JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation.
J. Exp. Med.
PUBLISHED: 11-19-2014
Show Abstract
Hide Abstract
We used a genome-wide screen in mutagenized mice to identify genes which inactivation protects against lethal neuroinflammation during experimental cerebral malaria (ECM). We identified an ECM-protective mutation in coiled-coil domain containing protein 88b (Ccdc88b), a poorly annotated gene that is found expressed specifically in spleen, bone marrow, lymph nodes, and thymus. The CCDC88B protein is abundantly expressed in immune cells, including both CD4(+) and CD8(+) T lymphocytes, and in myeloid cells, and loss of CCDC88B protein expression has pleiotropic effects on T lymphocyte functions, including impaired maturation in vivo, significantly reduced activation, reduced cell division as well as impaired cytokine production (IFN-? and TNF) in response to T cell receptor engagement, or to nonspecific stimuli in vitro, and during the course of P. berghei infection in vivo. This identifies CCDC88B as a novel and important regulator of T cell function. The human CCDC88B gene maps to the 11q13 locus that is associated with susceptibility to several inflammatory and auto-immune disorders. Our findings strongly suggest that CCDC88B is the morbid gene underlying the pleiotropic effect of the 11q13 locus on inflammation.
Related JoVE Video
Congenital Visual Impairment and Progressive Microcephaly Due to Lysyl-Transfer Ribonucleic Acid (RNA) Synthetase (KARS) Mutations: The Expanding Phenotype of Aminoacyl-Transfer RNA Synthetase Mutations in Human Disease.
J. Child Neurol.
PUBLISHED: 10-22-2014
Show Abstract
Hide Abstract
Aminoacyl-transfer ribonucleic acid (RNA) synthetases (ARSs) are a group of enzymes required for the first step of protein translation. Each aminoacyl-transfer RNA synthetase links a specific amino acid to its corresponding transfer RNA component within the cytoplasm, mitochondria, or both. Mutations in ARSs have been linked to a growing number of diseases. Lysyl-transfer RNA synthetase (KARS) links the amino acid lysine to its cognate transfer RNA. We report 2 siblings with severe infantile visual loss, progressive microcephaly, developmental delay, seizures, and abnormal subcortical white matter. Exome sequencing identified mutations within the KARS gene (NM_005548.2):c.1312C>T; p.Arg438Trp and c.1573G>A; p.Glu525Lys occurring within a highly conserved region of the catalytic domain. Our patients' phenotype is remarkably similar to a phenotype recently reported in glutaminyl-transfer RNA synthetase (QARS), another bifunctional ARS gene. This finding expands the phenotypic spectrum associated with mutations in KARS and draws attention to aminoacyl-transfer RNA synthetase as a group of enzymes that are increasingly being implicated in human disease.
Related JoVE Video
Mutation in The Nuclear-Encoded Mitochondrial Isoleucyl-tRNA Synthetase IARS2 in Patients with Cataracts, Growth Hormone Deficiency with Short Stature, Partial Sensorineural Deafness, and Peripheral Neuropathy or with Leigh Syndrome.
Hum. Mutat.
PUBLISHED: 10-18-2014
Show Abstract
Hide Abstract
Mutations in the nuclear-encoded mitochondrial aminoacyl-tRNA synthetases are associated with a range of clinical phenotypes. Here, we report a novel disorder in three adult patients with a phenotype including cataracts, short-stature secondary to growth hormone deficiency, sensorineural hearing deficit, peripheral sensory neuropathy, and skeletal dysplasia. Using SNP genotyping and whole-exome sequencing, we identified a single likely causal variant, a missense mutation in a conserved residue of the nuclear gene IARS2, encoding mitochondrial isoleucyl-tRNA synthetase. The mutation is homozygous in the affected patients, heterozygous in carriers, and absent in control chromosomes. IARS2 protein level was reduced in skin cells cultured from one of the patients, consistent with a pathogenic effect of the mutation. Compound heterozygous mutations in IARS2 were independently identified in a previously unreported patient with a more severe mitochondrial phenotype diagnosed as Leigh syndrome. This is the first report of clinical findings associated with IARS2 mutations.
Related JoVE Video
ExomeAI: detection of recurrent allelic imbalance in tumors using whole-exome sequencing data.
Bioinformatics
PUBLISHED: 10-08-2014
Show Abstract
Hide Abstract
Whole-exome sequencing (WES) has extensively been used in cancer genome studies; however, the use of WES data in the study of loss of heterozygosity or more generally allelic imbalance (AI) has so far been very limited, which highlights the need for user-friendly and flexible software that can handle low-quality datasets. We have developed a statistical approach, ExomeAI, for the detection of recurrent AI events using WES datasets, specifically where matched normal samples are not available. Availability: ExomeAI is a web-based application, publicly available at: http://genomequebec.mcgill.ca/exomeai.
Related JoVE Video
Neuropathologic features of pontocerebellar hypoplasia type 6.
J. Neuropathol. Exp. Neurol.
PUBLISHED: 10-08-2014
Show Abstract
Hide Abstract
Pontocerebellar hypoplasia is a group of severe developmental disorders with prenatal onset affecting the growth and function of the brainstem and cerebellum. The rarity and genetic heterogeneity of this group of disorders can make molecular diagnosis challenging. We report 3 siblings who were born to nonconsanguineous parents, were hypotonic at birth, developed seizures, had repeated apneic spells, and died within 2 months of life. Neuroimaging showed that all had profound cerebellar hypoplasia and simplified cortical gyration. Genetic analysis by whole-exome sequencing demonstrated compound heterozygous mutations in the mitochondrial arginyl transfer RNA synthetase gene RARS2, indicating that the children had pontocerebellar hypoplasia type 6. Autopsies on the younger twin siblings revealed small and immature cerebella at an approximate developmental age of less than 18 weeks. The basis pontis showed regressive changes, and the medulla had marked inferior olivary hypoplasia. The brains of both twins were microencephalic and had simplified gyri; cortices were immature, and deep white matter had extensive astrocytosis. The findings suggest a near-normal embryologic period followed by midgestation developmental slowing or cessation and later regression in select anatomic regions. This is the first detailed description of neuropathologic findings associated with pontocerebellar hypoplasia type 6 and demonstrates the profound effects of RARS2 disruption during early neurodevelopment.
Related JoVE Video
Germline Mutations in MAP3K6 Are Associated with Familial Gastric Cancer.
PLoS Genet.
PUBLISHED: 10-01-2014
Show Abstract
Hide Abstract
Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC), hereditary diffuse gastric cancer (HDGC). The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L) in mitogen-activated protein kinase kinase kinase 6 (MAP3K6). Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G). A somatic second-hit variant (p.H506Y) was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.
Related JoVE Video
A polyadenylation site variant causes transcript-specific BMP1 deficiency and frequent fractures in children.
Hum. Mol. Genet.
PUBLISHED: 09-11-2014
Show Abstract
Hide Abstract
We had previously published the clinical characteristics of a bone fragility disorder in children that was characterized mainly by lower extremity fractures and a mineralization defect in bone tissue but not on the growth plate level. We have now performed whole-exome sequencing on four unrelated individuals with this phenotype. Three individuals were homozygous for a nucleotide change in BMP1, affecting the polyadenylation signal of the transcript that codes for the short isoform of BMP1 (BMP1-1) (c.*241T>C). In skin fibroblasts of these individuals, we found low levels of BMP1-1 transcript and protein. The fourth individual was compound heterozygous for the c.*241T>C variant in BMP1-1 and a variant in BMP1 exon 15 (c.2107G>C) that affected splicing in both BMP1-1 and the long isoform of BMP1 (BMP1-3). Both the homozygous 3'UTR variant and the compound heterozygous variants were associated with impaired procollagen type I C-propeptide cleavage, as the amount of free C-propeptide in the supernatant of skin fibroblasts was less than in controls. Peripheral quantitative computed tomography showed that all individuals had elevated volumetric cortical bone mineral density. Assessment of iliac bone samples by histomorphometry and quantitative backscattered electron imaging indicated that the onset of mineralization at bone formation sites was delayed, but that mineralized matrix was hypermineralized. These results show that isolated lack of BMP1-1 causes bone fragility in children.
Related JoVE Video
Phenotypic Overlap Between Familial Exudative Vitreoretinopathy and Microcephaly, Lymphedema, and Chorioretinal Dysplasia Caused by KIF11 Mutations.
JAMA Ophthalmol
PUBLISHED: 08-14-2014
Show Abstract
Hide Abstract
Retinal detachment with avascularity of the peripheral retina, typically associated with familial exudative vitreoretinopathy (FEVR), can result from mutations in KIF11, a gene recently identified to cause microcephaly, lymphedema, and chorioretinal dysplasia (MLCRD) as well as chorioretinal dysplasia, microcephaly, and mental retardation (CDMMR). Ophthalmologists should be aware of the range of presentations for mutations in KIF11 because the phenotypic distinction between FEVR and MLCRD/CDMMR portends management implications in patients with these conditions.
Related JoVE Video
An inherited immunoglobulin class-switch recombination deficiency associated with a defect in the INO80 chromatin remodeling complex.
J. Allergy Clin. Immunol.
PUBLISHED: 06-24-2014
Show Abstract
Hide Abstract
Immunoglobulin class-switch recombination defects (CSR-D) are rare primary immunodeficiencies characterized by impaired production of switched immunoglobulin isotypes and normal or elevated IgM levels. They are caused by impaired T:B cooperation or intrinsic B cell defects. However, many immunoglobulin CSR-Ds are still undefined at the molecular level.
Related JoVE Video
Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy.
Am. J. Hum. Genet.
PUBLISHED: 06-17-2014
Show Abstract
Hide Abstract
Cerebellar dysplasia with cysts (CDC) is an imaging finding typically seen in combination with cobblestone cortex and congenital muscular dystrophy in individuals with dystroglycanopathies. More recently, CDC was reported in seven children without neuromuscular involvement (Poretti-Boltshauser syndrome). Using a combination of homozygosity mapping and whole-exome sequencing, we identified biallelic mutations in LAMA1 as the cause of CDC in seven affected individuals (from five families) independent from those included in the phenotypic description of Poretti-Boltshauser syndrome. Most of these individuals also have high myopia, and some have retinal dystrophy and patchy increased T2-weighted fluid-attenuated inversion recovery (T2/FLAIR) signal in cortical white matter. In one additional family, we identified two siblings who have truncating LAMA1 mutations in combination with retinal dystrophy and mild cerebellar dysplasia without cysts, indicating that cysts are not an obligate feature associated with loss of LAMA1 function. This work expands the phenotypic spectrum associated with the lamininopathy disorders and highlights the tissue-specific roles played by different laminin-encoding genes.
Related JoVE Video
Genetically encoded impairment of neuronal KCC2 cotransporter function in human idiopathic generalized epilepsy.
EMBO Rep.
PUBLISHED: 06-13-2014
Show Abstract
Hide Abstract
The KCC2 cotransporter establishes the low neuronal Cl(-) levels required for GABAA and glycine (Gly) receptor-mediated inhibition, and KCC2 deficiency in model organisms results in network hyperexcitability. However, no mutations in KCC2 have been documented in human disease. Here, we report two non-synonymous functional variants in human KCC2, R952H and R1049C, exhibiting clear statistical association with idiopathic generalized epilepsy (IGE). These variants reside in conserved residues in the KCC2 cytoplasmic C-terminus, exhibit significantly impaired Cl(-)-extrusion capacities resulting in less hyperpolarized Gly equilibrium potentials (EG ly), and impair KCC2 stimulatory phosphorylation at serine 940, a key regulatory site. These data describe a novel KCC2 variant significantly associated with a human disease and suggest genetically encoded impairment of KCC2 functional regulation may be a risk factor for the development of human IGE.
Related JoVE Video
The effectiveness of the atrial or atrio-ventricular stimulation for sick sinus syndrome in a long term observation.
Kardiol Pol
PUBLISHED: 06-10-2014
Show Abstract
Hide Abstract
According to the latest guidelines, atrioventricular (DDD) pacing demonstrates superiority over atrial pacing (AAI) in sick sinus syndrome (SSS) treatment.
Related JoVE Video
Meconium ileus in a Lebanese family secondary to mutations in the GUCY2C gene.
Eur. J. Hum. Genet.
PUBLISHED: 05-27-2014
Show Abstract
Hide Abstract
Meconium ileus is most often associated with mutations in the CFTR gene; however recently, mutations in GUCY2C in the Bedouin population have also been shown to result in this phenotype. This gene codes for an intestinal transmembrane receptor that generates cyclic GMP, which activates cystic fibrosis transmembrane receptor. We report a third family that supports the association of variants in the GUCY2C gene with meconium ileus (MI). A Lebanese kindred was studied and individuals affected with MI had either homozygous or compound heterozygous variants in GUCY2C. The earliest manifestation of the affected individuals was the presence of second trimester fetal echogenic bowel, thus resulting in the expansion of the differential diagnosis of this ultrasound finding.European Journal of Human Genetics advance online publication, 5 November 2014; doi:10.1038/ejhg.2014.236.
Related JoVE Video
Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors.
Acta Neuropathol.
PUBLISHED: 05-26-2014
Show Abstract
Hide Abstract
A remarkably large number of "epigenetic regulators" have been recently identified to be altered in cancers and a rapidly expanding body of literature points to "epigenetic addiction" (an aberrant epigenetic state to which a tumor is addicted) as a new previously unsuspected mechanism of oncogenesis. Although mutations are also found in canonical signaling pathway genes, we and others identified chromatin-associated proteins to be more commonly altered by somatic alterations than any other class of oncoprotein in several subgroups of childhood high-grade brain tumors. Furthermore, as these childhood malignancies carry fewer non-synonymous somatic mutations per case in contrast to most adult cancers, these mutations are likely drivers in these tumors. Herein, we will use as examples of this novel hallmark of oncogenesis high-grade astrocytomas, including glioblastoma, and a subgroup of embryonal tumors, embryonal tumor with multilayered rosettes (ETMR) to describe the novel molecular defects uncovered in these deadly tumors. We will further discuss evidence for their profound effects on the epigenome. The relative genetic simplicity of these tumors promises general insights into how mutations in the chromatin machinery modify downstream epigenetic signatures to drive transformation, and how to target this plastic genetic/epigenetic interface.
Related JoVE Video
CTP synthase 1 deficiency in humans reveals its central role in lymphocyte proliferation.
Nature
PUBLISHED: 04-22-2014
Show Abstract
Hide Abstract
Lymphocyte functions triggered by antigen recognition and co-stimulation signals are associated with a rapid and intense cell division, and hence with metabolism adaptation. The nucleotide cytidine 5' triphosphate (CTP) is a precursor required for the metabolism of DNA, RNA and phospholipids. CTP originates from two sources: a salvage pathway and a de novo synthesis pathway that depends on two enzymes, the CTP synthases (or synthetases) 1 and 2 (CTPS1 with CTPS2); the respective roles of these two enzymes are not known. CTP synthase activity is a potentially important step for DNA synthesis in lymphocytes. Here we report the identification of a loss-of-function homozygous mutation (rs145092287) in CTPS1 in humans that causes a novel and life-threatening immunodeficiency, characterized by an impaired capacity of activated T and B cells to proliferate in response to antigen receptor-mediated activation. In contrast, proximal and distal T-cell receptor (TCR) signalling events and responses were only weakly affected by the absence of CTPS1. Activated CTPS1-deficient cells had decreased levels of CTP. Normal T-cell proliferation was restored in CTPS1-deficient cells by expressing wild-type CTPS1 or by addition of exogenous CTP or its nucleoside precursor, cytidine. CTPS1 expression was found to be low in resting T cells, but rapidly upregulated following TCR activation. These results highlight a key and specific role of CTPS1 in the immune system by its capacity to sustain the proliferation of activated lymphocytes during the immune response. CTPS1 may therefore represent a therapeutic target of immunosuppressive drugs that could specifically dampen lymphocyte activation.
Related JoVE Video
Whole-exome sequencing in an individual with severe global developmental delay and intractable epilepsy identifies a novel, de novo GRIN2A mutation.
Epilepsia
PUBLISHED: 04-18-2014
Show Abstract
Hide Abstract
We present a 4-year-old girl with profound global developmental delay and refractory epilepsy characterized by multiple seizure types (partial complex with secondary generalization, tonic, myoclonic, and atypical absence). Her seizure semiology did not fit within a specific epileptic syndrome. Despite a broad metabolic and genetic workup, a diagnosis was not forthcoming. Whole-exome sequencing with a trio analysis (affected child compared to unaffected parents) was performed and identified a novel de novo missense mutation in GRIN2A, c.2449A>G, p.Met817Val, as the likely cause of the refractory epilepsy and global developmental delay. GRIN2A encodes a subunit of N-methyl-d-aspartate (NMDA) receptor that mediates excitatory transmission in the central nervous system. A significant reduction in the frequency and the duration of her seizures was observed after the addition of topiramate over a 10-month period. Further prospective studies in additional patients with mutations in GRIN2A will be required to optimize seizure management for this rare disorder. This report expands the current phenotype associated with GRIN2A mutations.
Related JoVE Video
Homozygous nonsense mutation in SYNJ1 associated with intractable epilepsy and tau pathology.
Neurobiol. Aging
PUBLISHED: 04-14-2014
Show Abstract
Hide Abstract
The tauopathies are a heterogeneous group of neurodegenerative disorders characterized by the shared presence of tau aggregates and neurofibrillary tangles within the central nervous system. Here, we present a child with a severe neurodegenerative disorder characterized by intractable seizures and significant tau-immunoreactive neurofibrillary degeneration localized predominantly to the substantia nigra on neuropathology with absence of beta-amyloid plaques and Lewy or Pick bodies. Whole-exome sequencing identified a homozygous truncating mutation in Synaptojanin 1 (SYNJ1). Quantitative polymerase chain reaction and Western blot experiments demonstrated diminished SYNJ1 messenger RNA and protein. Knockout Synj1(-/-) mice have convulsions and die early in life. More recently, homozygous missense mutations have been reported in 2 families with early-onset parkinsonism and seizures. Our findings broaden the spectrum of disease associated with alteration of SYNJ1 and further implicate defects in synaptic vesicle recycling in the tauopathies.
Related JoVE Video
Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondylometaphyseal dysplasia.
J. Med. Genet.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
Sedaghatian-type spondylometaphyseal dysplasia (SSMD) is a neonatal lethal form of spondylometaphyseal dysplasia characterised by severe metaphyseal chondrodysplasia with mild limb shortening, platyspondyly, cardiac conduction defects, and central nervous system abnormalities. As part of the FORGE Canada Consortium we studied two unrelated families to identify the genetic aetiology of this rare disease.
Related JoVE Video
CARD9 Deficiency and Spontaneous Central Nervous System Candidiasis: Complete Clinical Remission With GM-CSF Therapy.
Clin. Infect. Dis.
PUBLISHED: 04-04-2014
Show Abstract
Hide Abstract
We demonstrate autosomal-recessive Caspase Recruitment Domain-containing protein 9 (CARD9) deficiency in a patient with relapsing C. albicans meningoencephalitis. We identified a novel, hypomorphic mutation with intact Th17 responses, but impaired GM-CSF responses. We report complete clinical remission with adjunctive GM-CSF therapy, suggesting that a CARD9/GM-CSF axis contributes to susceptibility to candidiasis.
Related JoVE Video
An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge.
Catherine A Brownstein, Alan H Beggs, Nils Homer, Barry Merriman, Timothy W Yu, Katherine C Flannery, Elizabeth T DeChene, Meghan C Towne, Sarah K Savage, Emily N Price, Ingrid A Holm, Lovelace J Luquette, Elaine Lyon, Joseph Majzoub, Peter Neupert, David McCallie, Peter Szolovits, Huntington F Willard, Nancy J Mendelsohn, Renee Temme, Richard S Finkel, Sabrina W Yum, Livija Medne, Shamil R Sunyaev, Ivan Adzhubey, Christopher A Cassa, Paul I W de Bakker, Hatice Duzkale, Piotr Dworzynski, William Fairbrother, Laurent Francioli, Birgit H Funke, Monica A Giovanni, Robert E Handsaker, Kasper Lage, Matthew S Lebo, Monkol Lek, Ignaty Leshchiner, Daniel G MacArthur, Heather M McLaughlin, Michael F Murray, Tune H Pers, Paz P Polak, Soumya Raychaudhuri, Heidi L Rehm, Rachel Soemedi, Nathan O Stitziel, Sara Vestecka, Jochen Supper, Claudia Gugenmus, Bernward Klocke, Alexander Hahn, Max Schubach, Mortiz Menzel, Saskia Biskup, Peter Freisinger, Mario Deng, Martin Braun, Sven Perner, Richard J H Smith, Janeen L Andorf, Jian Huang, Kelli Ryckman, Val C Sheffield, Edwin M Stone, Thomas Bair, E Ann Black-Ziegelbein, Terry A Braun, Benjamin Darbro, Adam P DeLuca, Diana L Kolbe, Todd E Scheetz, Aiden E Shearer, Rama Sompallae, Kai Wang, Alexander G Bassuk, Erik Edens, Katherine Mathews, Steven A Moore, Oleg A Shchelochkov, Pamela Trapane, Aaron Bossler, Colleen A Campbell, Jonathan W Heusel, Anne Kwitek, Tara Maga, Karin Panzer, Thomas Wassink, Douglas Van Daele, Hela Azaiez, Kevin Booth, Nic Meyer, Michael M Segal, Marc S Williams, Gerard Tromp, Peter White, Donald Corsmeier, Sara Fitzgerald-Butt, Gail Herman, Devon Lamb-Thrush, Kim L McBride, David Newsom, Christopher R Pierson, Alexander T Rakowsky, Ales Maver, Luca Lovrecic, Anja Palandačić, Borut Peterlin, Ali Torkamani, Anna Wedell, Mikael Huss, Andrey Alexeyenko, Jessica M Lindvall, Måns Magnusson, Daniel Nilsson, Henrik Stranneheim, Fulya Taylan, Christian Gilissen, Alexander Hoischen, Bregje Van Bon, Helger Yntema, Marcel Nelen, Weidong Zhang, Jason Sager, Lu Zhang, Kathryn Blair, Deniz Kural, Michael Cariaso, Greg G Lennon, Asif Javed, Saloni Agrawal, Pauline C Ng, Komal S Sandhu, Shuba Krishna, Vamsi Veeramachaneni, Ofer Isakov, Eran Halperin, Eitan Friedman, Noam Shomron, Gustavo Glusman, Jared C Roach, Juan Caballero, Hannah C Cox, Denise Mauldin, Seth A Ament, Lee Rowen, Daniel R Richards, F Anthony San Lucas, Manuel L Gonzalez-Garay, C Thomas Caskey, Yu Bai, Ying Huang, Fang Fang, Yan Zhang, Zhengyuan Wang, Jorge Barrera, Juan M García-Lobo, Domingo González-Lamuño, Javier Llorca, María C Rodriguez, Ignacio Varela, Martin G Reese, Francisco M De La Vega, Edward Kiruluta, Michele Cargill, Reece K Hart, Jon M Sorenson, Gholson J Lyon, David A Stevenson, Bruce E Bray, Barry M Moore, Karen Eilbeck, Mark Yandell, Hongyu Zhao, Lin Hou, Xiaowei Chen, Xiting Yan, Mengjie Chen, Cong Li, Can Yang, Murat Günel, Peining Li, Yong Kong, Austin C Alexander, Zayed I Albertyn, Kym M Boycott, Dennis E Bulman, Paul M K Gordon, A Micheil Innes, Bartha M Knoppers, Jacek Majewski, Christian R Marshall, Jillian S Parboosingh, Sarah L Sawyer, Mark E Samuels, Jeremy Schwartzentruber, Isaac S Kohane, David M Margulies.
Genome Biol.
PUBLISHED: 03-25-2014
Show Abstract
Hide Abstract
There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance.
Related JoVE Video
FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.
Am. J. Hum. Genet.
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE's impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally.
Related JoVE Video
No small surprise - small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour.
J. Pathol.
PUBLISHED: 03-16-2014
Show Abstract
Hide Abstract
Whole-exome sequencing (WES) is revolutionizing medical diagnostics and taxonomy. In less than 5 years since its first use, WES has revealed unexpected molecular drivers of numerous cancers. Here, we describe our use of WES to uncover the true nature of an enigmatic pathological entity, small-cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), which has resisted definitive characterisation since it was first described in 1979. We conducted WES using three families with SCCOHT and identified deleterious mutations in the chromatin-remodelling gene SMARCA4 (encoding BRG1) in all cases. Follow-up of these findings, using both Sanger sequencing and WES of formalin-fixed paraffin-embedded tumours, showed that virtually all SCCOHTs we studied lacked functional SMARCA4/BRG1. Notably, this gene, and the related SMARCB1 gene, is mutated in most, if not all, atypical teratoid/rhabdoid tumours and malignant rhabdoid tumours. Other groups have similar findings. We review the relationship between these three neoplasms, discuss how they were distinguished from morphologically similar neoplasms, consider their similarities and show how WES has revealed that SCCOHTs are in fact rhabdoid tumours. We propose that SCCOHT be renamed 'malignant rhabdoid tumour of the ovary' (MRTO) to reflect these observations.
Related JoVE Video
Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma.
Nat. Genet.
PUBLISHED: 03-14-2014
Show Abstract
Hide Abstract
Pediatric midline high-grade astrocytomas (mHGAs) are incurable with few treatment targets identified. Most tumors harbor mutations encoding p.Lys27Met in histone H3 variants. In 40 treatment-naive mHGAs, 39 analyzed by whole-exome sequencing, we find additional somatic mutations specific to tumor location. Gain-of-function mutations in ACVR1 occur in tumors of the pons in conjunction with histone H3.1 p.Lys27Met substitution, whereas FGFR1 mutations or fusions occur in thalamic tumors associated with histone H3.3 p.Lys27Met substitution. Hyperactivation of the bone morphogenetic protein (BMP)-ACVR1 developmental pathway in mHGAs harboring ACVR1 mutations led to increased levels of phosphorylated SMAD1, SMAD5 and SMAD8 and upregulation of BMP downstream early-response genes in tumor cells. Global DNA methylation profiles were significantly associated with the p.Lys27Met alteration, regardless of the mutant histone H3 variant and irrespective of tumor location, supporting the role of this substitution in driving the epigenetic phenotype. This work considerably expands the number of potential treatment targets and further justifies pretreatment biopsy in pediatric mHGA as a means to orient therapeutic efforts in this disease.
Related JoVE Video
De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome.
Nat. Genet.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3? (GSK-3?). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3? activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT-related megalencephaly syndromes.
Related JoVE Video
Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease.
BMC Med. Genet.
PUBLISHED: 03-12-2014
Show Abstract
Hide Abstract
Glycyl-tRNA synthetase (GARS) is an aminoacyl-tRNA synthetase (ARS) that links the amino acid glycine to its corresponding tRNA prior to protein translation and is one of three bifunctional ARS that are active within both the cytoplasm and mitochondria. Dominant mutations in GARS cause rare forms of Charcot-Marie-Tooth disease and distal spinal muscular atrophy.
Related JoVE Video
Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type.
Nat. Genet.
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is the most common undifferentiated ovarian malignancy in women under 40 years of age. We sequenced the exomes of six individuals from three families with SCCOHT. After discovering segregating deleterious germline mutations in SMARCA4 in all three families, we tested DNA from a fourth affected family, which also carried a segregating SMARCA4 germline mutation. All the familial tumors sequenced harbored either a somatic mutation or loss of the wild-type allele. Immunohistochemical analysis of these cases and additional familial and non-familial cases showed loss of SMARCA4 (BRG1) protein in 38 of 40 tumors overall. Sequencing of cases with available DNA identified at least one germline or somatic deleterious SMARCA4 mutation in 30 of 32 cases. Additionally, the SCCOHT cell line BIN-67 had biallelic deleterious mutations in SMARCA4. Our findings identify alterations in SMARCA4 as the major cause of SCCOHT, which could lead to improvements in genetic counseling and new treatment approaches.
Related JoVE Video
Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro-costo-mandibular syndrome.
Nat Commun
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
Elucidating the function of highly conserved regulatory sequences is a significant challenge in genomics today. Certain intragenic highly conserved elements have been associated with regulating levels of core components of the spliceosome and alternative splicing of downstream genes. Here we identify mutations in one such element, a regulatory alternative exon of SNRPB as the cause of cerebro-costo-mandibular syndrome. This exon contains a premature termination codon that triggers nonsense-mediated mRNA decay when included in the transcript. These mutations cause increased inclusion of the alternative exon and decreased overall expression of SNRPB. We provide evidence for the functional importance of this conserved intragenic element in the regulation of alternative splicing and development, and suggest that the evolution of such a regulatory mechanism has contributed to the complexity of mammalian development.
Related JoVE Video
Mutations in riboflavin transporter present with severe sensory loss and deafness in childhood.
Muscle Nerve
PUBLISHED: 02-07-2014
Show Abstract
Hide Abstract
We have identified a large consanguineous Lebanese family with 5 individuals with severe childhood-onset recessive sensory loss associated with deafness and variable optic atrophy.
Related JoVE Video
Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge.
Nat. Rev. Cancer
PUBLISHED: 01-25-2014
Show Abstract
Hide Abstract
We have extended our understanding of the molecular biology that underlies adult glioblastoma over many years. By contrast, high-grade gliomas in children and adolescents have remained a relatively under-investigated disease. The latest large-scale genomic and epigenomic profiling studies have yielded an unprecedented abundance of novel data and provided deeper insights into gliomagenesis across all age groups, which has highlighted key distinctions but also some commonalities. As we are on the verge of dissecting glioblastomas into meaningful biological subgroups, this Review summarizes the hallmark genetic alterations that are associated with distinct epigenetic features and patient characteristics in both paediatric and adult disease, and examines the complex interplay between the glioblastoma genome and epigenome.
Related JoVE Video
The utility of exome sequencing for genetic diagnosis in a familial microcephaly epilepsy syndrome.
BMC Neurol
PUBLISHED: 01-22-2014
Show Abstract
Hide Abstract
Despite remarkable advances in genetic testing, many adults with syndromic epilepsy remain without a molecular diagnosis. The challenge in providing genetic testing for this patient population lies in the extensive genetic heterogeneity associated with epilepsy. Even for the subset of epilepsy patients that present with a defining feature, such as microcephaly, the number of possible genes that would require interrogation by Sanger sequencing is extensive and often prohibitively expensive.
Related JoVE Video
Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics.
J. Bone Miner. Res.
PUBLISHED: 01-20-2014
Show Abstract
Hide Abstract
Mutations in PLS3 have been identified as a cause of bone fragility in children, but the bone phenotype associated with PLS3 mutations has not been reported in detail. PLS3 is located on the X chromosome and encodes the actin-binding protein plastin 3. Here we describe skeletal findings in 4 boys from 2 families with mutations in PLS3 (c.994_995delGA; p.Asp332* in family 1; c.1433T?>?C; p.Leu478Pro in family 2). When first evaluated between 4 and 8 years of age, these boys had a history of one to four long-bone fractures. Mild vertebral compression fractures were identified in each boy. No obvious extraskeletal disease manifestations were present. Lumbar spine areal bone mineral density (LS-aBMD) Z-scores ranged from -1.7 to -3.5, but height was normal. Iliac bone histomorphometry in 2 patients showed low trabecular bone volume and a low osteoid maturation time but normal bone formation rate and osteoclast surface. Quantitative backscattered electron imaging (qBEI) did not reveal a major abnormality in bone mineralization density distribution. The 2 boys from family 1 received oral alendronate for 6 years, which normalized LS-aBMD. The mothers of the 4 boys did not have a history of fractures and had normal LS-aBMD. However, one of these mothers had low bone mass at the distal radius, as measured by peripheral quantitative computed tomography (pQCT). In conclusion, hemizygous mutations in PLS3 are associated with osteoporosis and bone fragility in childhood, but in contrast to bone fragility caused by mutations in collagen type I encoding genes, there is no hypermineralization of mineralized bone matrix.
Related JoVE Video
Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.
Related JoVE Video
Altered IFN-?-Mediated Immunity and Transcriptional Expression Patterns in N-Ethyl-N-Nitrosourea-Induced STAT4 Mutants Confer Susceptibility to Acute Typhoid-like Disease.
J. Immunol.
PUBLISHED: 11-27-2013
Show Abstract
Hide Abstract
Salmonella enterica is a ubiquitous Gram-negative intracellular bacterium that continues to pose a global challenge to human health. The etiology of Salmonella pathogenesis is complex and controlled by pathogen, environmental, and host genetic factors. In fact, patients immunodeficient in genes in the IL-12, IL-23/IFN-? pathway are predisposed to invasive nontyphoidal Salmonella infection. Using a forward genomics approach by N-ethyl-N-nitrosourea (ENU) germline mutagenesis in mice, we identified the Ity14 (Immunity to Typhimurium locus 14) pedigree exhibiting increased susceptibility following in vivo Salmonella challenge. A DNA-binding domain mutation (p.G418_E445) in Stat4 (Signal Transducer and Activator of Transcription Factor 4) was the causative mutation. STAT4 signals downstream of IL-12 to mediate transcriptional regulation of inflammatory immune responses. In mutant Ity14 mice, the increased splenic and hepatic bacterial load resulted from an intrinsic defect in innate cell function, IFN-?-mediated immunity, and disorganized granuloma formation. We further show that NK and NKT cells play an important role in mediating control of Salmonella in Stat4(Ity14/Ity14) mice. Stat4(Ity14/Ity14) mice had increased expression of genes involved in cell-cell interactions and communication, as well as increased CD11b expression on a subset of splenic myeloid dendritic cells, resulting in compromised recruitment of inflammatory cells to the spleen during Salmonella infection. Stat4(Ity14/Ity14) presented upregulated compensatory mechanisms, although inefficient and ultimately Stat4(Ity14/Ity14) mice develop fatal bacteremia. The following study further elucidates the pathophysiological impact of STAT4 during Salmonella infection.
Related JoVE Video
Mutations in CSPP1, Encoding a Core Centrosomal Protein, Cause a Range of Ciliopathy Phenotypes in Humans.
Am. J. Hum. Genet.
PUBLISHED: 09-02-2013
Show Abstract
Hide Abstract
Ciliopathies are characterized by a pattern of multisystem involvement that is consistent with the developmental role of the primary cilium. Within this biological module, mutations in genes that encode components of the cilium and its anchoring structure, the basal body, are the major contributors to both disease causality and modification. However, despite rapid advances in this field, the majority of the genes that drive ciliopathies and the mechanisms that govern the pronounced phenotypic variability of this group of disorders remain poorly understood. Here, we show that mutations in CSPP1, which encodes a core centrosomal protein, are disease causing on the basis of the independent identification of two homozygous truncating mutations in three consanguineous families (one Arab and two Hutterite) affected by variable ciliopathy phenotypes ranging from Joubert syndrome to the more severe Meckel-Gruber syndrome with perinatal lethality and occipital encephalocele. Consistent with the recently described role of CSPP1 in ciliogenesis, we show that mutant fibroblasts from one affected individual have severely impaired ciliogenesis with concomitant defects in sonic hedgehog (SHH) signaling. Our results expand the list of centrosomal proteins implicated in human ciliopathies.
Related JoVE Video
Genome-wide mouse mutagenesis reveals CD45-mediated T cell function as critical in protective immunity to HSV-1.
PLoS Pathog.
PUBLISHED: 09-01-2013
Show Abstract
Hide Abstract
Herpes simplex encephalitis (HSE) is a lethal neurological disease resulting from infection with Herpes Simplex Virus 1 (HSV-1). Loss-of-function mutations in the UNC93B1, TLR3, TRIF, TRAF3, and TBK1 genes have been associated with a human genetic predisposition to HSE, demonstrating the UNC93B-TLR3-type I IFN pathway as critical in protective immunity to HSV-1. However, the TLR3, UNC93B1, and TRIF mutations exhibit incomplete penetrance and represent only a minority of HSE cases, perhaps reflecting the effects of additional host genetic factors. In order to identify new host genes, proteins and signaling pathways involved in HSV-1 and HSE susceptibility, we have implemented the first genome-wide mutagenesis screen in an in vivo HSV-1 infectious model. One pedigree (named P43) segregated a susceptible trait with a fully penetrant phenotype. Genetic mapping and whole exome sequencing led to the identification of the causative nonsense mutation L3X in the Receptor-type tyrosine-protein phosphatase C gene (Ptprc(L3X) ), which encodes for the tyrosine phosphatase CD45. Expression of MCP1, IL-6, MMP3, MMP8, and the ICP4 viral gene were significantly increased in the brain stems of infected Ptprc(L3X) mice accounting for hyper-inflammation and pathological damages caused by viral replication. Ptprc(L3X) mutation drastically affects the early stages of thymocytes development but also the final stage of B cell maturation. Transfer of total splenocytes from heterozygous littermates into Ptprc (L3X) mice resulted in a complete HSV-1 protective effect. Furthermore, T cells were the only cell population to fully restore resistance to HSV-1 in the mutants, an effect that required both the CD4(+) and CD8(+) T cells and could be attributed to function of CD4(+) T helper 1 (Th1) cells in CD8(+) T cell recruitment to the site of infection. Altogether, these results revealed the CD45-mediated T cell function as potentially critical for infection and viral spread to the brain, and also for subsequent HSE development.
Related JoVE Video
Identification of three new cis-regulatory IRF5 polymorphisms: in vitro studies.
Arthritis Res. Ther.
PUBLISHED: 08-13-2013
Show Abstract
Hide Abstract
Polymorphisms in IRF5 (interferon regulatory factor 5) are associated with susceptibility to systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and other diseases through independent risk and protective haplotypes. Several functional polymorphisms are already known but they do not account for the protective haplotypes that are tagged by the minor allele of rs729302.
Related JoVE Video
Elastic properties of functionalized carbon nanotubes.
Phys Chem Chem Phys
PUBLISHED: 07-22-2013
Show Abstract
Hide Abstract
We study the effects of covalent functionalization of single wall carbon nanotubes (CNT) on their elastic properties. We consider simple organic molecules -NH, -NH2, -CH2, -CH3, -OH attached to CNTs surface at various densities. The studies are based on the first principles calculations in the framework of density functional theory. We have determined the changes in the geometry and the elastic moduli of the functionalized CNTs as a function of the density of adsorbed molecules. It turns out that elastic moduli diminish with increasing concentration of adsorbents, however, the functionalized CNTs remain strong enough to be suitable for reinforcement of composites. The strongest effect is observed for CNTs functionalized with -CH2 radical, where the Youngs modulus of the functionalized system is 30% smaller than in the pristine CNTs.
Related JoVE Video
Anaesthesia in children with osteogenesis imperfecta - report of 14 general anaesthetics in three children.
Anaesthesiol Intensive Ther
PUBLISHED: 07-05-2013
Show Abstract
Hide Abstract
Osteogenesis imperfecta is a rare, genetically inherited syndrome involving connective tissue. It results in extremely fragile bones and disorders of other organs and body systems. Children with osteogenesis imperfecta are susceptible to bone fractures and often require surgery and anaesthesia. We describe a series of 14 general anaesthetics in three patients suffering from this disease. In one of these cases, perioperative hyperthermia was observed. Anaesthetic management of osteogenesis imperfecta and a possible relationship between this syndrome and malignant and non-malignant hyperthermia are discussed.
Related JoVE Video
[Ablation of slow pathway in a patient with persistent left superior vena cava].
Kardiol Pol
PUBLISHED: 06-22-2013
Show Abstract
Hide Abstract
We describe a case of successful radiofrequency ablation of slow pathway in a 54 year-old woman with persistent left superior vena cava. The ablation was performed using anatomical approach, outside the ostium of coronary sinus.
Related JoVE Video
Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR.
Nat. Genet.
PUBLISHED: 06-15-2013
Show Abstract
Hide Abstract
Embryonal tumors with multilayered rosettes (ETMRs) are rare, deadly pediatric brain tumors characterized by high-level amplification of the microRNA cluster C19MC. We performed integrated genetic and epigenetic analyses of 12 ETMR samples and identified, in all cases, C19MC fusions to TTYH1 driving expression of the microRNAs. ETMR tumors, cell lines and xenografts showed a specific DNA methylation pattern distinct from those of other tumors and normal tissues. We detected extreme overexpression of a previously uncharacterized isoform of DNMT3B originating at an alternative promoter that is active only in the first weeks of neural tube development. Transcriptional and immunohistochemical analyses suggest that C19MC-dependent DNMT3B deregulation is mediated by RBL2, a known repressor of DNMT3B. Transfection with individual C19MC microRNAs resulted in DNMT3B upregulation and RBL2 downregulation in cultured cells. Our data suggest a potential oncogenic re-engagement of an early developmental program in ETMR via epigenetic alteration mediated by an embryonic, brain-specific DNMT3B isoform.
Related JoVE Video
Whole-exome sequencing reveals a heterozygous LRP5 mutation in a 6-year-old boy with vertebral compression fractures and low trabecular bone density.
Bone
PUBLISHED: 06-08-2013
Show Abstract
Hide Abstract
Juvenile osteoporosis (JO) is characterized by bone fragility during development, low bone mass and absence of extraskeletal features. Heterozygous loss-of-function mutations in LRP5 have been found in a few patients, but bone tissue and bone material abnormalities associated with such mutations have not been determined. Here we report on a 6-year-old boy who presented with a history of seven low-energy long-bone fractures starting at 19months of age and absence of extraskeletal involvement. Spine radiographs revealed multiple vertebral compression fractures. Despite tall stature (95th percentile), lumbar spine areal bone mineral density was low (z-score=-3.2). Trabecular volumetric bone mineral density, measured by peripheral quantitative computed tomography at the distal radius, was low (z-score=-5.1), but cortical thickness at the radial diaphysis was normal. Iliac bone histomorphometry demonstrated low bone formation activity in trabecular but not in cortical bone. Quantitative backscattered electron imaging showed normal material bone density in trabecular bone, but elevated results in the cortex. Whole-exome sequencing revealed a heterozygous insertion of a nucleotide in exon 12 of LRP5. This mutation had previously been reported in another JO patient and had been shown to lead to nonsense-mediated decay. Thus, heterozygous loss-of-function mutations in LRP5 can be associated with a bone formation deficit that affects mostly the trabecular compartment and can result in bone fragility during the first years of life.
Related JoVE Video
Functionalization of carbon nanotubes with -CH(n), -NH(n) fragments, -COOH and -OH groups.
J Chem Phys
PUBLISHED: 05-24-2013
Show Abstract
Hide Abstract
We present results of extensive theoretical studies concerning stability, morphology, and band structure of single wall carbon nanotubes (CNTs) covalently functionalized by -CH(n) (for n = 2,3,4), -NH(n) (for n = 1,2,3,4), -COOH, and -OH groups. These studies are based on ab initio calculations in the framework of the density functional theory. For functionalized systems, we determine the dependence of the binding energies on the concentration of the adsorbed molecules, critical densities of adsorbed molecules, global and local changes in the morphology, and electronic structure paying particular attention to the functionalization induced changes of the band gaps. These studies reveal physical mechanisms that determine stability and electronic structure of functionalized systems and also provide valuable theoretical predictions relevant for application. In particular, we observe that functionalization of CNTs causes generally their elongation and locally sp(2) to sp(3) rehybridization in the neighborhood of chemisorbed molecules. For adsorbants making particularly strong covalent bonds with the CNTs, such as the -CH2 fragments, we observe formation of the characteristic pentagon/heptagon (5/7) defects. In systems functionalized with the -CH2, -NH4, and -OH groups, we determine critical density of molecules that could be covalently bound to the lateral surface of CNTs. Our studies show that functionalization of CNTs can be utilized for band gap engineering. Functionalization of CNTs can also lead to changes in their metallic/semiconductor character. In semiconducting CNTs, functionalizing molecules such as -CH3, -NH2, -OH, -COOH, and both -OH and -COOH, introduce "impurity" bands in the band gap of pristine CNTs. In the case of -CH3, -NH2 molecules, the induced band gaps are typically smaller than in the pure CNT and depend strongly on the concentration of adsorbants. However, functionalization of semiconducting CNTs with hydroxyl groups leads to the metallization of CNTs. On the other hand, the functionalization of semi-metallic (9,0) CNT with -CH2 molecules causes the increase of the band gap and induces semi-metall to semiconductor transition.
Related JoVE Video
Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C>T mutation in all patients.
J. Med. Genet.
PUBLISHED: 05-17-2013
Show Abstract
Hide Abstract
Osteogenesis imperfecta (OI) type V is an autosomal dominant bone fragility disorder that we had described a decade ago. Recent research has shown that OI type V is caused by a recurrent c.-14C>T mutation in IFITM5. In the present study, we assessed all patients diagnosed with OI type V at our institutions for the presence of the IFITM5 mutation.
Related JoVE Video
Efficacy and safety of early comprehensive cardiac rehabilitation following the implantation of cardioverter-defibrillator.
Kardiol Pol
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Implantable cardioverter-defibrillator (ICD) therapy is current the main approach to prevent sudden cardiac death. It was demonstrated that patients with ICD are characterised by worse quality of life (QOL) and exercise capacity and are prone to depressive symptoms. Thus, comprehensive rehabilitation is indicated in ICD recipients.
Related JoVE Video
Familial rhabdoid tumour avant la lettre--from pathology review to exome sequencing and back again.
J. Pathol.
PUBLISHED: 04-14-2013
Show Abstract
Hide Abstract
Here we provide compelling evidence that next-generation sequencing will revolutionize diagnostics. We reappraised a case from 1991, published in 1993, describing the unique occurrence of an ovarian immature teratoma arising in a young woman and a clonally distinct intracerebral immature teratoma developing in her daughter. We conducted whole-exome sequencing on constitutional DNA from the mother and her daughter and identified a previously unreported nonsense mutation (c.3533G>A; p.Trp1178*) in the chromatin remodelling gene, SMARCA4, that was present in both individuals and was subject to nonsense-mediated decay. Tumour analysis by Sanger sequencing revealed a somatic SMARCA4 mutation in both the mother (c.2438+1G>T) and her daughter (c.3229C>T; p.Arg1077*), which are predicted to be truncating. As immature teratomas are classified as germ cell tumours, we performed a comprehensive mutation survey of 106 apparently sporadic germ cell tumours, but did not find any other clearly deleterious SMARCA4 mutations. Recently, inactivating mutations in SMARCA4 have been found in two cases of rhabdoid tumour predisposition syndrome type 2. In the light of these findings, renewed efforts to locate previously unobtainable tumour samples were successfully undertaken. Histopathological and immunohistochemical re-analysis of the daughters tumour revealed that it was indeed a rhabdoid tumour (atypical teratoid/rhabdoid tumour). In this context, the original pathology report of the mothers ovarian tumour was re-interpreted as describing a malignant rhabdoid tumour of the ovary. This report raises the question as to whether molecular genetic analysis should be included in tumour classification, alongside more traditional microscopy-based methods. The use of new sequencing technologies, particularly when applied to archived samples, will lead to many more molecular rediagnoses. This is the earliest known case of rhabdoid tumour predisposition syndrome type 2 and the first described case with an autosomal dominant pattern of inheritance, only discovered through an exome sequencing project.
Related JoVE Video
Mutations in PIK3R1 cause SHORT syndrome.
Am. J. Hum. Genet.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs*18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657*]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.
Related JoVE Video
Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria.
Orphanet J Rare Dis
PUBLISHED: 04-10-2013
Show Abstract
Hide Abstract
Methylmalonate semialdehyde dehydrogenase (MMSDH) deficiency is a rare autosomal recessive disorder with varied metabolite abnormalities, including accumulation of 3-hydroxyisobutyric, 3-hydroxypropionic, 3-aminoisobutyric and methylmalonic acids, as well as beta-alanine. Existing reports describe a highly variable clinical and biochemical phenotype, which can make diagnosis a challenge. To date, only three reported cases have been confirmed at the molecular level, through identification of homozygous mutations in ALDH6A1, the gene encoding MMSDH. Confirmation by enzyme assay has until now not been possible, due to the extreme instability of the enzyme substrate.Methods and results: We report a child with severe developmental delays, abnormal myelination on brain MRI, and transient/variable elevations in lactate, methylmalonic acid, 3-hydroxyisobutyric and 3-aminoisobutyric acids. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within exon 6 (c.514 T > C; p. Tyr172His) and exon 12 (c.1603C > T; p. Arg535Cys) of ALDH6A1. The resulting amino acid changes, both occurring in residues conserved among mammals, are predicted to be damaging at the protein level. Subsequent MMSDH enzyme assay demonstrated reduced activity in patient fibroblasts, measuring 2.5 standard deviations below the mean.
Related JoVE Video
A novel rearrangement of occludin causes brain calcification and renal dysfunction.
Hum. Genet.
PUBLISHED: 04-09-2013
Show Abstract
Hide Abstract
Pediatric intracranial calcification may be caused by inherited or acquired factors. We describe the identification of a novel rearrangement in which a downstream pseudogene translocates into exon 9 of OCLN, resulting in band-like brain calcification and advanced chronic kidney disease in early childhood. SNP genotyping and read-depth variation from whole exome sequencing initially pointed to a mutation in the OCLN gene. The high degree of identity between OCLN and two pseudogenes required a combination of multiplex ligation-dependent probe amplification, PCR, and Sanger sequencing to identify the genomic rearrangement that was the underlying genetic cause of the disease. Mutations in exon 3, or at the 5-6 intron splice site, of OCLN have been reported to cause brain calcification and polymicrogyria with no evidence of extra-cranial phenotypes. Of the OCLN splice variants described, all make use of exon 9, while OCLN variants that use exons 3, 5, and 6 are tissue specific. The genetic rearrangement we identified in exon 9 provides a plausible explanation for the expanded clinical phenotype observed in our individuals. Furthermore, the lack of polymicrogyria associated with the rearrangement of OCLN in our patients extends the range of cranial defects that can be observed due to OCLN mutations.
Related JoVE Video
FishingCNV: a graphical software package for detecting rare copy number variations in exome-sequencing data.
Bioinformatics
PUBLISHED: 03-28-2013
Show Abstract
Hide Abstract
Rare copy number variations (CNVs) are frequent causes of genetic diseases. We developed a graphical software package based on a novel approach that can consistently identify CNVs of all types (homozygous deletions, heterozygous deletions, heterozygous duplications) from exome-sequencing data without the need of a paired control. The algorithm compares coverage depth in a test sample against a background distribution of control samples and uses principal component analysis to remove batch effects. It is user friendly and can be run on a personal computer. Availability and implementation: The main scripts are implemented in R (2.15), and the GUI is created using Java 1.6. It can be run on all major operating systems. A non-GUI version for pipeline implementation is also available. The program is freely available online: https://sourceforge.net/projects/fishingcnv/
Related JoVE Video
Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma.
Nat. Genet.
PUBLISHED: 03-26-2013
Show Abstract
Hide Abstract
Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.
Related JoVE Video
Exome profiling of primary, metastatic and recurrent ovarian carcinomas in a BRCA1-positive patient.
BMC Cancer
PUBLISHED: 03-13-2013
Show Abstract
Hide Abstract
Ovarian carcinoma is a common, and often deadly, gynecological cancer. Mutations in BRCA1 and BRCA2 genes are present in at least a fifth of patients. Uncovering other genes that become mutated subsequent to BRCA1/BRCA2 inactivation during cancer development will be helpful for more effective treatments.
Related JoVE Video
Mortality as an indicator of treatment quality after pertrochanteric fractures in the elderly.
Pol Orthop Traumatol
PUBLISHED: 02-27-2013
Show Abstract
Hide Abstract
Fractures in people over the age of 65, especially pertrochanteric fractures of the femur, present a growing medical problem. Surgical treatment of such fractures should be performed in the shortest possible time after the accident. Efforts were made to answer the question what contributes to the reduction in mortality after pertrochanteric fractures.
Related JoVE Video
Mutations in WNT1 are a cause of osteogenesis imperfecta.
J. Med. Genet.
PUBLISHED: 02-23-2013
Show Abstract
Hide Abstract
Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that is usually due to dominant mutations in COL1A1 or COL1A2. Rare recessive forms of OI, caused by mutations in genes involved in various aspects of bone formation, have been described as well.
Related JoVE Video
ARHGDIA: a novel gene implicated in nephrotic syndrome.
J. Med. Genet.
PUBLISHED: 02-22-2013
Show Abstract
Hide Abstract
Congenital nephrotic syndrome arises from a defect in the glomerular filtration barrier that permits the unrestricted passage of protein across the barrier, resulting in proteinuria, hypoalbuminaemia, and severe oedema. While most cases are due to mutations in one of five genes, in up to 15% of cases, a genetic cause is not identified. We investigated two sisters with a presumed recessive form of congenital nephrotic syndrome.
Related JoVE Video
Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia.
J. Med. Genet.
PUBLISHED: 02-19-2013
Show Abstract
Hide Abstract
Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort.
Related JoVE Video
Intellectual disability associated with a homozygous missense mutation in THOC6.
Orphanet J Rare Dis
PUBLISHED: 02-12-2013
Show Abstract
Hide Abstract
BACKGROUND: We recently described a novel autosomal recessive neurodevelopmental disorder with intellectual disability in four patients from two related Hutterite families. Identity-by-descent mapping localized the gene to a 5.1 Mb region at chromosome 16p13.3 containing more than 170 known or predicted genes. The objective of this study was to identify the causative gene for this rare disorder.Methods and results: Candidate gene sequencing followed by exome sequencing identified a homozygous missense mutation p. Gly46Arg, in THOC6. No other potentially causative coding variants were present within the critical region on chromosome 16. THOC6 is a member of the THO/TREX complex which is involved in coordinating mRNA processing with mRNA export from the nucleus. In situ hybridization showed that thoc6 is highly expressed in the midbrain and eyes. Cellular localization studies demonstrated that wild-type THOC6 is present within the nucleus as is the case for other THO complex proteins. However, mutant THOC6 was predominantly localized in the cytoplasm, suggesting that the mutant protein is unable to carry out its normal function. siRNA knockdown of THOC6 revealed increased apoptosis in cultured cells. CONCLUSION: Our findings associate a missense mutation in THOC6 with intellectual disability, suggesting the THO/TREX complex plays an important role in neurodevelopment.
Related JoVE Video
Novel Mutations in SCO1 as a Cause of Fatal Infantile Encephalopathy and Lactic Acidosis.
Hum. Mutat.
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
Isolated cytochrome c oxidase (COX) deficiency is a common cause of mitochondrial disease, yet its genetic basis remains unresolved in many patients. Here, we identified novel compound heterozygous mutations in SCO1 (p.M294V, p.Val93*) in one such patient with fatal encephalopathy. The patient lacked the severe hepatopathy (p.P174L) or hypertrophic cardiomyopathy (p.G132S) observed in previously reported SCO1 cases, so we investigated whether allele-specific defects in SCO1 function might underlie the genotype-phenotype relationships. Fibroblasts expressing p.M294V had a relatively modest decrease in COX activity compared with those expressing p.P174L, whereas both SCO1 lines had marked copper deficiencies. Overexpression of known pathogenic variants in SCO1 fibroblasts showed that p.G132S exacerbated the COX deficiency, whereas COX activity was partially or fully restored by p.P174L and p.M294V, respectively. These data suggest that the clinical phenotypes in SCO1 patients might reflect the residual capacity of the pathogenic alleles to perform one or both functions of SCO1.
Related JoVE Video
Variants of anterior segment dysgenesis and cerebral involvement in a large family with a novel COL4A1 mutation.
Am. J. Ophthalmol.
PUBLISHED: 02-06-2013
Show Abstract
Hide Abstract
To investigate the diverse ocular manifestations and identify the causative mutation in a large family with autosomal dominant anterior segment dysgenesis accompanied in some individuals by cerebral vascular disease.
Related JoVE Video
Exome sequencing reveals a homozygous mutation in TWINKLE as the cause of multisystemic failure including renal tubulopathy in three siblings.
Mol. Genet. Metab.
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Three deceased infants from a Pakistani consanguineous family presented with a similar phenotype of cholestatic liver disease, hypotonia, severe failure to thrive, recurrent vomiting, renal tubulopathy, and a progressive neurodegenerative course. Mitochondrial DNA depletion syndrome was considered in view of multisystem involvement. Exome sequencing, revealed a homozygous novel mutation c.1183T>C (p.F395L) in exon 1 of the C10orf2 TWINKLE gene. The hepatocerebral phenotype is well recognized in association with recessive mutations involving the C10orf2 TWINKLE gene. The feature of renal tubulopathy adds to the multisystemic presentation in our patients and further demonstrates an expansion of the phenotype in mitochondrial DNA depletion syndrome associated with TWINKLE gene mutations. The absence of features of an epileptic encephalopathy appears to be of added interest.
Related JoVE Video
Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation.
J. Allergy Clin. Immunol.
PUBLISHED: 01-22-2013
Show Abstract
Hide Abstract
Primary immunodeficiencies are a rare group of inborn diseases characterized by a broad clinical and genetic heterogeneity. Substantial advances in the identification of the underlying molecular mechanisms can be achieved through the study of patients with increased susceptibility to specific infections and immune dysregulation. We evaluated 3 siblings from a consanguineous family presenting with EBV-associated B-cell lymphoproliferation at an early age (12, 7½, and 14 months, respectively) and profound naive T-cell lymphopenia.
Related JoVE Video
Iron refractory iron deficiency anemia: presentation with hyperferritinemia and response to oral iron therapy.
Pediatrics
PUBLISHED: 01-14-2013
Show Abstract
Hide Abstract
Iron-refractory iron-deficiency anemia (IRIDA) is an autosomal recessive disorder caused by mutations in TMPRSS6. Patients have hypochromic microcytic anemia refractory to oral iron and are only partially responsive to parenteral iron administration. We report a French-Canadian kindred in which 2 siblings presented in early childhood with severe microcytic anemia, hypoferremia, and hyperferritinemia. Both children have been successfully treated solely with low-dose oral iron since diagnosis. Clinical and biological presentation did not fit any previously described genetic iron-deficiency anemia. Whole exome sequencing identified in both patients compound heterozygous mutations of TMPRSS6 leading to p.G442R and p.E522K, 2 mutations previously reported to cause classic IRIDA, and no additional mutations in known iron-regulatory genes. Thus, the phenotype associated with the unique combination of mutations uncovered in both patients expands the spectrum of disease associated with TMPRSS6 mutations to include iron deficiency anemia that is accompanied by hyperferritinemia at initial presentation and is responsive to continued oral iron therapy. Our results have implications for genetic testing in early childhood iron deficiency anemia. Importantly, they emphasize that whole exome sequencing can be used as a diagnostic tool and greatly facilitate the elucidation of the genetic basis of unusual clinical presentations, including hypomorphic mutations or compound heterozygosity leading to different phenotypes in known Mendelian diseases.
Related JoVE Video
Mutations in STAMBP, encoding a deubiquitinating enzyme, cause microcephaly-capillary malformation syndrome.
Nat. Genet.
PUBLISHED: 01-12-2013
Show Abstract
Hide Abstract
Microcephaly-capillary malformation (MIC-CAP) syndrome is characterized by severe microcephaly with progressive cortical atrophy, intractable epilepsy, profound developmental delay and multiple small capillary malformations on the skin. We used whole-exome sequencing of five patients with MIC-CAP syndrome and identified recessive mutations in STAMBP, a gene encoding the deubiquitinating (DUB) isopeptidase STAMBP (STAM-binding protein, also known as AMSH, associated molecule with the SH3 domain of STAM) that has a key role in cell surface receptor-mediated endocytosis and sorting. Patient cell lines showed reduced STAMBP expression associated with accumulation of ubiquitin-conjugated protein aggregates, elevated apoptosis and insensitive activation of the RAS-MAPK and PI3K-AKT-mTOR pathways. The latter cellular phenotype is notable considering the established connection between these pathways and their association with vascular and capillary malformations. Furthermore, our findings of a congenital human disorder caused by a defective DUB protein that functions in endocytosis implicates ubiquitin-conjugate aggregation and elevated apoptosis as factors potentially influencing the progressive neuronal loss underlying MIC-CAP syndrome.
Related JoVE Video
Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas.
Acta Neuropathol.
PUBLISHED: 01-09-2013
Show Abstract
Hide Abstract
Recurrent mutations affecting the histone H3.3 residues Lys27 or indirectly Lys36 are frequent drivers of pediatric high-grade gliomas (over 30% of HGGs). To identify additional driver mutations in HGGs, we investigated a cohort of 60 pediatric HGGs using whole-exome sequencing (WES) and compared them to 543 exomes from non-cancer control samples. We identified mutations in SETD2, a H3K36 trimethyltransferase, in 15% of pediatric HGGs, a result that was genome-wide significant (FDR = 0.029). Most SETD2 alterations were truncating mutations. Sequencing the gene in this cohort and another validation cohort (123 gliomas from all ages and grades) showed SETD2 mutations to be specific to high-grade tumors affecting 15% of pediatric HGGs (11/73) and 8% of adult HGGs (5/65) while no SETD2 mutations were identified in low-grade diffuse gliomas (0/45). Furthermore, SETD2 mutations were mutually exclusive with H3F3A mutations in HGGs (P = 0.0492) while they partly overlapped with IDH1 mutations (4/14), and SETD2-mutant tumors were found exclusively in the cerebral hemispheres (P = 0.0055). SETD2 is the only H3K36 trimethyltransferase in humans, and SETD2-mutant tumors showed a substantial decrease in H3K36me3 levels (P < 0.001), indicating that the mutations are loss-of-function. These data suggest that loss-of-function SETD2 mutations occur in older children and young adults and are specific to HGG of the cerebral cortex, similar to the H3.3 G34R/V and IDH mutations. Taken together, our results suggest that mutations disrupting the histone code at H3K36, including H3.3 G34R/V, IDH1 and/or SETD2 mutations, are central to the genesis of hemispheric HGGs in older children and young adults.
Related JoVE Video
Bioinactive ACTH causing glucocorticoid deficiency.
J. Clin. Endocrinol. Metab.
PUBLISHED: 01-04-2013
Show Abstract
Hide Abstract
A 4-year-old girl and a 4-month-old boy presented with hypoglycemia, normal electrolytes, low cortisol, and high ACTH. A diagnosis of primary adrenal insufficiency was made and initial treatment was with glucocorticoids and mineralocorticoids. The genes known to cause ACTH resistance were normal. Whole exome sequencing revealed that the girl was compound heterozygous for POMC mutations: one previously described null allele and one novel p.R8C mutation in the sequence encoding ACTH and ?-MSH. The boy was homozygous for the p.R8C mutation.
Related JoVE Video
Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly is caused by a duplication in RUNX2.
Am. J. Hum. Genet.
PUBLISHED: 01-03-2013
Show Abstract
Hide Abstract
Metaphyseal dysplasia with maxillary hypoplasia and brachydactyly (MDMHB) is an autosomal-dominant bone dysplasia characterized by metaphyseal flaring of long bones, enlargement of the medial halves of the clavicles, maxillary hypoplasia, variable brachydactyly, and dystrophic teeth. We performed genome-wide SNP genotyping in five affected and four unaffected members of an extended family with MDMHB. Analysis for copy-number variations revealed that a 105 kb duplication within RUNX2 segregated with the MDMHB phenotype in a region with maximum linkage. Real-time PCR for copy-number variation in genomic DNA in eight samples, as well as sequence analysis of fibroblast cDNA from one subject with MDMHB confirmed that affected family members were heterozygous for the presence of an intragenic duplication encompassing exons 3 to 5 of RUNX2. These three exons code for the Q/A domain and the functionally essential DNA-binding runt domain of RUNX2. Transfection studies with murine Runx2 cDNA showed that cellular levels of mutated RUNX2 were markedly higher than those of wild-type RUNX2, suggesting that the RUNX2 duplication found in individuals with MDMHB leads to a gain of function. Until now, only loss-of-function mutations have been detected in RUNX2; the present report associates an apparent gain-of-function alteration of RUNX2 function with a distinct rare disease.
Related JoVE Video
Surgical ablation for atrial fibrillation using the Ex-Maze III procedure on the beating heart in patients undergoing mitral valve surgery.
Kardiol Pol
PUBLISHED: 12-21-2011
Show Abstract
Hide Abstract
The Ex-Maze III procedure is a recently developed surgical method for ablation of atrial fibrillation (AF). The procedure uses epicardial approach and can be performed on the beating heart.
Related JoVE Video
Thromboembolic events are associated with prolonged clot lysis time in patients with permanent atrial fibrillation.
Pol. Arch. Med. Wewn.
PUBLISHED: 11-09-2011
Show Abstract
Hide Abstract
Atrial fibrillation (AF) is associated with a prothrombotic state.
Related JoVE Video
[Anaesthesia in patients with arthrogryposis].
Anestezjol Intens Ter
PUBLISHED: 10-21-2011
Show Abstract
Hide Abstract
Arthrogryposis is a rare congenital syndrome, characterised by multiple joint contractures. Children suffering from this disease often need surgical interventions to correct musculoskeletal abnormalities. Among problems which may be encountered are a difficult airway, myopathy, difficulties with peripheral iv placement, and the possibility of intraoperative hyperthermia. In three described cases, we used thiopentone and cis-atracurium to induce anaesthesia, which was then maintained with nitrous-oxide and fentanyl. In one case sevoflurane was also used. No problems with intubation or hyperthermia were encountered.
Related JoVE Video
Association between selected risk factors and the incidence of venous obstruction after pacemaker implantation: demographic and clinical factors.
Kardiol Pol
PUBLISHED: 10-19-2011
Show Abstract
Hide Abstract
Venous obstruction and subsequent pulmonary embolism belong to the most common and dangerous complications of pacemaker implantation. Thus, identification of patients at risk of venous obstruction seems to be of critical importance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.