JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
A Reaction Path Study of the Catalysis and Inhibition of the Bacillus anthracis CapD ?-Glutamyl Transpeptidase.
Biochemistry
PUBLISHED: 10-31-2014
Show Abstract
Hide Abstract
The CapD enzyme of Bacillus anthracis is a ?-glutamyl transpeptidase from the N-terminal nucleophile hydrolase superfamily that covalently anchors the poly-?-d-glutamic acid (pDGA) capsule to the peptidoglycan. The capsule hinders phagocytosis of B. anthracis by host cells and is essential for virulence. The role CapD plays in capsule anchoring and remodeling makes the enzyme a promising target for anthrax medical countermeasures. Although the structure of CapD is known, and a covalent inhibitor, capsidin, has been identified, the mechanisms of CapD catalysis and inhibition are poorly understood. Here, we used a computational approach to map out the reaction steps involved in CapD catalysis and inhibition. We found that the rate-limiting step of either CapD catalysis or inhibition was a concerted asynchronous formation of the tetrahedral intermediate with a barrier of 22-23 kcal/mol. However, the mechanisms of these reactions differed for the two amides. The formation of the tetrahedral intermediate with pDGA was substrate-assisted with two proton transfers. In contrast, capsidin formed the tetrahedral intermediate in a conventional way with one proton transfer. Interestingly, capsidin coupled a conformational change in the catalytic residue of the tetrahedral intermediate to stretching of the scissile amide bond. Furthermore, capsidin took advantage of iminol-amide tautomerism of its diacetamide moiety to convert the tetrahedral intermediate to the acetylated CapD. As evidence of the promiscuous nature of CapD, the enzyme cleaved the amide bond of capsidin by attacking it on the opposite side compared to pDGA.
Related JoVE Video
Exploring chemical reaction mechanisms through harmonic Fourier beads path optimization.
J Chem Phys
PUBLISHED: 11-05-2013
Show Abstract
Hide Abstract
Here, we apply the harmonic Fourier beads (HFB) path optimization method to study chemical reactions involving covalent bond breaking and forming on quantum mechanical (QM) and hybrid QM?molecular mechanical (QM?MM) potential energy surfaces. To improve efficiency of the path optimization on such computationally demanding potentials, we combined HFB with conjugate gradient (CG) optimization. The combined CG-HFB method was used to study two biologically relevant reactions, namely, L- to D-alanine amino acid inversion and alcohol acylation by amides. The optimized paths revealed several unexpected reaction steps in the gas phase. For example, on the B3LYP?6-31G(d,p) potential, we found that alanine inversion proceeded via previously unknown intermediates, 2-iminopropane-1,1-diol and 3-amino-3-methyloxiran-2-ol. The CG-HFB method accurately located transition states, aiding in the interpretation of complex reaction mechanisms. Thus, on the B3LYP?6-31G(d,p) potential, the gas phase activation barriers for the inversion and acylation reactions were 50.5 and 39.9 kcal?mol, respectively. These barriers determine the spontaneous loss of amino acid chirality and cleavage of peptide bonds in proteins. We conclude that the combined CG-HFB method further advances QM and QM?MM studies of reaction mechanisms.
Related JoVE Video
Separation of Betti Reaction Product Enantiomers: Absolute Configuration and Inhibition of Botulinum Neurotoxin A.
ACS Med Chem Lett
PUBLISHED: 11-22-2011
Show Abstract
Hide Abstract
The racemic product of the Betti reaction of 5-chloro-8-hydroxyquinoline, benzaldehyde and 2-aminopyridine was separated by chiral HPLC to determine which enantiomer inhibited botulinum neurotoxin serotype A. When the enantiomers unexpectedly proved to have comparable activity, the absolute structures of (+)-(R)-1 and (-)-(S)-1 were determined by comparison of calculated and observed circular dichroism spectra. Molecular modeling studies were undertaken in an effort to understand the observed bioactivity and revealed different ensembles of binding modes, with roughly equal binding energies, for the two enantiomers.
Related JoVE Video
Improved Binding Free Energy Predictions from Single-Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.
J Chem Theory Comput
PUBLISHED: 11-03-2011
Show Abstract
Hide Abstract
Reliable predictions of relative binding free energies are essential in drug discovery, where chemists modify promising compounds with the aim of increasing binding affinity. Conventional Thermodynamic Integration (TI) approaches can estimate corresponding changes in binding free energies, but suffer from inadequate sampling due to ruggedness of the molecular energy surfaces. Here, we present an improved TI strategy for computing relative binding free energies of congeneric ligands. This strategy employs a specific, unphysical single-reference (SR) state and Hamiltonian replica exchange (HREX) to locally enhance sampling. We then apply this strategy to compute relative binding free energies of twelve ligands in the L99A mutant of T4 Lysozyme. Besides the ligands, our approach enhances hindered rotations of the important V111, as well as V87 and L118 sidechains. Concurrently, we devise practical strategies to monitor and improve HREX-SRTI efficiency. Overall, the HREX-SRTI results agree well (R(2) = 0.76, RMSE = 0.3 kcal/mol) with available experimental data. When optimized for efficiency, the HREX-SRTI precision matches that of experimental measurements.
Related JoVE Video
Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange.
J Chem Theory Comput
PUBLISHED: 12-15-2010
Show Abstract
Hide Abstract
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
Related JoVE Video
A transition path ensemble study reveals a linchpin role for Mg(2+) during rate-limiting ADP release from protein kinase A.
Biochemistry
PUBLISHED: 11-06-2009
Show Abstract
Hide Abstract
Protein kinases are key regulators of diverse signaling networks critical for growth and development. Protein kinase A (PKA) is an important kinase prototype that phosphorylates protein targets at Ser and Thr residues by converting ATP to ADP. Mg(2+) ions play a crucial role in regulating phosphoryl transfer and can limit overall enzyme turnover by affecting ADP release. However, the mechanism by which Mg(2+) participates in ADP release is poorly understood. Here we use a novel transition path ensemble technique, the harmonic Fourier beads method, to explore the atomic and energetic details of the Mg(2+)-dependent ADP binding and release. Our studies demonstrate that adenine-driven ADP binding to PKA creates three ion-binding sites at the ADP/PKA interface that are absent otherwise. Two of these sites bind the previously characterized Mg(2+) ions, whereas the third site binds a monovalent cation with high affinity. This third site can bind the P-3 residue of substrate proteins and may serve as a reporter of the active site occupation. Binding of Mg(2+) ions restricts mobility of the Gly-rich loop that closes over the active site. We find that simultaneous release of ADP with Mg(2+) ions from the active site is unfeasible. Thus, we conclude that Mg(2+) ions act as a linchpin and that at least one ion must be removed prior to pyrophosphate-driven ADP release. The results of the present study enhance understanding of Mg(2+)-dependent association of nucleotides with protein kinases.
Related JoVE Video
Free energy for the permeation of Na(+) and Cl(-) ions and their ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic fourier beads.
J. Am. Chem. Soc.
PUBLISHED: 01-17-2009
Show Abstract
Hide Abstract
Understanding the mechanism of ion permeation across lipid bilayers is key to controlling osmotic pressure and developing new ways of delivering charged, drug-like molecules inside cells. Recent reports suggest ion-pairing as the mechanism to lower the free energy barrier for the ion permeation in disagreement with predictions from the simple electrostatic models. In this paper we quantify the effect of ion-pairing or charge quenching on the permeation of Na(+) and Cl(-) ions across DMPC lipid bilayer by computing the corresponding potentials of mean force (PMFs) using fully atomistic molecular dynamics simulations. We find that the free energy barrier to permeation reduces in the order Na(+)-Cl(-) ion-pair (27.6 kcal/mol) > Cl(-) (23.6 kcal/mol) > Na(+) (21.9 kcal/mol). Furthermore, with the help of these PMFs we derive the change in the binding free energy between the Na(+) and Cl(-) with respect to that in water as a function of the bilayer permeation depth. Despite the fact that the bilayer boosts the Na(+)-Cl(-) ion binding free energy by as high as 17.9 kcal/mol near its center, ion-pairing between such hydrophilic ions as Na(+) and Cl(-) does not assist their permeation. However, based on a simple thermodynamic cycle, we suggest that ion-pairing between ions of opposite charge and solvent philicity could enhance ion permeation. Comparison of the computed permeation barriers for Na(+) and Cl(-) ions with available experimental data supports this notion. This work establishes general computational methodology to address ion-pairing in fluid anisotropic media and details the ion permeation mechanism on atomic level.
Related JoVE Video
Quantitative predictions of binding free energy changes in drug-resistant influenza neuraminidase.
PLoS Comput. Biol.
Show Abstract
Hide Abstract
Quantitatively predicting changes in drug sensitivity associated with residue mutations is a major challenge in structural biology. By expanding the limits of free energy calculations, we successfully identified mutations in influenza neuraminidase (NA) that confer drug resistance to two antiviral drugs, zanamivir and oseltamivir. We augmented molecular dynamics (MD) with Hamiltonian Replica Exchange and calculated binding free energy changes for H274Y, N294S, and Y252H mutants. Based on experimental data, our calculations achieved high accuracy and precision compared with results from established computational methods. Analysis of 15 micros of aggregated MD trajectories provided insights into the molecular mechanisms underlying drug resistance that are at odds with current interpretations of the crystallographic data. Contrary to the notion that resistance is caused by mutant-induced changes in hydrophobicity of the binding pocket, our simulations showed that drug resistance mutations in NA led to subtle rearrangements in the protein structure and its dynamics that together alter the active-site electrostatic environment and modulate inhibitor binding. Importantly, different mutations confer resistance through different conformational changes, suggesting that a generalized mechanism for NA drug resistance is unlikely.
Related JoVE Video
Probing the donor and acceptor substrate specificity of the ?-glutamyl transpeptidase.
Biochemistry
Show Abstract
Hide Abstract
?-Glutamyl transpeptidase (GGT) is a two-substrate enzyme that plays a central role in glutathione metabolism and is a potential target for drug design. GGT catalyzes the cleavage of ?-glutamyl donor substrates and the transfer of the ?-glutamyl moiety to an amine of an acceptor substrate or water. Although structures of bacterial GGT have revealed details of the protein-ligand interactions at the donor site, the acceptor substrate site is relatively undefined. The recent identification of a species-specific acceptor site inhibitor, OU749, suggests that these inhibitors may be less toxic than glutamine analogues. Here we investigated the donor and acceptor substrate preferences of Bacillus anthracis GGT (CapD) and applied computational approaches in combination with kinetics to probe the structural basis of the enzymes substrate and inhibitor binding specificities and compare them with human GGT. Site-directed mutagenesis studies showed that the R432A and R520S variants exhibited 6- and 95-fold decreases in hydrolase activity, respectively, and that their activity was not stimulated by the addition of the l-Cys acceptor substrate, suggesting an additional role in acceptor binding and/or catalysis of transpeptidation. Rat GGT (and presumably HuGGT) has strict stereospecificity for L-amino acid acceptor substrates, while CapD can utilize both L- and D-acceptor substrates comparably. Modeling and kinetic analysis suggest that R520 and R432 allow two alternate acceptor substrate binding modes for L- and D-acceptors. R432 is conserved in Francisella tularensis, Yersinia pestis, Burkholderia mallei, Helicobacter pylori and Escherichia coli, but not in human GGT. Docking and MD simulations point toward key residues that contribute to inhibitor and acceptor substrate binding, providing a guide to designing novel and specific GGT inhibitors.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.