JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Surotomycin demonstrates low in vitro frequency of resistance and rapid bactericidal activity in Clostridium difficile, Enterococcus faecalis, and Enterococcus faecium.
Antimicrob. Agents Chemother.
PUBLISHED: 05-05-2014
Show Abstract
Hide Abstract
Surotomycin (CB-183,315) is an orally administered, minimally absorbed, selective bactericidal cyclic lipopeptide in phase 3 development for the treatment of Clostridium difficile-associated diarrhea. The aim of this study was to evaluate the emergence of resistance in C. difficile (ATCC 700057 and three recent clinical isolates from the restriction endonuclease analysis groups BI, BK, and K), vancomycin-susceptible (VS) Enterococcus faecalis (ATCC 49452), vancomycin-resistant (VR) E. faecalis (ATCC 700802), VS Enterococcus faecium (ATCC 6569), and VR E. faecium (ATCC 51559) under anaerobic conditions. The rate of spontaneous resistance was below the limit of detection (<10(-8) to <10(-9)) for surotomycin at 16 and 32× the MIC for all isolates tested. Under selective pressure by serial passage, C. difficile grew in a maximum of 4 ?g/ml surotomycin (final MICs of 2 to 8 ?g/ml [4- to 16-fold higher than those of the naive control]) at day 15, with the exception of the C. difficile BK strain, which grew in 16 to 32 ?g/ml (final MICs of 8 to 32 ?g/ml [16- to 64-fold higher than those of the naive control]). Enterococci remained relatively unchanged over 15 days, growing in a maximum of 8 ?g/ml surotomycin (final MICs of 2 to 16 ?g/ml [8- to 64-fold higher than those of the naive control]). Of the isolates tested, no cross-resistance to vancomycin, rifampin, ampicillin, metronidazole, or moxifloxacin was observed. Surotomycin at 20× MIC demonstrated equally rapid bactericidal activity (? 3-log-unit reduction in CFU/ml in ? 8 h) against naive and reduced-susceptibility isolates of C. difficile, VS Enterococcus (VSE), and VR Enterococcus (VRE), except for C. difficile BK (2.6-log-unit reductions for both). These results suggest that emergence of resistance to surotomycin against C. difficile, E. faecalis, and E. faecium is likely to be rare.
Related JoVE Video
Cardiolipin prevents membrane translocation and permeabilization by daptomycin.
J. Biol. Chem.
PUBLISHED: 03-10-2014
Show Abstract
Hide Abstract
Daptomycin is an acidic lipopeptide antibiotic that, in the presence of calcium, forms oligomeric pores on membranes containing phosphatidylglycerol. It is clinically used against various Gram-positive bacteria such as Staphylococcus aureus and Enterococcus species. Genetic studies have indicated that an increased content of cardiolipin in the bacterial membrane may contribute to bacterial resistance against the drug. Here, we used a liposome model to demonstrate that cardiolipin directly inhibits membrane permeabilization by daptomycin. When cardiolipin is added at molar fractions of 10 or 20% to membranes containing phosphatidylglycerol, daptomycin no longer forms pores or translocates to the inner membrane leaflet. Under the same conditions, daptomycin continues to form oligomers; however, these oligomers contain only close to four subunits, which is approximately half as many as observed on membranes without cardiolipin. The collective findings lead us to propose that a daptomycin pore consists of two aligned tetramers in opposite leaflets and that cardiolipin prevents the translocation of tetramers to the inner leaflet, thereby forestalling the formation of complete, octameric pores. Our findings suggest a possible mechanism by which cardiolipin may mediate resistance to daptomycin, and they provide new insights into the action mode of this important antibiotic.
Related JoVE Video
Daptomycin forms cation- and size-selective pores in model membranes.
Biochim. Biophys. Acta
PUBLISHED: 01-28-2014
Show Abstract
Hide Abstract
Daptomycin is a lipopeptide antibiotic that is used clinically to treat severe infections caused by Gram-positive bacteria. Its bactericidal action involves the calcium-dependent binding to membranes containing phosphatidylglycerol, followed by the formation of membrane-associated oligomers. Bacterial cells exposed to daptomycin undergo membrane depolarization, suggesting the formation of channels or pores in the target membranes. We here used a liposome model to detect and characterize the permeability properties of the daptomycin pores. The pores are selective for cations, with permeabilities being highest for Na(+), K(+), and other alkali metal ions. The permeability is approximately twice lower for Mg(++), and lower again for the organic cations choline and hexamethonium. Anions are excluded, as is the zwitterion cysteine. These observations account for the observed depolarization of bacterial cells by daptomycin and suggest that under typical in vivo conditions depolarization is mainly due to sodium influx.
Related JoVE Video
Additional routes to Staphylococcus aureus daptomycin resistance as revealed by comparative genome sequencing, transcriptional profiling, and phenotypic studies.
PLoS ONE
PUBLISHED: 02-05-2013
Show Abstract
Hide Abstract
Daptomycin is an extensively used anti-staphylococcal agent due to the rise in methicillin-resistant Staphylococcus aureus, but the mechanism(s) of resistance is poorly understood. Comparative genome sequencing, transcriptomics, ultrastructure, and cell envelope studies were carried out on two relatively higher level (4 and 8 µg/ml(-1)) laboratory-derived daptomycin-resistant strains (strains CB1541 and CB1540 respectively) compared to their parent strain (CB1118; MW2). Several mutations were found in the strains. Both strains had the same mutations in the two-component system genes walK and agrA. In strain CB1540 mutations were also detected in the ribose phosphate pyrophosphokinase (prs) and polyribonucleotide nucleotidyltransferase genes (pnpA), a hypothetical protein gene, and in an intergenic region. In strain CB1541 there were mutations in clpP, an ATP-dependent protease, and two different hypothetical protein genes. The strain CB1540 transcriptome was characterized by upregulation of cap (capsule) operon genes, genes involved in the accumulation of the compatible solute glycine betaine, ure genes of the urease operon, and mscL encoding a mechanosensitive chanel. Downregulated genes included smpB, femAB and femH involved in the formation of the pentaglycine interpeptide bridge, genes involved in protein synthesis and fermentation, and spa encoding protein A. Genes altered in their expression common to both transcriptomes included some involved in glycine betaine accumulation, mscL, ure genes, femH, spa and smpB. However, the CB1541 transcriptome was further characterized by upregulation of various heat shock chaperone and protease genes, consistent with a mutation in clpP, and lytM and sceD. Both strains showed slow growth, and strongly decreased autolytic activity that appeared to be mainly due to decreased autolysin production. In contrast to previous common findings, we did not find any mutations in phospholipid biosynthesis genes, and it appears there are multiple pathways to and factors in daptomycin resistance.
Related JoVE Video
VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus.
Antimicrob. Agents Chemother.
PUBLISHED: 10-10-2011
Show Abstract
Hide Abstract
Daptomycin (DAP) is a new class of cyclic lipopeptide antibiotic highly active against methicillin-resistant Staphylococcus aureus (MRSA) infections. Proposed mechanisms involve disruption of the functional integrity of the bacterial membrane in a Ca-dependent manner. In the present work, we investigated the molecular basis of DAP resistance in a group of isogenic MRSA clinical strains obtained from patients with S. aureus infections after treatment with DAP. Different point mutations were found in the mprF gene in DAP-resistant (DR) strains. Investigation of the mprF L826F mutation in DR strains was accomplished by inactivation and transcomplementation of either full-length wild-type or mutated mprF in DAP-susceptible (DS) strains, revealing that they were mechanistically linked to the DR phenotype. However, our data suggested that mprF was not the only factor determining the resistance to DAP. Differential gene expression analysis showed upregulation of the two-component regulatory system vraSR. Inactivation of vraSR resulted in increased DAP susceptibility, while complementation of vraSR mutant strains restored DAP resistance to levels comparable to those observed in the corresponding DR wild-type strain. Electron microscopy analysis showed a thicker cell wall in DR CB5012 than DS CB5011, an effect that was related to the impact of vraSR and mprF mutations in the cell wall. Moreover, overexpression of vraSR in DS strains resulted in both increased resistance to DAP and decreased resistance to oxacillin, similar to the phenotype observed in DR strains. These results support the suggestion that, in addition to mutations in mprF, vraSR contributes to DAP resistance in the present group of clinical strains.
Related JoVE Video
Evaluating the activity of the RNA polymerase inhibitor myxopyronin B against Staphylococcus aureus.
FEMS Microbiol. Lett.
PUBLISHED: 04-20-2011
Show Abstract
Hide Abstract
Myxopyronin B (MyxB) binds to the switch region of RNA polymerase (RNAP) and inhibits transcriptional initiation. To evaluate the potential development of MyxB as a novel class of antibiotic, we characterized the antimicrobial activity of MyxB against Staphylococcus aureus. Spontaneous MyxB resistance in S. aureus occurred at a frequency of 8 × 10(-8) , similar to that of rifampin. The MyxB-resistant mutants were found to be altered in single amino acid residues in the RNAP subunits that form the MyxB-binding site. In the presence of human serum albumin, the MyxB minimum inhibitory concentration against S. aureus increased drastically (?128-fold) and 99.5% of MyxB was protein bound. Because of the high serum protein binding and resistance rate, we conclude that MyxB is not a viable starting point for antibiotic development.
Related JoVE Video
Genetic basis for daptomycin resistance in enterococci.
Antimicrob. Agents Chemother.
PUBLISHED: 04-18-2011
Show Abstract
Hide Abstract
The emergence of multidrug-resistant enterococci as a leading cause of hospital-acquired infection is an important public health concern. Little is known about the genetic mechanisms by which enterococci adapt to strong selective pressures, including the use of antibiotics. The lipopeptide antibiotic daptomycin is approved to treat Gram-positive bacterial infections, including those caused by enterococci. Since its introduction, resistance to daptomycin by strains of Enterococcus faecalis and Enterococcus faecium has been reported but is still rare. We evolved daptomycin-resistant strains of the multidrug-resistant E. faecalis strain V583. Based on the availability of a fully closed genome sequence for V583, we used whole-genome resequencing to identify the mutations that became fixed over short time scales (~2 weeks) upon serial passage in the presence of daptomycin. By comparison of the genome sequences of the three adapted strains to that of parental V583, we identified seven candidate daptomycin resistance genes and three different mutational paths to daptomycin resistance in E. faecalis. Mutations in one of the seven candidate genes (EF0631), encoding a putative cardiolipin synthase, were found in each of the adapted E. faecalis V583 strains as well as in daptomycin-resistant E. faecalis and E. faecium clinical isolates. Alleles of EF0631 from daptomycin-resistant strains are dominant in trans and confer daptomycin resistance upon a susceptible host. These results demonstrate a mechanism of enterococcal daptomycin resistance that is genetically distinct from that occurring in staphylococci and indicate that enterococci possessing alternate EF0631 alleles are selected for during daptomycin therapy. However, our analysis of E. faecalis clinical isolates indicates that resistance pathways independent from mutant forms of EF0631 also exist.
Related JoVE Video
Oligomerization of daptomycin on membranes.
Biochim. Biophys. Acta
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
Daptomycin is a lipopeptide antibiotic that kills Gram-positive bacteria by membrane depolarization. While it has long been assumed that the mode of action of daptomycin involves the formation of membrane-associated oligomers, this has so far not been experimentally demonstrated. We here use FRET between native daptomycin and an NBD-labeled daptomycin derivative to show that such oligomerization indeed occurs. The oligomers are observed in the presence of calcium ions on membrane vesicles isolated from Bacillus subtilis, as well as on model membranes containing the negatively charged phospholipid phosphatidylglycerol. In contrast, oligomerization does not occur on membranes containing phosphatidylcholine only, nor in solution at micromolar daptomycin concentrations. The requirements for oligomerization of daptomycin resemble those previously reported for antibacterial activity, suggesting that oligomerization is necessary for the activity.
Related JoVE Video
Cellular architecture mediates DivIVA ultrastructure and regulates min activity in Bacillus subtilis.
MBio
PUBLISHED: 01-01-2011
Show Abstract
Hide Abstract
The assembly of the cell division machinery at midcell is a critical step of cytokinesis. Many rod-shaped bacteria position septa using nucleoid occlusion, which prevents division over the chromosome, and the Min system, which prevents division near the poles. Here we examined the in vivo assembly of the Bacillus subtilis MinCD targeting proteins DivIVA, a peripheral membrane protein that preferentially localizes to negatively curved membranes and resembles eukaryotic tropomyosins, and MinJ, which recruits MinCD to DivIVA. We used structured illumination microscopy to demonstrate that both DivIVA and MinJ localize as double rings that flank the septum and first appear early in septal biosynthesis. The subsequent recruitment of MinCD to these double rings would separate the Min proteins from their target, FtsZ, spatially regulating Min activity and allowing continued cell division. Curvature-based localization would also provide temporal regulation, since DivIVA and the Min proteins would localize to midcell after the onset of division. We use time-lapse microscopy and fluorescence recovery after photobleaching to demonstrate that DivIVA rings are highly stable and are constructed from newly synthesized DivIVA molecules. After cell division, DivIVA rings appear to collapse into patches at the rounded cell poles of separated cells, with little or no incorporation of newly synthesized subunits. Thus, changes in cell architecture mediate both the initial recruitment of DivIVA to sites of cell division and the subsequent collapse of these rings into patches (or rings of smaller diameter), while curvature-based localization of DivIVA spatially and temporally regulates Min activity.
Related JoVE Video
Regulation of mprF by antisense RNA restores daptomycin susceptibility to daptomycin-resistant isolates of Staphylococcus aureus.
Antimicrob. Agents Chemother.
PUBLISHED: 10-25-2010
Show Abstract
Hide Abstract
Mutations in mprF have been shown to result in reduced susceptibility to daptomycin and other cationic antibacterials. An mprF antisense-inducible plasmid was constructed and used to demonstrate that depletion of mprF can reestablish susceptibility to daptomycin. Inducing antisense to mprF also resulted in increased susceptibility to vancomycin and gentamicin but, paradoxically, decreased susceptibility to oxacillin. These results suggest that mprF mutations that reduce susceptibility to cationic antibacterials result in a gain-of-function phenotype.
Related JoVE Video
Genetically engineered lipopeptide antibiotics related to A54145 and daptomycin with improved properties.
Antimicrob. Agents Chemother.
PUBLISHED: 01-19-2010
Show Abstract
Hide Abstract
Daptomycin is a cyclic lipopeptide antibiotic approved for the treatment of skin and skin structure infections caused by Gram-positive pathogens and for that of bacteremia and right-sided endocarditis caused by Staphylococcus aureus. Daptomycin failed to meet noninferiority criteria for the treatment of community-acquired pneumonia, likely due to sequestration in pulmonary surfactant. Many analogues of daptomycin have been generated by combinatorial biosynthesis, but only two displayed improved activity in the presence of bovine surfactant, and neither was as active as daptomycin in vitro. In the present study, we generated hybrid molecules of the structurally related lipopeptide A54145 in Streptomyces fradiae and tested them for antibacterial activity in the presence of bovine surfactant. Hybrid A54145 nonribosomal peptide synthetase (NRPS) biosynthetic genes were constructed by genetic engineering and were expressed in combination with a deletion of the lptI methyltransferase gene, which is involved in the formation of the 3-methyl-glutamic acid (3mGlu) residue at position 12. Some of the compounds were very active against S. aureus and other Gram-positive pathogens; one compound was also highly active in the presence of bovine surfactant, had low acute toxicity, and showed some efficacy against Streptococcus pneumoniae in a mouse model of pulmonary infection.
Related JoVE Video
Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462.
Biochim. Biophys. Acta
Show Abstract
Hide Abstract
Daptomycin is a clinically important lipopeptide antibiotic that kills Gram-positive bacteria through membrane depolarization. Its activity requires calcium and the presence of phosphatidylglycerol in the target membrane. Calcium and phosphatidylglycerol also promote the formation of daptomycin oligomers, which have been assumed but not proven to be required for the bactericidal effect. Daptomycin shares substantial structural similarity with another lipopeptide antibiotic, A54145; the two have identical amino acid residues in 5 out of 13 positions and similar ones in 4 more positions. We here examined whether these conserved residues are sufficient for oligomer formation. To this end, we used fluorescence energy transfer and excimer fluorescence to detect hybrid oligomers of daptomycin and CB-182,462, a semisynthetic derivative of A54145. Mixtures of the two compounds indeed produced hybrid oligomers, but at the same time displayed a significantly less than additive antibacterial activity against Bacillus subtilis. The existence of functionally impaired oligomers indicates that oligomer formation is indeed important for antibacterial function. However, it also shows that oligomerization is not sufficient; once formed, the oligomers must take another step in order to acquire antibacterial activity. Thus, the amino acid residues shared between daptomycin and CB-182,462 suffice for formation of the oligomer, but not for its subsequent activation.
Related JoVE Video
Reduced pulmonary surfactant interaction of daptomycin analogs via tryptophan replacement with alternative amino acids.
Bioorg. Med. Chem. Lett.
Show Abstract
Hide Abstract
Daptomycin was shown to interact in vitro with pulmonary surfactant leading to reduction of its antibacterial activity. We report herein the preparation and anti-staphylococcal activity of a series of daptomycin analogs with reduced pulmonary surfactant interaction by replacing tryptophan with various amino acids.
Related JoVE Video
In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile.
Antimicrob. Agents Chemother.
Show Abstract
Hide Abstract
CB-183,315 is a novel lipopeptide antibiotic structurally related to daptomycin currently in phase 3 clinical development for Clostridium difficile-associated diarrhea (CDAD). We report here the in vitro mechanism of action, spontaneous resistance incidence, resistance by serial passage, time-kill kinetics, postantibiotic effect, and efficacy of CB-183,315 in a hamster model of lethal infection. In vitro data showed that CB-183,315 dissipated the membrane potential of Staphylococcus aureus without inducing changes in membrane permeability to small molecules. The rate of spontaneous resistance to CB-183,315 at 8× the MIC was below the limit of detection in C. difficile. Under selective pressure by serial passage with CB-183,315 against C. difficile, the susceptibility of the bacteria changed no more than 2-fold during 15 days of serial passages. At 16× the MIC, CB-183,315 produced a ?3-log reduction of C. difficile in the time-kill assay. The postantibiotic effect of CB-183,315 at 8× the MIC was 0.9 h. At 80× the MIC the postantibiotic effect was more than 6 h. In the hamster model of CDAD, CB-183,315 and vancomycin both demonstrated potent efficacy in resolving initial disease onset, even at very low doses. After the conclusion of dosing, CB-183,315 and vancomycin showed a similar dose- and time-dependent pattern with respect to rates of CDAD recurrence.
Related JoVE Video
Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins.
J. Bacteriol.
Show Abstract
Hide Abstract
Daptomycin is a lipopeptide antibiotic used clinically for the treatment of certain types of Gram-positive infections, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Details of the mechanism of action of daptomycin continue to be elucidated, particularly the question of whether daptomycin acts on the cell membrane, the cell wall, or both. Here, we use fluorescence microscopy to directly visualize the interaction of daptomycin with the model Gram-positive bacterium Bacillus subtilis. We show that the first observable cellular effects are the formation of membrane distortions (patches of membrane) that precede cell death by more than 30 min. Membrane patches are able to recruit the essential cell division protein DivIVA. Recruitment of DivIVA correlates with membrane defects and changes in cell morphology, suggesting a localized alteration in the activity of enzymes involved in cell wall synthesis that could account for previously described effects of daptomycin on cell wall morphology and septation. Membrane defects colocalize with fluorescently labeled daptomycin, DivIVA, and fluorescent reporters of peptidoglycan biogenesis (Bocillin FL and BODIPY FL-vancomycin), suggesting that daptomycin plays a direct role in these events. Our results support a mechanism for daptomycin with a primary effect on cell membranes that in turn redirects the localization of proteins involved in cell division and cell wall synthesis, causing dramatic cell wall and membrane defects, which may ultimately lead to a breach in the cell membrane and cell death. These results help resolve the longstanding questions regarding the mechanism of action of this important class of antibiotics.
Related JoVE Video
LC-MS/MS characterization of phospholipid content in daptomycin-susceptible and -resistant isolates of Staphylococcus aureus with mutations in mprF.
Mol. Membr. Biol.
Show Abstract
Hide Abstract
Daptomycin (DAP) is a cyclic lipopeptide antibiotic used for the treatment of certain Staphylococcus aureus infections. Although rare, strains have been isolated that are DAP resistant. These strains usually have mutations in mprF, a gene encoding a membrane protein with both lysylphosphatidylglycerol (LPG) synthase and flippase activities. Because ?mprF strains have increased DAP susceptibility, the mechanism of resistance is not likely due to a loss of mprF function. In this study, we developed an LC-MS assay to examine the effect of different mprF mutations on the ratio of phosphatidylglycerol (PG) to LPG in the membrane. Our assay demonstrated that some, but not all, mutations in the flippase and synthase domains result in small but reproducible increases in the proportion of LPG relative to PG. Techniques described herein represent a higher throughput and more sensitive method for measuring relative phospholipids levels. These results offer guidance in the understanding of how mprF confers DAP resistance; namely, mprF-mediated resistance may be through more than one mechanism, including increased overall LPG synthesis and increased LPG present on the outer leaflet of the cytoplasmic membrane.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.