JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Genome-wide mutation avalanches induced in diploid yeast cells by a base analog or an APOBEC deaminase.
PLoS Genet.
PUBLISHED: 09-01-2013
Show Abstract
Hide Abstract
Genetic information should be accurately transmitted from cell to cell; conversely, the adaptation in evolution and disease is fueled by mutations. In the case of cancer development, multiple genetic changes happen in somatic diploid cells. Most classic studies of the molecular mechanisms of mutagenesis have been performed in haploids. We demonstrate that the parameters of the mutation process are different in diploid cell populations. The genomes of drug-resistant mutants induced in yeast diploids by base analog 6-hydroxylaminopurine (HAP) or AID/APOBEC cytosine deaminase PmCDA1 from lamprey carried a stunning load of thousands of unselected mutations. Haploid mutants contained almost an order of magnitude fewer mutations. To explain this, we propose that the distribution of induced mutation rates in the cell population is uneven. The mutants in diploids with coincidental mutations in the two copies of the reporter gene arise from a fraction of cells that are transiently hypersensitive to the mutagenic action of a given mutagen. The progeny of such cells were never recovered in haploids due to the lethality caused by the inactivation of single-copy essential genes in cells with too many induced mutations. In diploid cells, the progeny of hypersensitive cells survived, but their genomes were saturated by heterozygous mutations. The reason for the hypermutability of cells could be transient faults of the mutation prevention pathways, like sanitization of nucleotide pools for HAP or an elevated expression of the PmCDA1 gene or the temporary inability of the destruction of the deaminase. The hypothesis on spikes of mutability may explain the sudden acquisition of multiple mutational changes during evolution and carcinogenesis.
Related JoVE Video
Attachment-regulated signaling networks in the fibroblast-populated 3D collagen matrix.
Sci Rep
PUBLISHED: 05-02-2013
Show Abstract
Hide Abstract
Fibroblasts in the attached collagen matrix are in a pro-survival, pro-proliferative state relative to fibroblasts in the released collagen matrix, such that matrix cell number increases in the former over time. Gene array data from attached vs. released matrices were analyzed for putative networks that regulated matrix cell number. Select networks then underwent augmentation and/or inhibition in order to determine their biologic relevance. Matrix stress-release was associated with modulation of signaling networks that involved IL6, IL8, NF-?B, TGF-?1, p53, interferon-?, and other entities as central participants. Perturbation of select networks in multiple fibroblast strains suggested that IL6 and IL8 secretion may have been involved in preservation of matrix cell population in the released matrix, though there was variability in testing results among the strains. NF-?B activation may have contributed to the induction of population regression after matrix release.
Related JoVE Video
Cellular transcription factors induced in trigeminal ganglia during dexamethasone-induced reactivation from latency stimulate bovine herpesvirus 1 productive infection and certain viral promoters.
J. Virol.
PUBLISHED: 12-21-2011
Show Abstract
Hide Abstract
Bovine herpesvirus 1 (BHV-1), an alphaherpesvirinae subfamily member, establishes latency in sensory neurons. Elevated corticosteroid levels, due to stress, reproducibly triggers reactivation from latency in the field. A single intravenous injection of the synthetic corticosteroid dexamethasone (DEX) to latently infected calves consistently induces reactivation from latency. Lytic cycle viral gene expression is detected in sensory neurons within 6 h after DEX treatment of latently infected calves. These observations suggested that DEX stimulated expression of cellular genes leads to lytic cycle viral gene expression and productive infection. In this study, a commercially available assay-Bovine Gene Chip-was used to compare cellular gene expression in the trigeminal ganglia (TG) of calves latently infected with BHV-1 versus DEX-treated animals. Relative to TG prepared from latently infected calves, 11 cellular genes were induced more than 10-fold 3 h after DEX treatment. Pentraxin three, a regulator of innate immunity and neurodegeneration, was stimulated 35- to 63-fold after 3 or 6 h of DEX treatment. Two transcription factors, promyelocytic leukemia zinc finger (PLZF) and Slug were induced more than 15-fold 3 h after DEX treatment. PLZF or Slug stimulated productive infection 20- or 5-fold, respectively, and Slug stimulated the late glycoprotein C promoter more than 10-fold. Additional DEX-induced transcription factors also stimulated productive infection and certain viral promoters. These studies suggest that DEX-inducible cellular transcription factors and/or signaling pathways stimulate lytic cycle viral gene expression, which subsequently leads to successful reactivation from latency in a small subset of latently infected neurons.
Related JoVE Video
IRF4 is a suppressor of c-Myc induced B cell leukemia.
PLoS ONE
PUBLISHED: 05-08-2011
Show Abstract
Hide Abstract
Interferon regulatory factor 4 (IRF4) is a critical transcriptional regulator in B cell development and function. We have previously shown that IRF4, together with IRF8, orchestrates pre-B cell development by limiting pre-B cell expansion and by promoting pre-B cell differentiation. Here, we report that IRF4 suppresses c-Myc induced leukemia in E?Myc mice. Our results show that c-Myc induced leukemia was greatly accelerated in the IRF4 heterozygous mice (IRF4(+/-)Myc); the average age of mortality in the IRF4(+/-)Myc mice was only 7 to 8 weeks but was 20 weeks in the control mice. Our results show that IRF4(+/-)Myc leukemic cells were derived from large pre-B cells and were hyperproliferative and resistant to apoptosis. Further analysis revealed that the majority of IRF4(+/-)Myc leukemic cells inactivated the wild-type IRF4 allele and contained defects in Arf-p53 tumor suppressor pathway. p27(kip) is part of the molecular circuitry that controls pre-B cell expansion. Our results show that expression of p27(kip) was lost in the IRF4(+/-)Myc leukemic cells and reconstitution of IRF4 expression in those cells induced p27(kip) and inhibited their expansion. Thus, IRF4 functions as a classical tumor suppressor to inhibit c-Myc induced B cell leukemia in E?Myc mice.
Related JoVE Video
miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells.
Mol. Cell. Biochem.
PUBLISHED: 02-17-2011
Show Abstract
Hide Abstract
Reactive oxygen species (ROS) produced in macrophages is critical for microbial killing, but they also take part in inflammation and antigen presentation functions. MicroRNAs (miRNAs) are endogenous regulators of gene expression, and they can control immune responses. To dissect the complex nature of ROS-mediated effects in macrophages, we sought to characterize miRNAs that are responsive to oxidative stress-induced with hydrogen peroxide (H(2)O(2)) in the mouse macrophage cell line, RAW 264.7. We have identified a set of unique miRNAs that are differentially expressed in response to H(2)O(2). These include miR-27a*, miR-27b*, miR-29b*, miR-24-2*, and miR-21*, all of which were downregulated except for miR-21*. By using luciferase reporter vector containing nuclear factor-kB (NF-kB) response elements, we demonstrate that overexpression of miR-27b* suppresses lipopolysaccharide-induced activation of NF-kB in RAW 264.7 cells. Our data suggest that macrophage functions can be regulated by oxidative stress-responsive miRNAs by modulating the NF-kB pathway.
Related JoVE Video
Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 07-26-2010
Show Abstract
Hide Abstract
There is increasing evidence that breast and other cancers originate from and are maintained by a small fraction of stem/progenitor cells with self-renewal properties. Whether such cancer stem/progenitor cells originate from normal stem cells based on initiation of a de novo stem cell program, by reprogramming of a more differentiated cell type by oncogenic insults, or both remains unresolved. A major hurdle in addressing these issues is lack of immortal human stem/progenitor cells that can be deliberately manipulated in vitro. We present evidence that normal and human telomerase reverse transcriptase (hTERT)-immortalized human mammary epithelial cells (hMECs) isolated and maintained in Dana-Farber Cancer Institute 1 (DFCI-1) medium retain a fraction with progenitor cell properties. These cells coexpress basal (K5, K14, and vimentin), luminal (E-cadherin, K8, K18, or K19), and stem/progenitor (CD49f, CD29, CD44, and p63) cell markers. Clonal derivatives of progenitors coexpressing these markers fall into two distinct types--a K5(+)/K19(-) type and a K5(+)/K19(+) type. We show that both types of progenitor cells have self-renewal and differentiation ability. Microarray analyses confirmed the differential expression of components of stem/progenitor-associated pathways, such as Notch, Wnt, Hedgehog, and LIF, in progenitor cells compared with differentiated cells. Given the emerging evidence that stem/progenitor cells serve as precursors for cancers, these cellular reagents represent a timely and invaluable resource to explore unresolved questions related to stem/progenitor origin of breast cancer.
Related JoVE Video
Induced pluripotent stem cells generate both retinal ganglion cells and photoreceptors: therapeutic implications in degenerative changes in glaucoma and age-related macular degeneration.
Stem Cells
PUBLISHED: 02-19-2010
Show Abstract
Hide Abstract
The direct reprogramming of somatic cells to a pluripotent state holds significant implications for treating intractable degenerative diseases by ex vivo cell therapy. In addition, the reprogrammed cells can serve as a model for diseases and the discovery of drugs and genes. Here, we demonstrate that mouse fibroblast induced pluripotent stem cells (iPSCs) represent a renewable and robust source of retinal progenitors, capable of generating a wide range of retinal cell types that includes retinal ganglion cells (RGCs), cone, and rod photoreceptors. They respond to simulated microenvironment of early and late retinal histogenesis by differentiating into stage-specific retinal cell types through the recruitment of normal mechanisms. The depth of the retinal potential of iPSCs suggests that they may be used to formulate stem cell approaches to understand and treat a wide range of retinal degenerative diseases from glaucoma to age-related macular degeneration (AMD).
Related JoVE Video
CD38 regulation in activated astrocytes: implications for neuroinflammation and HIV-1 brain infection.
J. Neurosci. Res.
PUBLISHED: 04-15-2009
Show Abstract
Hide Abstract
Reactive astrogliosis is a key pathological aspect of neuroinflammatory disorders including human immunodeficiency virus type 1 (HIV-1)-associated neurological disease. On the basis of previous data that showedastrocytes activated with interleukin (IL)-1beta induce neuronal injury, we analyzed global gene changes in IL-1beta-activated human astrocytes by gene microarray. Among the up-regulated genes, CD38, a 45-kDa type II single chain transmembrane glycoprotein, was a top candidate, with a 17.24-fold change that was validated by real-time polymerase chain reaction. Key functions of CD38 include enzymatic activities and involvement in adhesion and cell signaling. Importantly, CD38(+)CD8(+) T-cell expression is a clinical correlate for progression of HIV-1 infection and biological marker for immune activation. Thus, CD38 expression in HIV-1 and/or IL-1beta-stimulated human astrocytes and human brain tissues was analyzed. IL-1beta and HIV-1 activation of astrocytes enhanced CD38 mRNA levels. Both CD38 immunoreactivity and adenosine 5-diphosphate (ADP)-ribosyl cyclase activity were up-regulated in IL-1beta-activated astrocytes. CD38 knockdown using specific siRNAs significantly reduced astrocyte proinflammatory cytokine and chemokine production. However, CD38 mRNA levels were unchanged in IL-1beta knockdown conditions, suggesting that IL-1beta autocrine loop is not implicated in this process. Quantitative immunohistochemical analysis of HIV-seropositive without encephalitis and HIV-1 encephalitis brain tissues showed significant up-regulation of CD38, which colocalized with glial fibrillary acidic protein-positive cells in areas of inflammation. These results suggest an important role of CD38 in the regulation of astrocyte dysfunction during the neuroinflammatory processes involved in neurodegenerative/neuroinflammatory disorders such as HIV-1 encephalitis.
Related JoVE Video
Mammalian alteration/deficiency in activation 3 (Ada3) is essential for embryonic development and cell cycle progression.
J. Biol. Chem.
Show Abstract
Hide Abstract
Ada3 protein is an essential component of histone acetyl transferase containing coactivator complexes conserved from yeast to human. We show here that germline deletion of Ada3 in mouse is embryonic lethal, and adenovirus-Cre mediated conditional deletion of Ada3 in Ada3(FL/FL) mouse embryonic fibroblasts leads to a severe proliferation defect which was rescued by ectopic expression of human Ada3. A delay in G(1) to S phase of cell cycle was also seen that was due to accumulation of Cdk inhibitor p27 which was an indirect effect of c-myc gene transcription control by Ada3. We further showed that this defect could be partially reverted by knocking down p27. Additionally, drastic changes in global histone acetylation and changes in global gene expression were observed in microarray analyses upon loss of Ada3. Lastly, formation of abnormal nuclei, mitotic defects and delay in G(2)/M to G(1) transition was seen in Ada3 deleted cells. Taken together, we provide evidence for a critical role of Ada3 in embryogenesis and cell cycle progression as an essential component of HAT complex.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.