JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
The influence of SaeRS and ?(B) on the expression of superantigens in different Staphylococcus aureus isolates.
Int. J. Med. Microbiol.
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Staphylococcus aureus is a major human pathogen. Superantigens (SAg) are important virulence factors in S. aureus, but the regulation of SAg gene expression is largely unknown. Using 2 sequenced S. aureus strains (COL and Newman) and 4 clinical isolates, regulation of gene expression was investigated in more detail for 12 SAgs. The SAg-encoding genes were expressed in a growth phase-dependent manner: while the egc operon was mainly transcribed at low optical densities, the transcription of seb was induced at high optical densities. The transcript levels of sea, sek, seq, sep, and tst-1 did not change significantly during growth. The T cell-mitogenic activity of supernatants correlated with the transcription data. SaeRS and ?(B) strongly influenced SAg gene transcription. ?(B) activated transcription of seh, tst-1, and of the egc operon. A possible ?(B)-dependent promoter was identified in front of the egc operon. In contrast, a loss of ?(B) enhanced the transcript level of seb, suggesting an indirect effect of the alternative sigma factor on the transcription of this gene. Transcriptional studies of an saeS mutant showed that the two-component system only activates transcription of seb. The influence of ?(B) and SaeRS on the expression of SAg genes was validated by T cell proliferation assays. For sigB mutants in different strains, different effects on the T cell-mitogenic potential were observed depending on the SAg gene repertoire of the isolates.
Related JoVE Video
Functional antibodies targeting IsaA of Staphylococcus aureus augment host immune response and open new perspectives for antibacterial therapy.
Antimicrob. Agents Chemother.
PUBLISHED: 10-18-2010
Show Abstract
Hide Abstract
Staphylococcus aureus is the most common cause of nosocomial infections. Multiple antibiotic resistance and severe clinical outcomes provide a strong rationale for development of immunoglobulin-based strategies. Traditionally, novel immunological approaches against bacterial pathogens involve antibodies directed against cell surface-exposed virulence-associated epitopes or toxins. In this study, we generated a monoclonal antibody targeting the housekeeping protein IsaA, a suggested soluble lytic transglycosylase of S. aureus, and tested its therapeutic efficacy in two experimental mouse infection models. A murine anti-IsaA antibody of the IgG1 subclass (UK-66P) showed the highest binding affinity in Biacore analysis. This antibody recognized all S. aureus strains tested, including hospital-acquired and community-acquired methicillin-resistant S. aureus strains. Therapeutic efficacy in vivo in mice was analyzed using a central venous catheter-related infection model and a sepsis survival model. In both models, anti-IsaA IgG1 conferred protection against staphylococcal infection. Ex vivo, UK-66P activates professional phagocytes and induces highly microbicidal reactive oxygen metabolites in a dose-dependent manner, resulting in bacterial killing. The study provides proof of concept that monoclonal IgG1 antibodies with high affinity to the ubiquitously expressed, single-epitope-targeting IsaA are effective in the treatment of staphylococcal infection in different mouse models. Anti-IsaA antibodies might be a useful component in an antibody-based therapeutic for prophylaxis or adjunctive treatment of human cases of S. aureus infections.
Related JoVE Video
Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons.
Environ. Microbiol.
PUBLISHED: 06-18-2010
Show Abstract
Hide Abstract
The anaerobic metabolism of the opportunistic pathogen Pseudomonas aeruginosa is important for growth and biofilm formation during persistent infections. The two Fnr-type transcription factors Anr and Dnr regulate different parts of the underlying network in response to oxygen tension and NO. Little is known about all members of the Anr and Dnr regulons and the mediated immediate response to oxygen depletion. Comprehensive transcriptome and bioinformatics analyses in combination with a limited proteome analyses were used for the investigation of the P. aeruginosa response to an immediate oxygen depletion and for definition of the corresponding Anr and Dnr regulons. We observed at first the activation of fermentative pathways for immediate energy generation followed by induction of alternative respiratory chains. A solid position weight matrix model was deduced from the experimentally identified Anr boxes and used for identification of 170 putative Anr boxes in potential P. aeruginosa promoter regions. The combination with the experimental data unambiguously identified 130 new members for the Anr and Dnr regulons. The basis for the understanding of two regulons of P. aeruginosa central to biofilm formation and infection is now defined.
Related JoVE Video
Complete genome sequence of Listeria seeligeri, a nonpathogenic member of the genus Listeria.
J. Bacteriol.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
We report the complete and annotated genome sequence of the nonpathogenic Listeria seeligeri SLCC3954 serovar 1/2b type strain harboring the smallest completely sequenced genome of the genus Listeria.
Related JoVE Video
Electrical protein array chips for the detection of staphylococcal virulence factors.
Appl. Microbiol. Biotechnol.
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
A new approach for the detection of virulence factors of Staphylococcus aureus and Staphylococcus epidermidis using an electrical protein array chip technology is presented. The procedure is based on an enzyme-linked sandwich immunoassay, which includes recognition and binding of virulence factors by specific capture and detection antibodies. Detection of antibody-bound virulence factors is achieved by measuring the electrical current generated by redox recycling of an enzymatically released substance. The current (measured in nanoampere) corresponds to the amount of the target molecule in the analyzed sample. The electrical protein chip allows for a fast detection of Staphylococcus enterotoxin B (SEB) of S. aureus and immunodominant antigen A homologue (IsaA homologue) of S. epidermidis in different liquid matrices. The S. aureus SEB virulence factor could be detected in minimal medium, milk, and urine in a concentration of 1 ng/ml within less than 23 min. Furthermore, a simultaneous detection of SEB of S. aureus and IsaA homologue of S. epidermidis in a single assay could be demonstrated.
Related JoVE Video
Quantitative phosphokinome analysis of the Met pathway activated by the invasin internalin B from Listeria monocytogenes.
Mol. Cell Proteomics
PUBLISHED: 07-29-2009
Show Abstract
Hide Abstract
Stimulated by its physiological ligand, hepatocyte growth factor, the transmembrane receptor tyrosine kinase Met activates a signaling machinery that leads to mitogenic, motogenic, and morphogenic responses. Remarkably, the food-borne human pathogen Listeria monocytogenes also promotes autophosphorylation of Met through its virulence factor internalin B (InlB) and subsequently exploits Met signaling to induce phagocytosis into a broad range of host cells. Although the interaction between InlB and Met has been studied in detail, the signaling specificity of components involved in InlB-triggered cellular responses remains poorly characterized. The analysis of regulated phosphorylation events on protein kinases is therefore of particular relevance, although this could not as yet be characterized systematically by proteomics. Here, we implemented a new pyridopyrimidine-based strategy that enabled the efficient capture of a considerable subset of the human kinome in a robust one-step affinity chromatographic procedure. Additionally, and to gain functional insights into the InlB/Met-induced bacterial invasion process, a quantitative survey of the phosphorylation pattern of these protein kinases was accomplished. In total, the experimental design of this study comprises affinity chromatographic procedures for the systematic enrichment of kinases, as well as phosphopeptides; the quantification of all peptides based on the iTRAQ reporter system; and a rational statistical strategy to evaluate the quality of phosphosite regulations. With this improved chemical proteomics strategy, we determined and relatively quantified 143 phosphorylation sites detected on 94 human protein kinases. Interestingly, InlB-mediated signaling shows striking similarities compared with the natural ligand hepatocyte growth factor that was intensively studied in the past. In addition, this systematic approach suggests a new subset of protein kinases including Nek9, which are differentially phosphorylated after short time (4-min) treatment of cells with the Met-activating InlB(321). Thus, this quantitative phosphokinome study suggests a general, hypothesis-free concept for the detection of dynamically regulated protein kinases as novel signaling components involved in host-pathogen interactions.
Related JoVE Video
Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.
PLoS Pathog.
PUBLISHED: 04-08-2009
Show Abstract
Hide Abstract
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.