JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
HIV-1 Transmission during Early Infection in Men Who Have Sex with Men: A Phylodynamic Analysis.
PLoS Med.
PUBLISHED: 12-01-2013
Show Abstract
Hide Abstract
Conventional epidemiological surveillance of infectious diseases is focused on characterization of incident infections and estimation of the number of prevalent infections. Advances in methods for the analysis of the population-level genetic variation of viruses can potentially provide information about donors, not just recipients, of infection. Genetic sequences from many viruses are increasingly abundant, especially HIV, which is routinely sequenced for surveillance of drug resistance mutations. We conducted a phylodynamic analysis of HIV genetic sequence data and surveillance data from a US population of men who have sex with men (MSM) and estimated incidence and transmission rates by stage of infection.
Related JoVE Video
Acute-stage transmission of HIV: effect of volatile contact rates.
Epidemiology
PUBLISHED: 05-22-2013
Show Abstract
Hide Abstract
The role of acute-stage transmission in sustaining HIV epidemics has been difficult to determine. This difficulty is exacerbated by a lack of theoretical understanding of how partnership dynamics and sexual behavior interact to affect acute-stage transmission. We propose that individual-level variation in rates of sexual contact is a key aspect of partnership dynamics that can greatly increase acute-stage HIV transmission.
Related JoVE Video
The dynamics of methicillin-resistant Staphylococcus aureus exposure in a hospital model and the potential for environmental intervention.
BMC Infect. Dis.
PUBLISHED: 04-29-2013
Show Abstract
Hide Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of healthcare-associated infections. An important control strategy is hand hygiene; however, non-compliance has been a major problem in healthcare settings. Furthermore, modeling studies have suggested that the law of diminishing return applies to hand hygiene. Other additional control strategies such as environmental cleaning may be warranted, given that MRSA-positive individuals constantly shed contaminated desquamated skin particles to the environment.
Related JoVE Video
Successes and shortcomings of polio eradication: a transmission modeling analysis.
Am. J. Epidemiol.
PUBLISHED: 04-16-2013
Show Abstract
Hide Abstract
Polio eradication is on the cusp of success, with only a few regions still maintaining transmission. Improving our understanding of why some regions have been successful and others have not will help with both global eradication of polio and development of more effective vaccination strategies for other pathogens. To examine the past 25 years of eradication efforts, we constructed a transmission model for wild poliovirus that incorporates waning immunity (which affects both infection risk and transmissibility of any resulting infection), age-mediated vaccination rates, and transmission of oral polio vaccine. The model produces results consistent with the 4 country categories defined by the Global Polio Eradication Program: elimination with no subsequent outbreaks; elimination with subsequent transient outbreaks; elimination with subsequent outbreaks and transmission detected for more than 12 months; and endemic polio transmission. Analysis of waning immunity rates and oral polio vaccine transmissibility reveals that higher waning immunity rates make eradication more difficult because of increasing numbers of infectious adults, and that higher oral polio vaccine transmission rates make eradication easier as adults become reimmunized. Given these dynamic properties, attention should be given to intervention strategies that complement childhood vaccination. For example, improvement in sanitation can reduce the reproduction number in problematic regions, and adult vaccination can lower adult transmission.
Related JoVE Video
Transmission clustering drives the onward spread of the HIV epidemic among men who have sex with men in Quebec.
J. Infect. Dis.
PUBLISHED: 09-02-2011
Show Abstract
Hide Abstract
Phylodynamic analysis and epidemiologic data identified 3 patterns of spread of primary human immunodeficiency virus type 1 infection (PHI) among men who have sex with men (2001-2009): 420 unique PHIs, 102 small clusters (2-4 PHIs per cluster, n = 280), and 46 large clusters (5-31 PHIs per cluster, n = 450). Large clusters disproportionately increased from 25.2% of PHIs in 2005 to 39.1% in 2009 (?(2) = 33.9, P < .001). Scalar expansion of large clusters over 11 months (interquartile range, 3.5-25.5 months) correlated with cluster membership size (r(2) = 0.174, F = 4.424, P = .047). PHI cohort data revealed variations in social networks and risk behaviors among the 3 groups, suggesting the need for tailored prevention measures.
Related JoVE Video
A dynamic dose-response model to account for exposure patterns in risk assessment: a case study in inhalation anthrax.
J R Soc Interface
PUBLISHED: 11-10-2010
Show Abstract
Hide Abstract
The most commonly used dose-response models implicitly assume that accumulation of dose is a time-independent process where each pathogen has a fixed risk of initiating infection. Immune particle neutralization of pathogens, however, may create strong time dependence; i.e. temporally clustered pathogens have a better chance of overwhelming the immune particles than pathogen exposures that occur at lower levels for longer periods of time. In environmental transmission systems, we expect different routes of transmission to elicit different dose-timing patterns and thus potentially different realizations of risk. We present a dose-response model that captures time dependence in a manner that incorporates the dynamics of initial immune response. We then demonstrate the parameter estimation of our model in a dose-response survival analysis using empirical time-series data of inhalational anthrax in monkeys in which we find slight dose-timing effects. Future dose-response experiments should include varying the time pattern of exposure in addition to varying the total doses delivered. Ultimately, the dynamic dose-response paradigm presented here will improve modelling of environmental transmission systems where different systems have different time patterns of exposure.
Related JoVE Video
Dynamic sex roles among men who have sex with men and transmissions from primary HIV infection.
Epidemiology
PUBLISHED: 06-30-2010
Show Abstract
Hide Abstract
Previous studies estimating the fraction of transmissions from persons with primary HIV have not focused on the effects of switching sex role in male homosexual populations. Such behavioral fluctuations can increase the contribution of primary HIV in the overall population.
Related JoVE Video
HIV transmission by stage of infection and pattern of sexual partnerships.
Epidemiology
PUBLISHED: 06-24-2010
Show Abstract
Hide Abstract
Most model analyses examining the role of primary HIV infection in the HIV epidemic ignore the fact that HIV is often transmitted through long-term, concurrent sexual partnerships. We sought to understand how duration and concurrency of sexual partnerships affect the role of transmissions during primary HIV infection.
Related JoVE Video
Informing optimal environmental influenza interventions: how the host, agent, and environment alter dominant routes of transmission.
PLoS Comput. Biol.
PUBLISHED: 03-29-2010
Show Abstract
Hide Abstract
Influenza can be transmitted through respirable (small airborne particles), inspirable (intermediate size), direct-droplet-spray, and contact modes. How these modes are affected by features of the virus strain (infectivity, survivability, transferability, or shedding profiles), host population (behavior, susceptibility, or shedding profiles), and environment (host density, surface area to volume ratios, or host movement patterns) have only recently come under investigation. A discrete-event, continuous-time, stochastic transmission model was constructed to analyze the environmental processes through which a virus passes from one person to another via different transmission modes, and explore which factors increase or decrease different modes of transmission. With the exception of the inspiratory route, each route on its own can cause high transmission in isolation of other modes. Mode-specific transmission was highly sensitive to parameter values. For example, droplet and respirable transmission usually required high host density, while the contact route had no such requirement. Depending on the specific context, one or more modes may be sufficient to cause high transmission, while in other contexts no transmission may result. Because of this, when making intervention decisions that involve blocking environmental pathways, generic recommendations applied indiscriminately may be ineffective; instead intervention choice should be contextualized, depending on the specific features of people, virus strain, or venue in question.
Related JoVE Video
Unlocking pathogen genotyping information for public health by mathematical modeling.
Trends Microbiol.
PUBLISHED: 03-12-2010
Show Abstract
Hide Abstract
Molecular typing and mathematical modeling have gone through rapid development in the past decade. Both offer new insights into the epidemiology of infectious diseases, thereby contributing to a better understanding of transmission dynamics. Infectious disease surveillance and control benefit from the optimum use of these techniques. In this paper, we review recent developments and propose methods to integrate pathogen ecology and molecular evolution based on their common dependence on the underlying host contact patterns.
Related JoVE Video
Interactive agent based modeling of public health decision-making.
AMIA Annu Symp Proc
PUBLISHED: 11-14-2009
Show Abstract
Hide Abstract
Agent-based models have yielded important insights regarding the transmission dynamics of communicable diseases. To better understand how these models can be used to study decision making of public health officials, we developed a computer program that linked an agent-based model of pertussis with an agent-based model of public health management. The program, which we call the Public Health Interactive Model & simulation (PHIMs) encompassed the reporting of cases to public health, case investigation, and public health response. The user directly interacted with the model in the role of the public health decision-maker. In this paper we describe the design of our model, and present the results of a pilot study to assess its usability and potential for future development. Affinity for specific tools was demonstrated. Participants ranked the program high in usability and considered it useful for training. Our ultimate goal is to achieve better public health decisions and outcomes through use of public health decision support tools.
Related JoVE Video
Dynamics and control of infections transmitted from person to person through the environment.
Am. J. Epidemiol.
PUBLISHED: 05-27-2009
Show Abstract
Hide Abstract
The environment provides points for control of pathogens spread by food, water, hands, air, or fomites. These environmental transmission pathways require contact network formulations more realistically detailed than those based on social encounters or physical proximity. As a step toward improved assessment of environmental interventions, description of contact networks, and better use of environmental specimens to analyze transmission, an environmental infection transmission system model that describes the dynamics of human interaction with pathogens in the environment is presented. Its environmental parameters include the pathogen elimination rate, mu, and the rate humans pick up pathogens, rho, and deposit them, alpha. The ratio, rhoN/micro (N equals population size), indicates whether transmission is density dependent (low ratio), frequency dependent (high ratio), or in between. Transmission through frequently touched fomites, such as doorknobs, generates frequency-dependent patterns, while transmission through thoroughly mixed air or infrequently touched fomites generates density-dependent patterns. The environmental contamination ratio, alpha/gamma, reflects total agent deposition per infection and outbreak probability, where gamma is defined as the recovery rate. These insights provide theoretical contexts to examine the role of the environment in pathogen transmission and a framework to interpret environmental data to inform environmental interventions.
Related JoVE Video
The effect of ongoing exposure dynamics in dose response relationships.
PLoS Comput. Biol.
PUBLISHED: 05-04-2009
Show Abstract
Hide Abstract
Characterizing infectivity as a function of pathogen dose is integral to microbial risk assessment. Dose-response experiments usually administer doses to subjects at one time. Phenomenological models of the resulting data, such as the exponential and the Beta-Poisson models, ignore dose timing and assume independent risks from each pathogen. Real world exposure to pathogens, however, is a sequence of discrete events where concurrent or prior pathogen arrival affects the capacity of immune effectors to engage and kill newly arriving pathogens. We model immune effector and pathogen interactions during the period before infection becomes established in order to capture the dynamics generating dose timing effects. Model analysis reveals an inverse relationship between the time over which exposures accumulate and the risk of infection. Data from one time dose experiments will thus overestimate per pathogen infection risks of real world exposures. For instance, fitting our model to one time dosing data reveals a risk of 0.66 from 313 Cryptosporidium parvum pathogens. When the temporal exposure window is increased 100-fold using the same parameters fitted by our model to the one time dose data, the risk of infection is reduced to 0.09. Confirmation of this risk prediction requires data from experiments administering doses with different timings. Our model demonstrates that dose timing could markedly alter the risks generated by airborne versus fomite transmitted pathogens.
Related JoVE Video
Episodic HIV Risk Behavior Can Greatly Amplify HIV Prevalence and the Fraction of Transmissions from Acute HIV Infection.
Stat Commun Infect Dis
Show Abstract
Hide Abstract
A deterministic compartmental model was explored that relaxed the unrealistic assumption in most HIV transmission models that behaviors of individuals are constant over time. A simple model was formulated to better explain the effects observed. Individuals had a high and a low contact rate and went back and forth between them. This episodic risk behavior interacted with the short period of high transmissibility during acute HIV infection to cause dramatic increases in prevalence as the differences between high and low contact rates increased and as the duration of high risk better matched the duration of acute HIV infection. These same changes caused a considerable increase in the fraction of all transmissions that occurred during acute infection. These strong changes occurred despite a constant total number of contacts and a constant total transmission potential from acute infection. Two phenomena played a strong role in generating these effects. First, people were infected more often during their high contact rate phase and they remained with high contact rates during the highly contagious acute infection stage. Second, when individuals with previously low contact rates moved into an episodic high-risk period, they were more likely to be susceptible and thus provided more high contact rate susceptible individuals who could get infected. These phenomena make test and treat control strategies less effective and could cause some behavioral interventions to increase transmission. Signature effects on genetic patterns between HIV strains could make it possible to determine whether these episodic risk effects are acting in a population.
Related JoVE Video
Heterogeneity in Number and Type of Sexual Contacts in a Gay Urban Cohort.
Stat Commun Infect Dis
Show Abstract
Hide Abstract
HIV transmission models include heterogeneous individuals with different sexual behaviors including contact rates, mixing patterns, and sexual practices. However, heterogeneity can also exist within individuals over time. In this paper we analyze a two year prospective cohort of 882 gay men with observations at six month intervals focusing on heterogeneity both within and between individuals in sexual contact rates and sexual roles. The total number of sexual contacts made over the course of the study (mean 1.55 per month) are highly variable between individuals (standard deviation 9.82 per month) as expected. At the individual level, contacts were also heterogeneous over time. For a homogeneous count process the variance should scale with the mean; however, at the individual level the variance scaled with the square root of the mean implying the presence of heterogeneity within individuals over time. We also observed a high level of movement between dichotomous sexual roles (insertive/receptive, protected/unprotected, anal/oral, and HIV status of partners). On average periods of exclusively unprotected sexual contacted lasted 16 months. Our results suggest that future HIV models should consider heterogeneities both between and within individuals in sexual contact rates and sexual roles.
Related JoVE Video
Detectable signals of episodic risk effects on acute HIV transmission: strategies for analyzing transmission systems using genetic data.
Epidemics
Show Abstract
Hide Abstract
Episodic high-risk sexual behavior is common and can have a profound effect on HIV transmission. In a model of HIV transmission among men who have sex with men (MSM), changing the frequency, duration and contact rates of high-risk episodes can take endemic prevalence from zero to 50% and more than double transmissions during acute HIV infection (AHI). Undirected test and treat could be inefficient in the presence of strong episodic risk effects. Partner services approaches that use a variety of control options will be likely to have better effects under these conditions, but the question remains: What data will reveal if a population is experiencing episodic risk effects? HIV sequence data from Montreal reveals genetic clusters whose size distribution stabilizes over time and reflects the size distribution of acute infection outbreaks (AIOs). Surveillance provides complementary behavioral data. In order to use both types of data efficiently, it is essential to examine aspects of models that affect both the episodic risk effects and the shape of transmission trees. As a demonstration, we use a deterministic compartmental model of episodic risk to explore the determinants of the fraction of transmissions during acute HIV infection (AHI) at the endemic equilibrium. We use a corresponding individual-based model to observe AIO size distributions and patterns of transmission within AIO. Episodic risk parameters determining whether AHI transmission trees had longer chains, more clustered transmissions from single individuals, or different mixes of these were explored. Encouragingly for parameter estimation, AIO size distributions reflected the frequency of transmissions from acute infection across divergent parameter sets. Our results show that episodic risk dynamics influence both the size and duration of acute infection outbreaks, thus providing a possible link between genetic cluster size distributions and episodic risk dynamics.
Related JoVE Video
Model analysis of fomite mediated influenza transmission.
PLoS ONE
Show Abstract
Hide Abstract
Fomites involved in influenza transmission are either hand- or droplet-contaminated. We evaluated the interactions of fomite characteristics and human behaviors affecting these routes using an Environmental Infection Transmission System (EITS) model by comparing the basic reproduction numbers (R(0)) for different fomite mediated transmission pathways. Fomites classified as large versus small surface sizes (reflecting high versus low droplet contamination levels) and high versus low touching frequency have important differences. For example, 1) the highly touched large surface fomite (public tables) has the highest transmission potential and generally strongest control measure effects; 2) transmission from droplet-contaminated routes exceed those from hand-contaminated routes except for highly touched small surface fomites such as door knob handles; and 3) covering a cough using the upper arm or using tissues effectively removes virus from the system and thus decreases total fomite transmission. Because covering a cough by hands diverts pathogens from the droplet-fomite route to the hand-fomite route, this has the potential to increase total fomite transmission for highly touched small surface fomites. An improved understanding and more refined data related to fomite mediated transmission routes will help inform intervention strategies for influenza and other pathogens that are mediated through the environment.
Related JoVE Video
Simple epidemiological dynamics explain phylogenetic clustering of HIV from patients with recent infection.
PLoS Comput. Biol.
Show Abstract
Hide Abstract
Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (excess clustering) and also tend to cluster with other recent HIV infections rather than chronic, established infections (excess co-clustering), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled.
Related JoVE Video
HIV transmissions by stage in dynamic sexual partnerships.
J. Theor. Biol.
Show Abstract
Hide Abstract
Most models assessing relative transmissions during different progressive stages of human immunodeficiency virus (HIV) infection assume that infections are transmitted through instantaneous sexual contacts. In reality, however, HIV will often be transmitted through repeated sex acts during partnerships that form and dissolve at varying rates. We sought to understand how dynamic sexual partnerships would influence transmissions during different progression stages of HIV infection: primary HIV infection (PHI) and chronic stage. Using a system of ordinary differential equations with a pair approximation technique, we constructed a model of HIV transmission in a homogeneous population in which sexual partnerships form and dissolve. We derived analytical expressions for useful epidemiological quantities such as basic reproduction number and also did simulation runs of the model. Partnership dynamics strongly influence transmissions during progressive stages of HIV infection. The fraction of transmissions during PHI has a U-shaped relationship with respect to the rate of partnership change, where the minimum and maximum occur given partnerships of about 100 days and fixed partnerships, respectively. Models that assume instantaneous contacts may overestimate transmissions during PHI for real, dynamic sexual partnerships with varying (non-zero) durations.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.