one mutant (MT5) that exhibited the best tolerance ability among all variants was selected. In the presence of 0.8 % (v/v, 6.5 g/l) 1-butanol, the growth rate of MT5 was found to be 0.28 h(-1) while that of wild type was 0.20 h(-1). When 1-butanol concentration increased to 1.2 % (9.7 g/l), the growth rate of MT5 (0.18 h(-1)) became twice that of the wild type (0.09 h(-1)). Microbial adhesion to hydrocarbon test showed that cell surface of MT5 was less hydrophobic and its cell length became significantly longer in the presence of 1-butanol, as observed by scanning electron microscopy. Quantitative real-time reverse transcription PCR analysis revealed that several CRP regulated, 1-butanol stress response related genes (rpoH, ompF, sodA, manX, male, and marA) demonstrated differential expression in MT5 in the presence or absence of 1-butanol. In conclusion, direct manipulation of the transcript profile through engineering global transcription factor CRP can provide a useful tool in strain engineering.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.