JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Functional dissociation of ventral frontal and dorsomedial default mode network components during resting state and emotional autobiographical recall.
Hum Brain Mapp
PUBLISHED: 07-23-2014
Show Abstract
Hide Abstract
Humans spend a substantial share of their lives mind-wandering. This spontaneous thinking activity usually comprises autobiographical recall, emotional, and self-referential components. While neuroimaging studies have demonstrated that a specific brain "default mode network" (DMN) is consistently engaged by the "resting state" of the mind, the relative contribution of key cognitive components to DMN activity is still poorly understood. Here we used fMRI to investigate whether activity in neural components of the DMN can be differentially explained by active recall of relevant emotional autobiographical memories as compared with the resting state. Our study design combined emotional autobiographical memory, neutral memory and resting state conditions, separated by a serial subtraction control task. Shared patterns of activation in the DMN were observed in both emotional autobiographical and resting conditions, when compared with serial subtraction. Directly contrasting autobiographical and resting conditions demonstrated a striking dissociation within the DMN in that emotional autobiographical retrieval led to stronger activation of the dorsomedial core regions (medial prefrontal cortex, posterior cingulate cortex), whereas the resting state condition engaged a ventral frontal network (ventral striatum, subgenual and ventral anterior cingulate cortices) in addition to the IPL. Our results reveal an as yet unreported dissociation within the DMN. Whereas the dorsomedial component can be explained by emotional autobiographical memory, the ventral frontal one is predominantly associated with the resting state proper, possibly underlying fundamental motivational mechanisms engaged during spontaneous unconstrained ideation.
Related JoVE Video
Structural and functional brain rewiring clarifies preserved interhemispheric transfer in humans born without the corpus callosum.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 05-12-2014
Show Abstract
Hide Abstract
Why do humans born without the corpus callosum, the major interhemispheric commissure, lack the disconnection syndrome classically described in callosotomized patients? This paradox was discovered by Nobel laureate Roger Sperry in 1968, and has remained unsolved since then. To tackle the hypothesis that alternative neural pathways could explain this puzzle, we investigated patients with callosal dysgenesis using structural and functional neuroimaging, as well as neuropsychological assessments. We identified two anomalous white-matter tracts by deterministic and probabilistic tractography, and provide supporting resting-state functional neuroimaging and neuropsychological evidence for their functional role in preserved interhemispheric transfer of complex tactile information, such as object recognition. These compensatory pathways connect the homotopic posterior parietal cortical areas (Brodmann areas 39 and surroundings) via the posterior and anterior commissures. We propose that anomalous brain circuitry of callosal dysgenesis is determined by long-distance plasticity, a set of hardware changes occurring in the developing brain after pathological interference. So far unknown, these pathological changes somehow divert growing axons away from the dorsal midline, creating alternative tracts through the ventral forebrain and the dorsal midbrain midline, with partial compensatory effects to the interhemispheric transfer of cortical function.
Related JoVE Video
You and your kin: Neural signatures of family-based group perception in the subgenual cortex.
Soc Neurosci
PUBLISHED: 05-06-2014
Show Abstract
Hide Abstract
Attachment to one's kin as an in-group emerges from a fundamental human motivation and is vital for human survival. Despite important recent advances in the field of social neuroscience, the neural mechanisms underlying family-related in-group perception remain obscure. To examine the neural basis of perceiving family-related in-group boundaries in response to written kinship scenarios, we used functional magnetic resonance imaging in 27 healthy adults and obtained self-report ratings of family-related entitativity, which measures to what degree participants perceive their family as a coherent and distinct group in society. We expected that activity in the subgenual cingulate cortex and septo-hypothalamic region would track individual differences in entitativity. Perceiving one's family as a distinct and cohesive group (high entitativity) was associated with increased subgenual cortex response to kinship scenarios. The subgenual cingulate cortex may represent a key link between kin-related emotional attachment and group perception, providing a neurobiological basis for group belongingness.
Related JoVE Video
White matter tract damage in the behavioral variant of frontotemporal and corticobasal dementia syndromes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The phenotypes of the behavioral variant of frontotemporal dementia and the corticobasal syndrome present considerable clinical and anatomical overlap. The respective patterns of white matter damage in these syndromes have not been directly contrasted. Beyond cortical involvement, damage to white matter pathways may critically contribute to both common and specific symptoms in both conditions. Here we assessed patients with the behavioral variant of frontotemporal dementia and corticobasal syndrome with whole-brain diffusion tensor imaging to identify the white matter networks underlying these pathologies. Twenty patients with the behavioral variant of frontotemporal dementia, 19 with corticobasal syndrome, and 15 healthy controls were enrolled in the study. Differences in tract integrity between (i) patients and controls, and (ii) patients with the corticobasal syndrome and the behavioral variant of frontotemporal dementia were assessed with whole brain tract-based spatial statistics and analyses of regions of interest. Behavioral variant of frontotemporal dementia and the corticobasal syndrome shared a pattern of bilaterally decreased white matter integrity in the anterior commissure, genu and body of the corpus callosum, corona radiata and in the long intrahemispheric association pathways. Patients with the behavioral variant of frontotemporal dementia showed greater damage to the uncinate fasciculus, genu of corpus callosum and forceps minor. In contrast, corticobasal syndrome patients had greater damage to the midbody of the corpus callosum and perirolandic corona radiata. Whereas several compact white matter pathways were damaged in both the behavioral variant of frontotemporal dementia and corticobasal syndrome, the distribution and degree of white matter damage differed between them. These findings concur with the distinctive clinical manifestations of these conditions and may improve the in vivo neuroanatomical and diagnostic characterization of these disorders.
Related JoVE Video
Voluntary enhancement of neural signatures of affiliative emotion using FMRI neurofeedback.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
In Ridley Scott's film "Blade Runner", empathy-detection devices are employed to measure affiliative emotions. Despite recent neurocomputational advances, it is unknown whether brain signatures of affiliative emotions, such as tenderness/affection, can be decoded and voluntarily modulated. Here, we employed multivariate voxel pattern analysis and real-time fMRI to address this question. We found that participants were able to use visual feedback based on decoded fMRI patterns as a neurofeedback signal to increase brain activation characteristic of tenderness/affection relative to pride, an equally complex control emotion. Such improvement was not observed in a control group performing the same fMRI task without neurofeedback. Furthermore, the neurofeedback-driven enhancement of tenderness/affection-related distributed patterns was associated with local fMRI responses in the septohypothalamic area and frontopolar cortex, regions previously implicated in affiliative emotion. This demonstrates that humans can voluntarily enhance brain signatures of tenderness/affection, unlocking new possibilities for promoting prosocial emotions and countering antisocial behavior.
Related JoVE Video
Abnormal striatal BOLD responses to reward anticipation and reward delivery in ADHD.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Altered reward processing has been proposed to contribute to the symptoms of attention deficit hyperactivity disorder (ADHD). The neurobiological mechanism underlying this alteration remains unclear. We hypothesize that the transfer of dopamine release from reward to reward-predicting cues, as normally observed in animal studies, may be deficient in ADHD. Functional magnetic resonance imaging (fMRI) was used to investigate striatal responses to reward-predicting cues and reward delivery in a classical conditioning paradigm. Data from 14 high-functioning and stimulant-naïve young adults with elevated lifetime symptoms of ADHD (8 males, 6 females) and 15 well-matched controls (8 males, 7 females) were included in the analyses. During reward anticipation, increased blood-oxygen-level-dependent (BOLD) responses in the right ventral and left dorsal striatum were observed in controls, but not in the ADHD group. The opposite pattern was observed in response to reward delivery; the ADHD group demonstrated significantly greater BOLD responses in the ventral striatum bilaterally and the left dorsal striatum relative to controls. In the ADHD group, the number of current hyperactivity/impulsivity symptoms was inversely related to ventral striatal responses during reward anticipation and positively associated with responses to reward. The BOLD response patterns observed in the striatum are consistent with impaired predictive dopamine signaling in ADHD, which may explain altered reward-contingent behaviors and symptoms of ADHD.
Related JoVE Video
Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.
Related JoVE Video
Identification of psychopathic individuals using pattern classification of MRI images.
Soc Neurosci
PUBLISHED: 05-27-2011
Show Abstract
Hide Abstract
Psychopathy is a disorder of personality characterized by severe impairments of social conduct, emotional experience, and interpersonal behavior. Psychopaths consistently violate social norms and bring considerable financial, emotional, or physical harm to others and to society as a whole. Recent developments in analysis methods of magnetic resonance imaging (MRI), such as voxel-based-morphometry (VBM), have become major tools to understand the anatomical correlates of this disorder. Nevertheless, the identification of psychopathy by neuroimaging or other neurobiological tools (e.g., genetic testing) remains elusive.
Related JoVE Video
Impairment of prosocial sentiments is associated with frontopolar and septal damage in frontotemporal dementia.
Neuroimage
PUBLISHED: 06-28-2010
Show Abstract
Hide Abstract
Poets and philosophers have long acknowledged moral sentiments as key motivators of human social behavior. Prosocial sentiments, which include guilt, pity and embarrassment, enable us to care about others and to be concerned about our mistakes. Functional imaging studies have implicated frontopolar, ventromedial frontal and basal forebrain regions in the experience of prosocial sentiments. Patients with lesions of the frontopolar and ventromedial frontal areas were observed to behave inappropriately and less prosocially, which could be attributed to a generalized emotional blunting. Direct experimental evidence for brain regions distinctively associated with moral sentiment impairments is lacking, however. We investigated this issue in patients with the behavioral variant of frontotemporal dementia, a disorder in which early and selective impairments of social conduct are consistently observed. Using a novel moral sentiment task, we show that the degree of impairment of prosocial sentiments is associated with the degree of damage to frontopolar cortex and septal area, as assessed with 18-Fluoro-Deoxy-Glucose-Positron Emission Tomography, an established measure of neurodegenerative damage. This effect was dissociable from impairment of other-critical feelings (anger and disgust), which was in turn associated with dorsomedial prefrontal and amygdala dysfunction. Our findings suggest a critical role of the frontopolar cortex and septal region in enabling prosocial sentiments, a fundamental component of moral conscience.
Related JoVE Video
Subgenual cingulate activity reflects individual differences in empathic concern.
Neurosci. Lett.
PUBLISHED: 01-22-2009
Show Abstract
Hide Abstract
Recent fMRI studies linked subgenual cingulate cortex (SCC) activity with feelings of guilt for acting counter to social values and altruistic donations towards societal causes. We hypothesized that SCC activity across those different tasks was driven by feelings of attachment. In order to investigate this further, we used fMRI to probe the association of empathic concern and strength of SCC activation in response to guilt- and compassion-evoking verbal descriptions of social behaviour. We were able to confirm our prediction that participants with higher empathic concern had increased activity in the SCC in the guilt condition, whereas there was no association for compassion. These results shed new light on the role of the SCC which shows abnormalities in clinical depression.
Related JoVE Video
Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder.
J. Neurosci.
Show Abstract
Hide Abstract
Attention-deficit/hyperactivity disorder (ADHD) is characterized by symptoms of inattention and hyperactivity/impulsivity that often persist in adulthood. There is a growing consensus that ADHD is associated with abnormal function of diffuse brain networks, but such alterations remain poorly characterized. Using resting-state functional magnetic resonance imaging, we characterized multivariate (complex network measures), bivariate (network-based statistic), and univariate (regional homogeneity) properties of brain networks in a non-clinical, drug-naive sample of high-functioning young men and women with ADHD (nine males, seven females) and a group of matched healthy controls. Data from our sample allowed the isolation of intrinsic functional connectivity alterations specific to ADHD diagnosis and symptoms that are not related to developmental delays, general cognitive dysfunction, or history of medication use. Multivariate results suggested that frontal, temporal, and occipital cortices were abnormally connected locally as well as with the rest of the brain in individuals with ADHD. Results from the network-based statistic support and extend multivariate results by isolating two brain networks comprising regions between which inter-regional connectivity was significantly altered in the ADHD group; namely, a frontal amygdala-occipital network and a frontal temporal-occipital network. Brain behavior correlations further highlighted the key role of altered orbitofrontal-temporal and frontal-amygdala connectivity for symptoms of inattention and hyperactivity/impulsivity. All univariate properties were similar between groups. Taken together, results from this study show that the diagnosis and the two main symptom dimensions of ADHD are related to altered intrinsic connectivity in orbitofrontal-temporal-occipital and fronto-amygdala-occipital networks. Accordingly, our findings highlight the importance of extending the conceptualization of ADHD beyond segregated fronto-striatal alterations.
Related JoVE Video
A neural signature of affiliative emotion in the human septohypothalamic area.
J. Neurosci.
Show Abstract
Hide Abstract
Comparative studies have established that a number of structures within the rostromedial basal forebrain are critical for affiliative behaviors and social attachment. Lesion and neuroimaging studies concur with the importance of these regions for attachment and the experience of affiliation in humans as well. Yet it remains obscure whether the neural bases of affiliative experiences can be differentiated from the emotional valence with which they are inextricably associated at the experiential level. Here we show, using functional MRI, that kinship-related social scenarios evocative of affiliative emotion induce septal-preoptic-anterior hypothalamic activity that cannot be explained by positive or negative emotional valence alone. Our findings suggest that a phylogenetically conserved ensemble of basal forebrain structures, especially the septohypothalamic area, may play a key role in enabling human affiliative emotion. Our finding of a neural signature of human affiliative experience bears direct implications for the neurobiological mechanisms underpinning impaired affiliative experiences and behaviors in neuropsychiatric conditions.
Related JoVE Video
Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees.
J. Neurosci.
Show Abstract
Hide Abstract
Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.