JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Arrhythmogenic right ventricular cardiomyopathy mutations alter shear response without changes in cell-cell adhesion.
Cardiovasc. Res.
PUBLISHED: 09-24-2014
Show Abstract
Hide Abstract
The majority of patients diagnosed with arrhythmogenic right ventricular cardiomyopathy (ARVC) have mutations in genes encoding desmosomal proteins, raising the possibility that abnormal intercellular adhesion plays an important role in disease pathogenesis. We characterize cell mechanical properties and molecular responses to oscillatory shear stress in cardiac myocytes expressing mutant forms of the desmosomal proteins, plakoglobin and plakophilin, which are linked to ARVC in patients.
Related JoVE Video
Hyperglycemic and hyperlipidemic conditions alter cardiac cell biomechanical properties.
Biophys. J.
PUBLISHED: 04-24-2014
Show Abstract
Hide Abstract
Currently, many diabetic cardiomyopathy (DC) studies focus on either in vitro molecular pathways or in vivo whole-heart properties such as ejection fraction. However, as DC is primarily a disease caused by changes in structural and functional properties, such studies may not precisely identify the influence of hyperglycemia or hyperlipidemia in producing specific cellular changes, such as increased myocardial stiffness or diastolic dysfunction. To address this need, we developed an in vitro approach to examine how structural and functional properties may change as a result of a diabetic environment. Particle-tracking microrheology was used to characterize the biomechanical properties of cardiac myocytes and fibroblasts under hyperglycemia or hyperlipidemic conditions. We showed that myocytes, but not fibroblasts, exhibited increased stiffness under diabetic conditions. Hyperlipidemia, but not hyperglycemia, led to increased cFos expression. Although direct application of reactive oxygen species had only limited effects that altered myocyte properties, the antioxidant N-acetylcysteine had broader effects in limiting glucose or fatty-acid alterations. Changes consistent with clinical DC alterations occur in cells cultured in elevated glucose or fatty acids. However, the individual roles of glucose, reactive oxygen species, and fatty acids are varied, suggesting multiple pathway involvement.
Related JoVE Video
Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension.
Blood
PUBLISHED: 08-10-2011
Show Abstract
Hide Abstract
Tetraspanin CD151 is highly expressed in endothelial cells and regulates pathologic angiogenesis. However, the mechanism by which CD151 promotes vascular morphogenesis and whether CD151 engages other vascular functions are unclear. Here we report that CD151 is required for maintaining endothelial capillary-like structures formed in vitro and the integrity of endothelial cell-cell and cell-matrix contacts in vivo. In addition, vascular permeability is markedly enhanced in the absence of CD151. As a global regulator of endothelial cell-cell and cell-matrix adhesions, CD151 is needed for the optimal functions of various cell adhesion proteins. The loss of CD151 elevates actin cytoskeletal traction by up-regulating RhoA signaling and diminishes actin cortical meshwork by down-regulating Rac1 activity. The inhibition of RhoA or activation of cAMP signaling stabilizes CD151-silenced or -null endothelial structure in vascular morphogenesis. Together, our data demonstrate that CD151 maintains vascular stability by promoting endothelial cell adhesions, especially cell-cell adhesion, and confining cytoskeletal tension.
Related JoVE Video
Cell-cell junctional proteins in cardiovascular mechanotransduction.
Ann Biomed Eng
PUBLISHED: 06-30-2011
Show Abstract
Hide Abstract
Cell-cell junctional proteins play important structural and functional roles in several physiological systems. Recent studies have illuminated key aspects in the relationship of junctional proteins with normal cell and tissue function as well as various pathologies. In this review article, the roles of cell-cell junctional proteins will be presented in four classes: adherens junctions, desmosomes, gap junctions, and tight junctions, and discussed primarily in the context of cardiovascular cell and tissue physiology and pathophysiology. The functions of the proteins are described from the perspective of mechanotransductive regulation of physiological and disease processes, with focus being laid on more biomechanical aspects, such as cell adhesion, migration, and mechanosignaling.
Related JoVE Video
Rheological responses of cardiac fibroblasts to mechanical stretch.
Biochem. Biophys. Res. Commun.
Show Abstract
Hide Abstract
Rheological characterization of cells using passive particle tracking techniques can yield substantial information regarding local cellular material properties. However, limited work has been done to establish the changes in material properties of mechanically-responsive cells that experience external stimuli. In this study, cardiac fibroblasts plated on either fibronectin or collagen were treated with cytochalasin, mechanically stretched, or both, and their trajectories and complex moduli were extracted. Results demonstrate that both solid and fluid components were altered by such treatments in a receptor-dependent manner, and that, interestingly, cells treated with cytochalasin were still capable of stiffening in response to mechanical stimuli despite gross stress fiber disruption. These results suggest that the material properties of cells are dependent on a variety of environmental cues and can provide insight into physiological and disease processes.
Related JoVE Video
Depth-resolved cellular microrheology using HiLo microscopy.
Biomed Opt Express
Show Abstract
Hide Abstract
It is increasingly important to measure cell mechanical properties in three-dimensional environments. Particle tracking microrheology (PTM) can measure cellular viscoelastic properties; however, out-of-plane data can introduce artifacts into these measurements. We developed a technique that employs HiLo microscopy to reduce out-of-plane contributions. This method eliminated signals from 90% of probes 0.5 ?m or further from the focal plane, while retaining all in-plane probes. We used this technique to characterize live-cell bilayers and found that there were significant, frequency-dependent changes to the extracted cell moduli when compared to conventional analysis. Our results indicate that removal of out-of-plane information is vital for accurate assessments of cell mechanical properties.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.