JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genomic epidemiology of the haitian cholera outbreak: a single introduction followed by rapid, extensive, and continued spread characterized the onset of the epidemic.
MBio
PUBLISHED: 11-06-2014
Show Abstract
Hide Abstract
For centuries, cholera has been one of the most feared diseases. The causative agent Vibrio cholerae is a waterborne Gram-negative enteric pathogen eliciting a severe watery diarrheal disease. In October 2010, the seventh pandemic reached Haiti, a country that had not experienced cholera for more than a century. By using whole-genome sequence typing and mapping strategies of 116 serotype O1 strains from global sources, including 44 Haitian genomes, we present a detailed reconstructed evolutionary history of the seventh pandemic with a focus on the Haitian outbreak. We catalogued subtle genomic alterations at the nucleotide level in the genome core and architectural rearrangements from whole-genome map comparisons. Isolates closely related to the Haitian isolates caused several recent outbreaks in southern Asia. This study provides evidence for a single-source introduction of cholera from Nepal into Haiti followed by rapid, extensive, and continued clonal expansion. The phylogeographic patterns in both southern Asia and Haiti argue for the rapid dissemination of V. cholerae across the landscape necessitating real-time surveillance efforts to complement the whole-genome epidemiological analysis. As eradication efforts move forward, phylogeographic knowledge will be important for identifying persistent sources and monitoring success at regional levels. The results of molecular and epidemiological analyses of this outbreak suggest that an indigenous Haitian source of V. cholerae is unlikely and that an indigenous source has not contributed to the genomic evolution of this clade.
Related JoVE Video
Advancing the microbiome research community.
Cell
PUBLISHED: 10-11-2014
Show Abstract
Hide Abstract
The human microbiome has become a recognized factor in promoting and maintaining health. We outline opportunities in interdisciplinary research, analytical rigor, standardization, and policy development for this relatively new and rapidly developing field. Advances in these aspects of the research community may in turn advance our understanding of human microbiome biology.
Related JoVE Video
An Effective Intervention to Reduce Intravaginal Practices Among HIV-1 Uninfected Kenyan Women.
AIDS Res. Hum. Retroviruses
PUBLISHED: 09-29-2014
Show Abstract
Hide Abstract
Abstract Intravaginal practices (IVP) are common among African women and are associated with HIV acquisition. A behavioral intervention to reduce IVP is a potential new HIV risk-reduction strategy. Fifty-eight HIV-1-uninfected Kenyan women reporting IVP and 42 women who denied IVP were followed for 3 months. Women using IVP attended a skill-building, theory-based group intervention occurring weekly for 3 weeks to encourage IVP cessation. Vaginal swabs at each visit were used to detect yeast, to detect bacterial vaginosis, and to characterize the vaginal microbiota. Intravaginal insertion of soapy water (59%) and lemon juice (45%) was most common among 58 IVP women. The group-counseling intervention led to a decrease in IVP from 95% (54/58) at baseline to 0% (0/39) at month 3 (p=0.001). After 3 months of cessation, there was a reduction in yeast on vaginal wet preparation (22% to 7%, p=0.011). Women in the IVP group were more likely to have a Lactobacillus iners-dominated vaginal microbiota at baseline compared to controls [odds ratio (OR), 6.4, p=0.006] without significant change in the microbiota after IVP cessation. The group counseling intervention was effective in reducing IVP for 3 months. Reducing IVP may be important in itself, as well as to support effective use of vaginal microbicides, to prevent HIV acquisition.
Related JoVE Video
Associations of the Fecal Microbiome With Urinary Estrogens and Estrogen Metabolites in Postmenopausal Women.
J. Clin. Endocrinol. Metab.
PUBLISHED: 09-12-2014
Show Abstract
Hide Abstract
Context: The gut microbiota may influence the risk of breast cancer through effects on endogenous estrogens. Objective: The objective of the study was to investigate whether urinary estrogens and estrogen metabolites are associated with the diversity and composition of the fecal microbiome. Design and Setting: This was a cross-sectional study among women enrolled in Kaiser Permanente of Colorado. Participants: A total of 60 women drawn from a random sample of healthy postmenopausal women (aged 55-69 y), without current or recent use of antibiotics or hormone therapy and no history of cancer or gastrointestinal disease participated in the study. Outcome Measures and Methods: Creatinine-standardized urinary estrogens (estrone and estradiol) and 13 hydroxylated estrogen metabolites were measured in spot urines by liquid chromatography-tandem mass spectrometry. The fecal microbiome was assessed using pyrosequencing of 16S rRNA amplicons. General linear models were used to test for associations of diversity and composition of the fecal microbiome with parent estrogen (estrone + estradiol), total estrogens, and estrogen metabolites and the ratio of estrogen metabolites to parent estrogen, which has been predictive of postmenopausal breast cancer risk in previous studies. Results: The ratio of metabolites to parents was directly associated with whole-tree phylogenetic diversity (R = 0.35, P= .01). Relative abundances of the order Clostridiale (R = 0.32, P= .02) and the genus Bacteroides (R = -0.30, P= .03) were also correlated with the ratio of metabolites to parents. Associations were independent of age, body mass index, and study design factors. Conclusions: Our data suggest that women with a more diverse gut microbiome exhibit an elevated urinary ratio of hydroxylated estrogen metabolites to parent estrogen. Further research is warranted to confirm and relate these findings to clinical disease.
Related JoVE Video
Probiotics: achieving a better regulatory fit.
Food Drug Law J
PUBLISHED: 08-29-2014
Show Abstract
Hide Abstract
The development and marketing of new probiotic products, substances containing live microorganisms that have a beneficial effect on the human body, have dramatically increased over the last few years. This article examines how the Food and Drug Administration and Federal Trade Commission currently regulate probiotics and makes recommendations as to changes that might be made to ensure that probiotic products are made available to the general public in a way that is both safe and effective.
Related JoVE Video
Association between cigarette smoking and the vaginal microbiota: a pilot study.
BMC Infect. Dis.
PUBLISHED: 08-28-2014
Show Abstract
Hide Abstract
Smoking has been identified in observational studies as a risk factor for bacterial vaginosis (BV), a condition defined in part by decimation of Lactobacillus spp. The anti-estrogenic effect of smoking and trace amounts of benzo[a]pyrene diol epoxide (BPDE) may predispose women to BV. BPDE increases bacteriophage induction in Lactobacillus spp. and is found in the vaginal secretions of smokers. We compared the vaginal microbiota between smokers and non-smokers and followed microbiota changes in a smoking cessation pilot study.
Related JoVE Video
Early microRNA expression profile as a prognostic biomarker for the development of pelvic inflammatory disease in a mouse model of chlamydial genital infection.
MBio
PUBLISHED: 06-26-2014
Show Abstract
Hide Abstract
It is not currently possible to predict the probability of whether a woman with a chlamydial genital infection will develop pelvic inflammatory disease (PID). To determine if specific biomarkers may be associated with distinct chlamydial pathotypes, we utilized two Chlamydia muridarum variants (C. muridarum Var001 [CmVar001] and CmVar004) that differ in their abilities to elicit upper genital tract pathology in a mouse model. CmVar004 has a lower growth rate in vitro and induces pathology in only 20% of C57BL/6 mouse oviducts versus 83.3% of oviducts in CmVar001-infected mice. To determine if chemokine and cytokine production within 24 h of infection is associated with the outcome of pathology, levels of 15 chemokines and cytokines were measured. CmVar004 infection induced significantly lower levels of CXCL1, CXCL2, tumor necrosis factor alpha (TNF-?), and CCL2 in comparison to CmVar001 infection with similar rRNA (rs16) levels for Chlamydiae. A combination of microRNA (miRNA) sequencing and quantitative real-time PCR (qRT-PCR) analysis of 134 inflammation-related miRNAs was performed 24 h postinfection to determine if the chemokine/cytokine responses would also be reflected in miRNA expression profiles. Interestingly, 12 miRNAs (miR-135a-5p, miR298-5p, miR142-3p, miR223-3p, miR299a-3p, miR147-3p, miR105, miR325-3p, miR132-3p, miR142-5p, miR155-5p, and miR-410-3p) were overexpressed during CmVar004 infection compared to CmVar001 infection, inversely correlating with the respective chemokine/cytokine responses. To our knowledge, this is the first report demonstrating that early biomarkers elicited in the host can differentiate between two pathological variants of chlamydiae and be predictive of upper tract disease. Importance: It is apparent that an infecting chlamydial population consists of multiple genetic variants with differing capabilities of eliciting a pathological response; thus, it may be possible to identify biomarkers specific for a given virulence pathotype. miRNAs are known to regulate genes that in turn regulate signaling pathways involved in disease pathogenesis. Importantly, miRNAs are stable and can reflect a tissue response and therefore have the potential to be biomarkers of disease severity. Currently, with respect to chlamydial infections, there is no way to predict whether an infected patient is more or less likely to develop PID. However, data presented in this study indicate that the expression of a specific miRNA profile associated with a virulent variant early in the infection course may be predictive of an increased risk of pelvic inflammatory disease, allowing more aggressive treatment before significant pathology develops.
Related JoVE Video
Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection.
J. Infect. Dis.
PUBLISHED: 06-18-2014
Show Abstract
Hide Abstract
We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection.
Related JoVE Video
Feasibility of self-collection of fecal specimens by randomly sampled women for health-related studies of the gut microbiome.
BMC Res Notes
PUBLISHED: 03-21-2014
Show Abstract
Hide Abstract
The field of microbiome research is growing rapidly. We developed a method for self-collection of fecal specimens that can be used in population-based studies of the gut microbiome. We conducted a pilot study to test the feasibility of our methods among a random sample of healthy, postmenopausal women who are members of Kaiser Permanente Colorado (KPCO). We aimed to collect questionnaire data, fecal and urine specimens from 60 women, aged 55-69, who recently had a normal screening mammogram. We designed the study such that all questionnaire data and specimens could be collected at home.
Related JoVE Video
The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women.
Microbiome
PUBLISHED: 02-03-2014
Show Abstract
Hide Abstract
This study was undertaken to characterize the vaginal microbiota throughout normal human pregnancy using sequence-based techniques. We compared the vaginal microbial composition of non-pregnant patients with a group of pregnant women who delivered at term.
Related JoVE Video
An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform.
Microbiome
PUBLISHED: 01-16-2014
Show Abstract
Hide Abstract
To take advantage of affordable high-throughput next-generation sequencing technologies to characterize microbial community composition often requires the development of improved methods to overcome technical limitations inherent to the sequencing platforms. Sequencing low sequence diversity libraries such as 16S rRNA amplicons has been problematic on the Illumina MiSeq platform and often generates sequences of suboptimal quality.
Related JoVE Video
Genome Sequence of Escherichia coli O157:H7 Strain 2886-75, Associated with the First Reported Case of Human Infection in the United States.
Genome Announc
PUBLISHED: 01-11-2014
Show Abstract
Hide Abstract
First identified in 1982 as a human pathogen, enterohemorrhagic Escherichia coli of the O157:H7 serotype is a major cause of food-borne acquired human infections. Here, we report the genome sequence of the first known strain of this serotype isolated in the United States.
Related JoVE Video
Draft Genome Sequence of Synechococcus sp. Strain CB0101, Isolated From the Chesapeake Bay Estuary.
Genome Announc
PUBLISHED: 01-11-2014
Show Abstract
Hide Abstract
Here, we report the draft genome sequence of the estuarine Synechococcus sp. strain CB0101. The genomics information of this strain will facilitate the study of the poorly understood Synechococcus subcluster 5.2 and how this strain is capable of thriving in a dynamic estuarine system, such as the Chesapeake Bay.
Related JoVE Video
Phylogeography of Bacillus anthracis in the country of Georgia shows evidence of population structuring and is dissimilar to other regional genotypes.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Sequence analyses and subtyping of Bacillus anthracis strains from Georgia reveal a single distinct lineage (Aust94) that is ecologically established. Phylogeographic analysis and comparisons to a global collection reveals a clade that is mostly restricted to Georgia. Within this clade, many groups are found around the country, however at least one subclade is only found in the eastern part. This pattern suggests that dispersal into and out of Georgia has been rare and despite historical dispersion within the country, for at least for one lineage, current spread is limited.
Related JoVE Video
Free glycogen in vaginal fluids is associated with Lactobacillus colonization and low vaginal pH.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Lactobacillus dominates the lower genital tract microbiota of many women, producing a low vaginal pH, and is important for healthy pregnancy outcomes and protection against several sexually transmitted pathogens. Yet, factors that promote Lactobacillus remain poorly understood. We hypothesized that the amount of free glycogen in the lumen of the lower genital tract is an important determinant of Lactobacillus colonization and a low vaginal pH.
Related JoVE Video
The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term.
Microbiome
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
This study was undertaken to determine whether the vaginal microbiota of pregnant women who subsequently had a spontaneous preterm delivery is different from that of women who had a term delivery.
Related JoVE Video
Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
The bacterial communities of sponges have been studied using molecular techniques as well as culture-based techniques, but the communities described by these two methods are remarkably distinct. Culture-based methods describe communities dominated by Proteobacteria, and Actinomycetes while molecular methods describe communities dominated by predominantly uncultivated groups such as the Chloroflexi, Acidobacteria, and Acidimicrobidae. In this study, we used a wide range of culture media to increase the diversity of cultivable bacteria from the closely related giant barrel sponges, Xestospongia muta collected from the Florida Keys, Atlantic Ocean and Xestospongia testudinaria, collected from Indonesia, Pacific Ocean. Over 400 pure cultures were isolated and identified from X. muta and X. testudinaria and over 90 bacterial species were represented. Over 16,000 pyrosequences were analyzed and assigned to 976 OTUs. We employed both cultured-based methods and pyrosequencing to look for patterns of overlap between the culturable and molecular communities. Only one OTU was found in both the molecular and culturable communities, revealing limitations inherent in both approaches.
Related JoVE Video
Microbial diversity and the presence of algae in halite endolithic communities are correlated to atmospheric moisture in the hyper-arid zone of the Atacama Desert.
Environ. Microbiol.
PUBLISHED: 08-23-2013
Show Abstract
Hide Abstract
The Atacama Desert is one of the oldest and driest deserts in the world and its hyper-arid core is described as "the most barren region imaginable". We used a combination of high-throughput sequencing and microscopy methods to characterize the endolithic microbial assemblages of halite pinnacles (salt rocks) collected in several hyper-arid areas of the desert. We found communities dominated by archaea that relied on a single phylotype of Halothece cyanobacteria for primary production. A few other phylotypes of salt-adapted bacteria and archaea, including Salinibacter, Halorhabdus, and Halococcus were major components of the halite communities, indicating specific adaptations to the unique halite environments. Multivariate statistical analyses of diversity metrics clearly separated the halite communities from that of the surrounding soil in the Yungay area. These analyses also revealed distribution patterns of halite communities correlated with atmospheric moisture. Microbial endolithic communities from halites exposed to coastal fogs and high relative humidity were more diverse; their archaeal and bacterial assemblages were accompanied by a novel algae related to oceanic picoplankton of the Mamiellales. In contrast, we did not find any algae in the Yungay pinnacles, suggesting that the environmental conditions in this habitat might be too extreme for eukaryotic photosynthetic life.
Related JoVE Video
Are changes to the common rule necessary to address evolving areas of research? A case study focusing on the human microbiome project.
J Law Med Ethics
PUBLISHED: 06-28-2013
Show Abstract
Hide Abstract
This article examines ways in which research conducted under the Human Microbiome Project, an effort to establish a "reference catalogue" of the micro-organisms present in the human body and determine how changes in those micro-organisms affect health and disease, raise challenging issues for regulation of human subject research. The article focuses on issues related to subject selection and recruitment, group stigma, and informational risks, and explores whether: (1) the Common Rule or proposed changes to the Rule adequately address these issues and (2) the Common Rule is the most appropriate vehicle to provide regulatory oversight and guidance on these topics.
Related JoVE Video
Male circumcision significantly reduces prevalence and load of genital anaerobic bacteria.
MBio
PUBLISHED: 04-18-2013
Show Abstract
Hide Abstract
Male circumcision reduces female-to-male HIV transmission. Hypothesized mechanisms for this protective effect include decreased HIV target cell recruitment and activation due to changes in the penis microbiome. We compared the coronal sulcus microbiota of men from a group of uncircumcised controls (n = 77) and from a circumcised intervention group (n = 79) at enrollment and year 1 follow-up in a randomized circumcision trial in Rakai, Uganda. We characterized microbiota using16S rRNA gene-based quantitative PCR (qPCR) and pyrosequencing, log response ratio (LRR), Bayesian classification, nonmetric multidimensional scaling (nMDS), and permutational multivariate analysis of variance (PerMANOVA). At baseline, men in both study arms had comparable coronal sulcus microbiota; however, by year 1, circumcision decreased the total bacterial load and reduced microbiota biodiversity. Specifically, the prevalence and absolute abundance of 12 anaerobic bacterial taxa decreased significantly in the circumcised men. While aerobic bacterial taxa also increased postcircumcision, these gains were minor. The reduction in anaerobes may partly account for the effects of circumcision on reduced HIV acquisition.
Related JoVE Video
Genus-optimized strategy for the identification of chlamydial type III secretion substrates.
Pathog Dis
PUBLISHED: 04-08-2013
Show Abstract
Hide Abstract
Among chlamydial virulence factors are the type III secretion (T3S) system and its effectors. T3S effectors target host proteins to benefit the infecting chlamydiae. The assortment of effectors, each with a unique function, varies between species. This variation likely contributes to differences in host specificity and disease severity. A dozen effectors of Chlamydia trachomatis have been identified; however, estimates suggest that more exist. A T3S prediction algorithm, SVM-based Identification and Evaluation of Virulence Effectors (SIEVE), along with a Yersinia surrogate secretion system helped to identify a new T3S substrate, CT082, which rather than functioning as an effector associates with the chlamydial envelope after secretion. SIEVE was modified to improve/expand effector predictions to include all sequenced genomes. Additional adjustments were made to the existing surrogate system whereby the N terminus of putative effectors was fused to a known effector lacking its own N terminus and was tested for secretion. Expansion of effector predictions by cSIEVE and modification of the surrogate system have also assisted in identifying a new T3S substrate from C. psittaci. The expanded predictions along with modifications to improve the surrogate secretion system have enhanced our ability to identify novel species-specific effectors, which upon characterization should provide insight into the unique pathogenic properties of each species.
Related JoVE Video
Whole-Genome Draft Sequences of 26 Enterohemorrhagic Escherichia coli O157:H7 Strains.
Genome Announc
PUBLISHED: 03-22-2013
Show Abstract
Hide Abstract
First identified in 1982, Escherichia coli O157:H7 is the dominant enterohemorrhagic serotype underlying food-borne human infections in North America. Here, we report the genomes of twenty-six strains derived from patients and the bovine reservoir. These resources enable detailed whole-genome comparisons and permit investigations of genotypic and phenotypic plasticity.
Related JoVE Video
Microbiome, sex hormones, and immune responses in the reproductive tract: Challenges for vaccine development against sexually transmitted infections.
Vaccine
PUBLISHED: 03-20-2013
Show Abstract
Hide Abstract
The female and male reproductive tracts are complex eco-systems where immune cells, hormones, and microorganisms interact. The characteristics of the reproductive tract mucosa are distinct from other mucosal sites. Reproductive tract mucosal immune responses are compartmentalized, unique, and affected by resident bacterial communities and sex hormones. The female and male genital microbiomes are complex environments that fluctuate in response to external and host-associated stimuli. The female vaginal microbiota play an important role in preventing colonization by pathogenic organisms. Sex hormones and their duration of exposure affect the composition and stability of the microbiome as well as systemic and mucosal immune responses. In addition to the characteristics of the pathogen they are targeting, successful vaccines against sexually transmitted pathogens must take into account the differences between the systemic and mucosal immune responses, the compartmentalization of the mucosal immune responses, the unique characteristics of the reproductive tract mucosa, the role of the mucosal bacterial communities, the impact of sex hormones, and the interactions among all of these factors.
Related JoVE Video
Genome Sequence of the Human Abscess Isolate Streptococcus intermedius BA1.
Genome Announc
PUBLISHED: 01-31-2013
Show Abstract
Hide Abstract
Streptococcus intermedius is a human pathogen with a propensity for abscess formation. We report a high-quality draft genome sequence of S. intermedius strain BA1, an isolate from a human epidural abscess. This sequence provides insight into the biology of S. intermedius and will aid investigations of pathogenicity.
Related JoVE Video
Genomic anatomy of Escherichia coli O157:H7 outbreaks.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-30-2011
Show Abstract
Hide Abstract
The rapid emergence of Escherichia coli O157:H7 from an unknown strain in 1982 to the dominant hemorrhagic E. coli serotype in the United States and the cause of widespread outbreaks of human food-borne illness highlights a need to evaluate critically the extent to which genomic plasticity of this important enteric pathogen contributes to its pathogenic potential and its evolution as well as its adaptation in different ecological niches. Aimed at a better understanding of the evolution of the E. coli O157:H7 pathogenome, the present study presents the high-quality sequencing and comparative phylogenomic analysis of a comprehensive panel of 25 E. coli O157:H7 strains associated with three nearly simultaneous food-borne outbreaks of human disease in the United States. Here we present a population genetic analysis of more than 200 related strains recovered from patients, contaminated produce, and zoonotic sources. High-resolution phylogenomic approaches allow the dynamics of pathogenome evolution to be followed at a high level of phylogenetic accuracy and resolution. SNP discovery and study of genome architecture and prophage content identified numerous biomarkers to assess the extent of genetic diversity within a set of clinical and environmental strains. A total of 1,225 SNPs were identified in the present study and are now available for typing of the E. coli O157:H7 lineage. These data should prove useful for the development of a refined phylogenomic framework for forensic, diagnostic, and epidemiological studies to define better risk in response to novel and emerging E. coli O157:H7 resistance and virulence phenotypes.
Related JoVE Video
Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-28-2011
Show Abstract
Hide Abstract
The relationship between tunicates and the uncultivated cyanobacterium Prochloron didemni has long provided a model symbiosis. P. didemni is required for survival of animals such as Lissoclinum patella and also makes secondary metabolites of pharmaceutical interest. Here, we present the metagenomes, chemistry, and microbiomes of four related L. patella tunicate samples from a wide geographical range of the tropical Pacific. The remarkably similar P. didemni genomes are the most complex so far assembled from uncultivated organisms. Although P. didemni has not been stably cultivated and comprises a single strain in each sample, a complete set of metabolic genes indicates that the bacteria are likely capable of reproducing outside the host. The sequences reveal notable peculiarities of the photosynthetic apparatus and explain the basis of nutrient exchange underlying the symbiosis. P. didemni likely profoundly influences the lipid composition of the animals by synthesizing sterols and an unusual lipid with biofuel potential. In addition, L. patella also harbors a great variety of other bacterial groups that contribute nutritional and secondary metabolic products to the symbiosis. These bacteria possess an enormous genetic potential to synthesize new secondary metabolites. For example, an antitumor candidate molecule, patellazole, is not encoded in the genome of Prochloron and was linked to other bacteria from the microbiome. This study unveils the complex L. patella microbiome and its impact on primary and secondary metabolism, revealing a remarkable versatility in creating and exchanging small molecules.
Related JoVE Video
Evaluation of a transposase protocol for rapid generation of shotgun high-throughput sequencing libraries from nanogram quantities of DNA.
Appl. Environ. Microbiol.
PUBLISHED: 09-23-2011
Show Abstract
Hide Abstract
Construction of DNA fragment libraries for next-generation sequencing can prove challenging, especially for samples with low DNA yield. Protocols devised to circumvent the problems associated with low starting quantities of DNA can result in amplification biases that skew the distribution of genomes in metagenomic data. Moreover, sample throughput can be slow, as current library construction techniques are time-consuming. This study evaluated Nextera, a new transposon-based method that is designed for quick production of DNA fragment libraries from a small quantity of DNA. The sequence read distribution across nine phage genomes in a mock viral assemblage met predictions for six of the least-abundant phages; however, the rank order of the most abundant phages differed slightly from predictions. De novo genome assemblies from Nextera libraries provided long contigs spanning over half of the phage genome; in four cases where full-length genome sequences were available for comparison, consensus sequences were found to match over 99% of the genome with near-perfect identity. Analysis of areas of low and high sequence coverage within phage genomes indicated that GC content may influence coverage of sequences from Nextera libraries. Comparisons of phage genomes prepared using both Nextera and a standard 454 FLX Titanium library preparation protocol suggested that the coverage biases according to GC content observed within the Nextera libraries were largely attributable to bias in the Nextera protocol rather than to the 454 sequencing technology. Nevertheless, given suitable sequence coverage, the Nextera protocol produced high-quality data for genomic studies. For metagenomics analyses, effects of GC amplification bias would need to be considered; however, the library preparation standardization that Nextera provides should benefit comparative metagenomic analyses.
Related JoVE Video
Biosynthesis of the Apoptolidins in Nocardiopsis sp. FU 40.
Tetrahedron
PUBLISHED: 08-27-2011
Show Abstract
Hide Abstract
The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 Kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P(450) genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apopotolidins.
Related JoVE Video
Genome sequence of Ruegeria sp. strain KLH11, an N-acylhomoserine lactone-producing bacterium isolated from the marine sponge Mycale laxissima.
J. Bacteriol.
PUBLISHED: 07-08-2011
Show Abstract
Hide Abstract
Ruegeria sp. strain KLH11, isolated from the marine sponge Mycale laxissima, produces a complex profile of N-acylhomoserine lactone quorum-sensing (QS) molecules. The genome sequence provides insights into the genetic potential of KLH11 to maintain complex QS systems, and this is the first genome report of a cultivated symbiont from a marine sponge.
Related JoVE Video
Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319.
J. Bacteriol.
PUBLISHED: 06-24-2011
Show Abstract
Hide Abstract
Bacillus megaterium is deep-rooted in the Bacillus phylogeny, making it an evolutionarily key species and of particular importance in understanding genome evolution, dynamics, and plasticity in the bacilli. B. megaterium is a commercially available, nonpathogenic host for the biotechnological production of several substances, including vitamin B(12), penicillin acylase, and amylases. Here, we report the analysis of the first complete genome sequences of two important B. megaterium strains, the plasmidless strain DSM319 and QM B1551, which harbors seven indigenous plasmids. The 5.1-Mbp chromosome carries approximately 5,300 genes, while QM B1551 plasmids represent a combined 417 kb and 523 genes, one of the largest plasmid arrays sequenced in a single bacterial strain. We have documented extensive gene transfer between the plasmids and the chromosome. Each strain carries roughly 300 strain-specific chromosomal genes that account for differences in their experimentally confirmed phenotypes. B. megaterium is able to synthesize vitamin B(12) through an oxygen-independent adenosylcobalamin pathway, which together with other key energetic and metabolic pathways has now been fully reconstructed. Other novel genes include a second ftsZ gene, which may be responsible for the large cell size of members of this species, as well as genes for gas vesicles, a second ?-galactosidase gene, and most but not all of the genes needed for genetic competence. Comprehensive analyses of the global Bacillus gene pool showed that only an asymmetric region around the origin of replication was syntenic across the genus. This appears to be a characteristic feature of the Bacillus spp. genome architecture and may be key to their sporulating lifestyle.
Related JoVE Video
Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution.
J. Bacteriol.
PUBLISHED: 05-20-2011
Show Abstract
Hide Abstract
Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.
Related JoVE Video
Phylogeography and molecular epidemiology of Yersinia pestis in Madagascar.
PLoS Negl Trop Dis
PUBLISHED: 05-18-2011
Show Abstract
Hide Abstract
Plague was introduced to Madagascar in 1898 and continues to be a significant human health problem. It exists mainly in the central highlands, but in the 1990s was reintroduced to the port city of Mahajanga, where it caused extensive human outbreaks. Despite its prevalence, the phylogeography and molecular epidemiology of Y. pestis in Madagascar has been difficult to study due to the great genetic similarity among isolates. We examine island-wide geographic-genetic patterns based upon whole-genome discovery of SNPs, SNP genotyping and hypervariable variable-number tandem repeat (VNTR) loci to gain insight into the maintenance and spread of Y. pestis in Madagascar.
Related JoVE Video
Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications.
Pelin Yilmaz, Renzo Kottmann, Dawn Field, Rob Knight, James R Cole, Linda Amaral-Zettler, Jack A Gilbert, Ilene Karsch-Mizrachi, Anjanette Johnston, Guy Cochrane, Robert Vaughan, Christopher Hunter, Joonhong Park, Norman Morrison, Philippe Rocca-Serra, Peter Sterk, Manimozhiyan Arumugam, Mark Bailey, Laura Baumgartner, Bruce W Birren, Martin J Blaser, Vivien Bonazzi, Tim Booth, Peer Bork, Frederic D Bushman, Pier Luigi Buttigieg, Patrick S G Chain, Emily Charlson, Elizabeth K Costello, Heather Huot-Creasy, Peter Dawyndt, Todd DeSantis, Noah Fierer, Jed A Fuhrman, Rachel E Gallery, Dirk Gevers, Richard A Gibbs, Inigo San Gil, Antonio Gonzalez, Jeffrey I Gordon, Robert Guralnick, Wolfgang Hankeln, Sarah Highlander, Philip Hugenholtz, Janet Jansson, Andrew L Kau, Scott T Kelley, Jerry Kennedy, Dan Knights, Omry Koren, Justin Kuczynski, Nikos Kyrpides, Robert Larsen, Christian L Lauber, Teresa Legg, Ruth E Ley, Catherine A Lozupone, Wolfgang Ludwig, Donna Lyons, Eamonn Maguire, Barbara A Methé, Folker Meyer, Brian Muegge, Sara Nakielny, Karen E Nelson, Diana Nemergut, Josh D Neufeld, Lindsay K Newbold, Anna E Oliver, Norman R Pace, Giriprakash Palanisamy, Jörg Peplies, Joseph Petrosino, Lita Proctor, Elmar Pruesse, Christian Quast, Jeroen Raes, Sujeevan Ratnasingham, Jacques Ravel, David A Relman, Susanna Assunta-Sansone, Patrick D Schloss, Lynn Schriml, Rohini Sinha, Michelle I Smith, Erica Sodergren, Aymé Spo, Jesse Stombaugh, James M Tiedje, Doyle V Ward, George M Weinstock, Doug Wendel, Owen White, Andrew Whiteley, Andreas Wilke, Jennifer R Wortman, Tanya Yatsunenko, Frank Oliver Glöckner.
Nat. Biotechnol.
PUBLISHED: 05-06-2011
Show Abstract
Hide Abstract
Here we present a standard developed by the Genomic Standards Consortium (GSC) for reporting marker gene sequences--the minimum information about a marker gene sequence (MIMARKS). We also introduce a system for describing the environment from which a biological sample originates. The environmental packages apply to any genome sequence of known origin and can be used in combination with MIMARKS and other GSC checklists. Finally, to establish a unified standard for describing sequence data and to provide a single point of entry for the scientific community to access and learn about GSC checklists, we present the minimum information about any (x) sequence (MIxS). Adoption of MIxS will enhance our ability to analyze natural genetic diversity documented by massive DNA sequencing efforts from myriad ecosystems in our ever-changing biosphere.
Related JoVE Video
Impacts of poultry house environment on poultry litter bacterial community composition.
PLoS ONE
PUBLISHED: 04-30-2011
Show Abstract
Hide Abstract
Viral and bacterial pathogens are a significant economic concern to the US broiler industry and the ecological epicenter for poultry pathogens is the mixture of bedding material, chicken excrement and feathers that comprises the litter of a poultry house. This study used high-throughput sequencing to assess the richness and diversity of poultry litter bacterial communities, and to look for connections between these communities and the environmental characteristics of a poultry house including its history of gangrenous dermatitis (GD). Cluster analysis of 16S rRNA gene sequences revealed differences in the distribution of bacterial phylotypes between Wet and Dry litter samples and between houses. Wet litter contained greater diversity with 90% of total bacterial abundance occurring within the top 214 OTU clusters. In contrast, only 50 clusters accounted for 90% of Dry litter bacterial abundance. The sixth largest OTU cluster across all samples classified as an Arcobacter sp., an emerging human pathogen, occurring in only the Wet litter samples of a house with a modern evaporative cooling system. Ironically, the primary pathogenic clostridial and staphylococcal species associated with GD were not found in any house; however, there were thirteen 16S rRNA gene phylotypes of mostly gram-positive phyla that were unique to GD-affected houses and primarily occurred in Wet litter samples. Overall, the poultry house environment appeared to substantially impact the composition of litter bacterial communities and may play a key role in the emergence of food-borne pathogens.
Related JoVE Video
Genome signatures of Escherichia coli O157:H7 isolates from the bovine host reservoir.
Appl. Environ. Microbiol.
PUBLISHED: 03-18-2011
Show Abstract
Hide Abstract
Cattle comprise a main reservoir of Shiga toxin-producing Escherichia coli O157:H7 (STEC). The significant differences in host prevalence, transmissibility, and virulence phenotypes among strains from bovine and human sources are of major interest to the public health community and livestock industry. Genomic analysis revealed divergence into three lineages: lineage I and lineage I/II strains are commonly associated with human disease, while lineage II strains are overrepresented in the asymptomatic bovine host reservoir. Growing evidence suggests that genotypic differences between these lineages, such as polymorphisms in Shiga toxin subtypes and synergistically acting virulence factors, are correlated with phenotypic differences in virulence, host ecology, and epidemiology. To assess the genomic plasticity on a genome-wide scale, we have sequenced the whole genome of strain EC869, a bovine-associated E. coli O157:H7 isolate. Comparative phylogenomic analysis of this key isolate enabled us to place accurately bovine lineage II strains within the genetically homogenous E. coli O157:H7 clade. Identification of polymorphic loci that are anchored both in the chromosomal backbone and horizontally acquired regions allowed us to associate bovine genotypes with altered virulence phenotypes and host prevalence. This study catalogued numerous novel lineage II-specific genome signatures, some of which appear to be associated intimately with the altered pathogenic potential and niche adaptation within the bovine rumen. The presented extended list of polymorphic markers is valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies of this emerging human pathogen.
Related JoVE Video
Moving pictures of the human microbiome.
Genome Biol.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Understanding the normal temporal variation in the human microbiome is critical to developing treatments for putative microbiome-related afflictions such as obesity, Crohn’s disease, inflammatory bowel disease and malnutrition. Sequencing and computational technologies, however, have been a limiting factor in performing dense time series analysis of the human microbiome. Here, we present the largest human microbiota time series analysis to date, covering two individuals at four body sites over 396 timepoints.
Related JoVE Video
Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 03-07-2011
Show Abstract
Hide Abstract
Before the anthrax letter attacks of 2001, the developing field of microbial forensics relied on microbial genotyping schemes based on a small portion of a genome sequence. Amerithrax, the investigation into the anthrax letter attacks, applied high-resolution whole-genome sequencing and comparative genomics to identify key genetic features of the letters Bacillus anthracis Ames strain. During systematic microbiological analysis of the spore material from the letters, we identified a number of morphological variants based on phenotypic characteristics and the ability to sporulate. The genomes of these morphological variants were sequenced and compared with that of the B. anthracis Ames ancestor, the progenitor of all B. anthracis Ames strains. Through comparative genomics, we identified four distinct loci with verifiable genetic mutations. Three of the four mutations could be directly linked to sporulation pathways in B. anthracis and more specifically to the regulation of the phosphorylation state of Spo0F, a key regulatory protein in the initiation of the sporulation cascade, thus linking phenotype to genotype. None of these variant genotypes were identified in single-colony environmental B. anthracis Ames isolates associated with the investigation. These genotypes were identified only in B. anthracis morphotypes isolated from the letters, indicating that the variants were not prevalent in the environment, not even the environments associated with the investigation. This study demonstrates the forensic value of systematic microbiological analysis combined with whole-genome sequencing and comparative genomics.
Related JoVE Video
Variation in tropical reef symbiont metagenomes defined by secondary metabolism.
PLoS ONE
PUBLISHED: 02-14-2011
Show Abstract
Hide Abstract
The complex evolution of secondary metabolism is important in biology, drug development, and synthetic biology. To examine this problem at a fine scale, we compared the genomes and chemistry of 24 strains of uncultivated cyanobacteria, Prochloron didemni, that live symbiotically with tropical ascidians and that produce natural products isolated from the animals. Although several animal species were obtained along a >5500 km transect of the Pacific Ocean, P. didemni strains are >97% identical across much of their genomes, with only a few exceptions concentrated in secondary metabolism. Secondary metabolic gene clusters were sporadically present or absent in identical genomic locations with no consistent pattern of co-occurrence. Discrete mutations were observed, leading to new chemicals that we isolated from animals. Functional cassettes encoding diverse chemicals are exchanged among a single population of symbiotic P. didemni that spans the tropical Pacific, providing the host animals with a varying arsenal of secondary metabolites.
Related JoVE Video
Castor bean organelle genome sequencing and worldwide genetic diversity analysis.
PLoS ONE
PUBLISHED: 01-06-2011
Show Abstract
Hide Abstract
Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.
Related JoVE Video
Macroscale spatial variation in chronic wound microbiota: a cross-sectional study.
Wound Repair Regen
PUBLISHED: 10-13-2010
Show Abstract
Hide Abstract
Controlling for sample site is considered to be an important aspect of chronic wound microbiological investigations; yet, macroscale spatial variation in wound microbiota has not been well characterized. A total of 31 curette samples were collected at the leading edge, opposing leading edge, and/or center of 13 chronic wounds. Bacterial community composition was characterized using a combination of 16S rRNA gene-based pyrosequencing; heat map display; hierarchical clustering; nonmetric multidimensional scaling; and permutation multivariate analysis of variance. A total of 58 bacterial families and 91 bacterial genera were characterized among the 13 wounds. While substantial macroscale spatial variation was observed among the wounds, bacterial communities at different sites within individual wounds were significantly more similar than those in different wounds (p=0.001). Our results support the prevalent opinion that controlling for sample site may improve the quality of wound microbiota studies; however, the significant similarity in bacterial communities from different sites within individual wounds indicates that studies failing to control for sampling site should not be disregarded based solely on this criterion. A composite sample from multiple sites across the surface of individual wounds may provide the most robust characterization of wound microbiota.
Related JoVE Video
Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis.
Sex Transm Infect
PUBLISHED: 07-28-2010
Show Abstract
Hide Abstract
The aetiology of bacterial vaginosis (BV) remains unknown.
Related JoVE Video
Draft genome sequence of the oilseed species Ricinus communis.
Nat. Biotechnol.
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.
Related JoVE Video
Integrated microbial survey analysis of prokaryotic communities for the PhyloChip microarray.
Appl. Environ. Microbiol.
PUBLISHED: 06-25-2010
Show Abstract
Hide Abstract
PhyloTrac is an integrated desktop application for analysis of PhyloChip microarray data. PhyloTrac combined with PhyloChip provides turnkey and comprehensive identification and analysis of bacterial and archaeal communities in complex environmental samples. PhyloTrac is free for noncommercial organizations and is available for all major operating systems at http://www.phylotrac.org/.
Related JoVE Video
Vaginal microbiome of reproductive-age women.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-03-2010
Show Abstract
Hide Abstract
The means by which vaginal microbiomes help prevent urogenital diseases in women and maintain health are poorly understood. To gain insight into this, the vaginal bacterial communities of 396 asymptomatic North American women who represented four ethnic groups (white, black, Hispanic, and Asian) were sampled and the species composition characterized by pyrosequencing of barcoded 16S rRNA genes. The communities clustered into five groups: four were dominated by Lactobacillus iners, L. crispatus, L. gasseri, or L. jensenii, whereas the fifth had lower proportions of lactic acid bacteria and higher proportions of strictly anaerobic organisms, indicating that a potential key ecological function, the production of lactic acid, seems to be conserved in all communities. The proportions of each community group varied among the four ethnic groups, and these differences were statistically significant [?(2)(10) = 36.8, P < 0.0001]. Moreover, the vaginal pH of women in different ethnic groups also differed and was higher in Hispanic (pH 5.0 ± 0.59) and black (pH 4.7 ± 1.04) women as compared with Asian (pH 4.4 ± 0.59) and white (pH 4.2 ± 0.3) women. Phylotypes with correlated relative abundances were found in all communities, and these patterns were associated with either high or low Nugent scores, which are used as a factor for the diagnosis of bacterial vaginosis. The inherent differences within and between women in different ethnic groups strongly argues for a more refined definition of the kinds of bacterial communities normally found in healthy women and the need to appreciate differences between individuals so they can be taken into account in risk assessment and disease diagnosis.
Related JoVE Video
Recent advances in understanding the microbiology of the female reproductive tract and the causes of premature birth.
Infect Dis Obstet Gynecol
PUBLISHED: 04-16-2010
Show Abstract
Hide Abstract
Data derived from molecular microbiological investigations of the human vagina have led to the discovery of resident bacterial communities that exhibit marked differences in terms of species composition. All undergo dynamic changes that are likely due to intrinsic host and behavioral factors. Similar types of bacteria have been found in both amniotic fluid and the vagina, suggesting a potential route of colonization. Given that not all of the species involved in intrauterine infections are readily cultivated, it is important that culture-independent methods of analysis must be used to understand the etiology of these infections. Further research is needed to establish whether an ascending pathway from the vagina to the amniotic cavity enables the development of intrauterine infections.
Related JoVE Video
Bacterial diversity in a glacier foreland of the high Arctic.
Mol. Ecol.
PUBLISHED: 03-25-2010
Show Abstract
Hide Abstract
Over the past 100 years, Arctic temperatures have increased at almost twice the global average rate. One consequence is the acceleration of glacier retreat, exposing new habitats that are colonized by microorganisms whose diversity and function are unknown. Here, we characterized bacterial diversity along two approximately parallel chronosequences in an Arctic glacier forefield that span six time points following glacier retreat. We assessed changes in phylotype richness, evenness and turnover rate through the analysis of 16S rRNA gene sequences recovered from 52 samples taken from surface layers along the chronosequences. An average of 4500 sequences was obtained from each sample by 454 pyrosequencing. Using parametric methods, it was estimated that bacterial phylotype richness was high, and that it increased significantly from an average of 4000 (at a threshold of 97% sequence similarity) at locations exposed for 5 years to an average of 7050 phylotypes per 0.5 g of soil at sites that had been exposed for 150 years. Phylotype evenness also increased over time, with an evenness of 0.74 for 150 years since glacier retreat reflecting large proportions of rare phylotypes. The bacterial species turnover rate was especially high between sites exposed for 5 and 19 years. The level of bacterial diversity present in this High Arctic glacier foreland was comparable with that found in temperate and tropical soils, raising the question whether global patterns of bacterial species diversity parallel that of plants and animals, which have been found to form a latitudinal gradient and be lower in polar regions compared with the tropics.
Related JoVE Video
Comparison of self-collected and physician-collected vaginal swabs for microbiome analysis.
J. Clin. Microbiol.
PUBLISHED: 03-03-2010
Show Abstract
Hide Abstract
To our knowledge, no data are available on whether the microbial species composition and abundance sampled with self-collected vaginal swabs are comparable to those of swabs collected by clinicians. Twenty healthy women were recruited to the study during a routine gynecological visit. Eligible women were between 18 and 40 years old with regular menstrual cycles. Participants self-collected a vaginal swab using a standardized protocol and then were examined by a physician, who collected an additional five swabs from the lateral wall of the mid-vagina. In this study, the self-collected and three physician-obtained swabs were analyzed and compared using terminal restriction fragment length polymorphism and sequence analyses of the 16S rRNA genes. Vaginal microbial community comparative statistical analyses of both T-RFLP and 16S rRNA gene sequence datasets revealed that self-collected vaginal swabs sampled the same microbial diversity as physician collected swabs of the mid-vagina. These findings enable large-scale, field-based studies of the vaginal microbiome.
Related JoVE Video
Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis).
BMC Plant Biol.
PUBLISHED: 01-18-2010
Show Abstract
Hide Abstract
Castor bean (Ricinus communis) is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale). We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs) at 48 loci.
Related JoVE Video
Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity.
Nat. Genet.
PUBLISHED: 01-11-2010
Show Abstract
Hide Abstract
Plague is a pandemic human invasive disease caused by the bacterial agent Yersinia pestis. We here report a comparison of 17 whole genomes of Y. pestis isolates from global sources. We also screened a global collection of 286 Y. pestis isolates for 933 SNPs using Sequenom MassArray SNP typing. We conducted phylogenetic analyses on this sequence variation dataset, assigned isolates to populations based on maximum parsimony and, from these results, made inferences regarding historical transmission routes. Our phylogenetic analysis suggests that Y. pestis evolved in or near China and spread through multiple radiations to Europe, South America, Africa and Southeast Asia, leading to country-specific lineages that can be traced by lineage-specific SNPs. All 626 current isolates from the United States reflect one radiation, and 82 isolates from Madagascar represent a second radiation. Subsequent local microevolution of Y. pestis is marked by sequential, geographically specific SNPs.
Related JoVE Video
Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium.
J. Bacteriol.
PUBLISHED: 01-08-2010
Show Abstract
Hide Abstract
To gain insights into the origin and genome evolution of the plague bacterium Yersinia pestis, we have sequenced the deep-rooted strain Angola, a virulent Pestoides isolate. Its ancient nature makes this atypical isolate of particular importance in understanding the evolution of plague pathogenicity. Its chromosome features a unique genetic make-up intermediate between modern Y. pestis isolates and its evolutionary ancestor, Y. pseudotuberculosis. Our genotypic and phenotypic analyses led us to conclude that Angola belongs to one of the most ancient Y. pestis lineages thus far sequenced. The mobilome carries the first reported chimeric plasmid combining the two species-specific virulence plasmids. Genomic findings were validated in virulence assays demonstrating that its pathogenic potential is distinct from modern Y. pestis isolates. Human infection with this particular isolate would not be diagnosed by the standard clinical tests, as Angola lacks the plasmid-borne capsule, and a possible emergence of this genotype raises major public health concerns. To assess the genomic plasticity in Y. pestis, we investigated the global gene reservoir and estimated the pangenome at 4,844 unique protein-coding genes. As shown by the genomic analysis of this evolutionary key isolate, we found that the genomic plasticity within Y. pestis clearly was not as limited as previously thought, which is strengthened by the detection of the largest number of isolate-specific single-nucleotide polymorphisms (SNPs) currently reported in the species. This study identified numerous novel genetic signatures, some of which seem to be intimately associated with plague virulence. These markers are valuable in the development of a robust typing system critical for forensic, diagnostic, and epidemiological studies.
Related JoVE Video
The effects of circumcision on the penis microbiome.
PLoS ONE
PUBLISHED: 01-06-2010
Show Abstract
Hide Abstract
Circumcision is associated with significant reductions in HIV, HSV-2 and HPV infections among men and significant reductions in bacterial vaginosis among their female partners.
Related JoVE Video
The role of genomics in the identification, prediction, and prevention of biological threats.
PLoS Biol.
PUBLISHED: 10-26-2009
Show Abstract
Hide Abstract
In all likelihood, it is only a matter of time before our public health system will face a major biological threat, whether intentionally dispersed or originating from a known or newly emerging infectious disease. It is necessary not only to increase our reactive "biodefense," but also to be proactive and increase our preparedness. To achieve this goal, it is essential that the scientific and public health communities fully embrace the genomic revolution, and that novel bioinformatic and computing tools necessary to make great strides in our understanding of these novel and emerging threats be developed. Genomics has graduated from a specialized field of science to a research tool that soon will be routine in research laboratories and clinical settings. Because the technology is becoming more affordable, genomics can and should be used proactively to build our preparedness and responsiveness to biological threats. All pieces, including major continued funding, advances in next-generation sequencing technologies, bioinformatics infrastructures, and open access to data and metadata, are being set in place for genomics to play a central role in our public health system.
Related JoVE Video
Draft genome sequences of Yersinia pestis isolates from natural foci of endemic plague in China.
J. Bacteriol.
PUBLISHED: 10-09-2009
Show Abstract
Hide Abstract
To gain insights into the evolutionary origin, emergence, and pathogenicity of the etiologic agent of plague, we have sequenced the genomes of four Yersinia pestis strains isolated from the zoonotic rodent reservoir in foci of endemic plague in China. These resources enable in-depth studies of Y. pestis sequence variations and detailed whole-genome comparisons of very closely related genomes from the supposed site of the origin and the emergence of global pandemics of plague.
Related JoVE Video
Antimicrobial resistance-conferring plasmids with similarity to virulence plasmids from avian pathogenic Escherichia coli strains in Salmonella enterica serovar Kentucky isolates from poultry.
Appl. Environ. Microbiol.
PUBLISHED: 07-31-2009
Show Abstract
Hide Abstract
Salmonella enterica, a leading cause of food-borne gastroenteritis worldwide, may be found in any raw food of animal, vegetable, or fruit origin. Salmonella serovars differ in distribution, virulence, and host specificity. Salmonella enterica serovar Kentucky, though often found in the food supply, is less commonly isolated from ill humans. The multidrug-resistant isolate S. Kentucky CVM29188, isolated from a chicken breast sample in 2003, contains three plasmids (146,811 bp, 101,461 bp, and 46,121 bp), two of which carry resistance determinants (pCVM29188_146 [strAB and tetRA] and pCVM29188_101 [bla(CMY-2) and sugE]). Both resistance plasmids were transferable by conjugation, alone or in combination, to S. Kentucky, Salmonella enterica serovar Newport, and Escherichia coli recipients. pCVM29188_146 shares a highly conserved plasmid backbone of 106 kb (>90% nucleotide identity) with two virulence plasmids from avian pathogenic Escherichia coli strains (pAPEC-O1-ColBM and pAPEC-O2-ColV). Shared avian pathogenic E. coli (APEC) virulence factors include iutA iucABCD, sitABCD, etsABC, iss, and iroBCDEN. PCR analyses of recent (1997 to 2005) S. Kentucky isolates from food animal, retail meat, and human sources revealed that 172 (60%) contained similar APEC-like plasmid backbones. Notably, though rare in human- and cattle-derived isolates, this plasmid backbone was found at a high frequency (50 to 100%) among S. Kentucky isolates from chickens within the same time span. Ninety-four percent of the APEC-positive isolates showed resistance to tetracycline and streptomycin. Together, our findings of a resistance-conferring APEC virulence plasmid in a poultry-derived S. Kentucky isolate and of similar resistance/virulence plasmids in most recent S. Kentucky isolates from chickens and, to lesser degree, from humans and cattle highlight the need for additional research in order to examine the prevalence and spread of combined virulence and resistance plasmids in bacteria in agricultural, environmental, and clinical settings.
Related JoVE Video
Comparative genomics of the IncA/C multidrug resistance plasmid family.
J. Bacteriol.
PUBLISHED: 05-29-2009
Show Abstract
Hide Abstract
Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug-resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we present the complete plasmid sequences of the IncA/C reference plasmid pRA1 (143,963 bp), isolated in 1971 from the fish pathogen Aeromonas hydrophila, and of the cryptic IncA/C plasmid pRAx (49,763 bp), isolated from Escherichia coli transconjugant D7-3, which was obtained through pRA1 transfer in 1980. Using comparative sequence analysis of pRA1 and pRAx with recent members of the IncA/C plasmid family, we show that both plasmids provide novel insights into the evolution of the IncA/C MDR plasmid family and the minimal machinery necessary for stable IncA/C plasmid maintenance. Our results indicate that recent members of the IncA/C plasmid family evolved from a common ancestor, similar in composition to pRA1, through stepwise integration of horizontally acquired resistance gene arrays into a conserved plasmid backbone. Phylogenetic comparisons predict type IV secretion-like conjugative transfer operons encoded on the shared plasmid backbones to be closely related to a group of integrating conjugative elements, which use conjugative transfer for horizontal propagation but stably integrate into the host chromosome during vegetative growth. A hipAB toxin-antitoxin gene cluster found on pRA1, which in Escherichia coli is involved in the formation of persister cell subpopulations, suggests persistence as an early broad-spectrum antimicrobial resistance mechanism in the evolution of IncA/C resistance plasmids.
Related JoVE Video
Chapter 8. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data.
Meth. Enzymol.
PUBLISHED: 04-21-2009
Show Abstract
Hide Abstract
Fore-knowledge of the secondary metabolic potential of cultivated and previously uncultivated microorganisms can potentially facilitate the process of natural product discovery. By combining sequence-based knowledge with biochemical precedent, translated gene sequence data can be used to rapidly derive structural elements encoded by secondary metabolic gene clusters from microorganisms. These structural elements provide an estimate of the secondary metabolic potential of a given organism and a starting point for identification of potential lead compounds in isolation/structure elucidation campaigns. The accuracy of these predictions for a given translated gene sequence depends on the biochemistry of the metabolite class, similarity to known metabolite gene clusters, and depth of knowledge concerning its biosynthetic machinery. This chapter introduces methods for prediction of structural elements for two well-studied classes: modular polyketides and nonribosomally encoded peptides. A bioinformatics tool is presented for rapid preliminary analysis of these modular systems, and prototypical methods for converting these analyses into substructural elements are described.
Related JoVE Video
Bacillus anthracis in China and its relationship to worldwide lineages.
BMC Microbiol.
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
The global pattern of distribution of 1033 B. anthracis isolates has previously been defined by a set of 12 conserved canonical single nucleotide polymorphisms (canSNP). These studies reinforced the presence of three major lineages and 12 sub-lineages and sub-groups of this anthrax-causing pathogen. Isolates that form the A lineage (unlike the B and C lineages) have become widely dispersed throughout the world and form the basis for the geographical disposition of "modern" anthrax. An archival collection of 191 different B. anthracis isolates from China provides a glimpse into the possible role of Chinese trade and commerce in the spread of certain sub-lineages of this pathogen. Canonical single nucleotide polymorphism (canSNP) and multiple locus VNTR analysis (MLVA) typing has been used to examine this archival collection of isolates.
Related JoVE Video
Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota.
PLoS ONE
PUBLISHED: 04-07-2009
Show Abstract
Hide Abstract
Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota.
Related JoVE Video
The complete genome sequence of Bacillus anthracis Ames "Ancestor".
J. Bacteriol.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
The pathogenic bacterium Bacillus anthracis has become the subject of intense study as a result of its use in a bioterrorism attack in the United States in September and October 2001. Previous studies suggested that B. anthracis Ames Ancestor, the original Ames fully virulent plasmid-containing isolate, was the ideal reference. This study describes the complete genome sequence of that original isolate, derived from a sample kept in cold storage since 1981.
Related JoVE Video
Pre-Columbian origins for North American anthrax.
PLoS ONE
PUBLISHED: 01-28-2009
Show Abstract
Hide Abstract
Disease introduction into the New World during colonial expansion is well documented and had a major impact on indigenous populations; however, few diseases have been associated with early human migrations into North America. During the late Pleistocene epoch, Asia and North America were joined by the Beringian Steppe ecosystem which allowed animals and humans to freely cross what would become a water barrier in the Holocene. Anthrax has clearly been shown to be dispersed by human commerce and trade in animal products contaminated with Bacillus anthracis spores. Humans appear to have brought B. anthracis to this area from Asia and then moved it further south as an ice-free corridor opened in central Canada approximately 13,000 ybp. In this study, we have defined the evolutionary history of Western North American (WNA) anthrax using 2,850 single nucleotide polymorphisms (SNPs) and 285 geographically diverse B. anthracis isolates. Phylogeography of the major WNA B. anthracis clone reveals ancestral populations in northern Canada with progressively derived populations to the south; the most recent ancestor of this clonal lineage is in Eurasia. Our phylogeographic patterns are consistent with B. anthracis arriving with humans via the Bering Land Bridge. This northern-origin hypothesis is highly consistent with our phylogeographic patterns and rates of SNP accumulation observed in current day B. anthracis isolates. Continent-wide dispersal of WNA B. anthracis likely required movement by later European colonizers, but the continents first inhabitants may have seeded the initial North American populations.
Related JoVE Video
Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.
J Transl Med
Show Abstract
Hide Abstract
High systemic estrogen levels contribute to breast cancer risk for postmenopausal women, whereas low levels contribute to osteoporosis risk. Except for obesity, determinants of non-ovarian systemic estrogen levels are undefined. We sought to identify members and functions of the intestinal microbial community associated with estrogen levels via enterohepatic recirculation.
Related JoVE Video
Twice-daily application of HIV microbicides alter the vaginal microbiota.
MBio
Show Abstract
Hide Abstract
Vaginal HIV microbicides offer great promise in preventing HIV transmission, but failures of phase 3 clinical trials, in which microbicide-treated subjects had an increased risk of HIV transmission, raised concerns about endpoints used to evaluate microbicide safety. A possible explanation for the increased transmission risk is that the agents shifted the vaginal bacterial community, resulting in loss of natural protection and enhanced HIV transmission susceptibility. We characterized vaginal microbiota, using pyrosequencing of bar-coded 16S rRNA gene fragments, in samples from 35 healthy, sexually abstinent female volunteer subjects (ages 18 to 50 years) with regular menses in a repeat phase 1 study of twice-daily application over 13.5 days of 1 of 3 gel products: a hydroxyethylcellulose (HEC)-based "universal" placebo (10 subjects), 6% cellulose sulfate (CS; 13 subjects), and 4% nonoxynol-9 (N-9; 12 subjects). We used mixed effects models inferred using Bayesian Markov chain Monte Carlo methods, which showed that treatment with active agents shifted the microbiota toward a community type lacking significant numbers of Lactobacillus spp. and dominated by strict anaerobes. This state of the vaginal microbiota was associated with a low or intermediate Nugent score and was not identical to bacterial vaginosis, an HIV transmission risk factor. The placebo arm contained a higher proportion of communities dominated by Lactobacillus spp., particularly L. crispatus, throughout treatment. The data suggest that molecular evaluation of microbicide effects on vaginal microbiota may be a critical endpoint that should be incorporated in early clinical assessment of microbicide candidates.
Related JoVE Video
Association between Trichomonas vaginalis and vaginal bacterial community composition among reproductive-age women.
Sex Transm Dis
Show Abstract
Hide Abstract
Some vaginal bacterial communities are thought to prevent infection by sexually transmitted organisms. Prior work demonstrated that the vaginal microbiota of reproductive-age women cluster into 5 types of bacterial communities; 4 dominated by Lactobacillus species (L. iners, L. crispatus, L. gasseri, L. jensenii) and 1 (termed community state type (CST) IV) lacking significant numbers of lactobacilli and characterized by higher proportions of Atopobium, Prevotella, Parvimonas, Sneathia, Gardnerella, Mobiluncus, and other taxa. We sought to evaluate the relationship between vaginal bacterial composition and Trichomonas vaginalis.
Related JoVE Video
Association of fecal microbial diversity and taxonomy with selected enzymatic functions.
PLoS ONE
Show Abstract
Hide Abstract
Few microbial functions have been compared to a comprehensive survey of the human fecal microbiome. We evaluated determinants of fecal microbial ?-glucuronidase and ?-glucosidase activities, focusing especially on associations with microbial alpha and beta diversity and taxonomy. We enrolled 51 healthy volunteers (26 female, mean age 39) who provided questionnaire data and multiple aliquots of a stool, from which proteins were extracted to quantify ?-glucuronidase and ?-glucosidase activities, and DNA was extracted to amplify and pyrosequence 16S rRNA gene sequences to classify and quantify microbiome diversity and taxonomy. Fecal ?-glucuronidase was elevated with weight loss of at least 5 lb. (P = 0.03), whereas ?-glucosidase was marginally reduced in the four vegetarians (P = 0.06). Both enzymes were correlated directly with microbiome richness and alpha diversity measures, directly with the abundance of four Firmicutes Clostridia genera, and inversely with the abundance of two other genera (Firmicutes Lactobacillales Streptococcus and Bacteroidetes Rikenellaceae Alistipes) (all P = 0.05-0.0001). Beta diversity reflected the taxonomic associations. These observations suggest that these enzymatic functions are performed by particular taxa and that diversity indices may serve as surrogates of bacterial functions. Independent validation and deeper understanding of these associations are needed, particularly to characterize functions and pathways that may be amenable to manipulation.
Related JoVE Video
Vaginal microbiome: rethinking health and disease.
Annu. Rev. Microbiol.
Show Abstract
Hide Abstract
Vaginal microbiota form a mutually beneficial relationship with their host and have a major impact on health and disease. In recent years our understanding of vaginal bacterial community composition and structure has significantly broadened as a result of investigators using cultivation-independent methods based on the analysis of 16S ribosomal RNA (rRNA) gene sequences. In asymptomatic, otherwise healthy women, several kinds of vaginal microbiota exist, the majority often dominated by species of Lactobacillus, while others are composed of a diverse array of anaerobic microorganisms. Bacterial vaginosis is the most common vaginal condition and is vaguely characterized as the disruption of the equilibrium of the normal vaginal microbiota. A better understanding of normal and healthy vaginal ecosystems that is based on their true function and not simply on their composition would help better define health and further improve disease diagnostics as well as the development of more personalized regimens to promote health and treat diseases.
Related JoVE Video
Genomic diversity of 2010 Haitian cholera outbreak strains.
Proc. Natl. Acad. Sci. U.S.A.
Show Abstract
Hide Abstract
The millions of deaths from cholera during the past 200 y, coupled with the morbidity and mortality of cholera in Haiti since October 2010, are grim reminders that Vibrio cholerae, the etiologic agent of cholera, remains a scourge. We report the isolation of both V. cholerae O1 and non-O1/O139 early in the Haiti cholera epidemic from samples collected from victims in 18 towns across eight Arrondissements of Haiti. The results showed two distinct populations of V. cholerae coexisted in Haiti early in the epidemic. As non-O1/O139 V. cholerae was the sole pathogen isolated from 21% of the clinical specimens, its role in this epidemic, either alone or in concert with V. cholerae O1, cannot be dismissed. A genomic approach was used to examine similarities and differences among the Haitian V. cholerae O1 and V. cholerae non-O1/O139 strains. A total of 47 V. cholerae O1 and 29 V. cholerae non-O1/O139 isolates from patients and the environment were sequenced. Comparative genome analyses of the 76 genomes and eight reference strains of V. cholerae isolated in concurrent epidemics outside Haiti and 27 V. cholerae genomes available in the public database demonstrated substantial diversity of V. cholerae and ongoing flux within its genome.
Related JoVE Video
Understanding vaginal microbiome complexity from an ecological perspective.
Transl Res
Show Abstract
Hide Abstract
The various microbiota normally associated with the human body have an important influence on human development, physiology, immunity, and nutrition. This is certainly true for the vagina wherein communities of mutualistic bacteria constitute the first line of defense for the host by excluding invasive, nonindigenous organisms that may cause disease. In recent years much has been learned about the bacterial species composition of these communities and how they differ between individuals of different ages and ethnicities. A deeper understanding of their origins and the interrelationships of constituent species is needed to understand how and why they change over time or in response to changes in the host environment. Moreover, there are few unifying theories to explain the ecological dynamics of vaginal ecosystems as they respond to disturbances caused by menses and human activities such as intercourse, douching, and other habits and practices. This fundamental knowledge is needed to diagnose and assess risk to disease. Here we summarize what is known about the species composition, structure, and function of bacterial communities in the human vagina and the applicability of ecological models of community structure and function to understanding the dynamics of this and other ecosystems that comprise the human microbiome.
Related JoVE Video
Comparison of storage conditions for human vaginal microbiome studies.
PLoS ONE
Show Abstract
Hide Abstract
The effect of storage conditions on the microbiome and metabolite composition of human biological samples has not been thoroughly investigated as a potential source of bias. We evaluated the effect of two common storage conditions used in clinical trials on the bacterial and metabolite composition of the vaginal microbiota using pyrosequencing of barcoded 16S rRNA gene sequencing and (1)H-NMR analyses.
Related JoVE Video
Exploring a road map to counter misconceptions about the cervicovaginal microbiome and disease.
Reprod Sci
Show Abstract
Hide Abstract
Urogenital diseases, especially infection and cancer, are major causes of death and morbidity in females. Yet, millions of women in the developing world have no access to basic urogynecological care, and the diagnosis and treatment of widespread aberrant bacterial conditions (bacterial vaginosis [BV] and aerobic vaginitis [AV]) remain suboptimal the world over. Samples from women living in resource-disadvantaged and developed countries have been analyzed by high-throughput sequencing to reveal the diversity of bacteria in the vagina, how rapidly the bacterial population fluctuates over time, and how rapidly the switch occurs between healthy and aberrant conditions. Unfortunately, clinical diagnostic methods are inefficient and too often outdated therapies are administered. The net result is suboptimal care and recurrent disease that adversely affects the quality of life. This viewpoint outlines a scientific and translational road map designed to improve the cervicovaginal health and treatment of disease. This comprises (1) improving education of women and physicians on the vaginal microbiota; (2) having agencies target funding for research to improve diagnosis and test new therapies; and (3) making sure that new approaches are accessible in developing countries, empowering to women, and are acceptable and appropriate for different populations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.