JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles.
Int J Nanomedicine
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
Polymeric nanoparticles with targeting moieties containing magnetic nanoparticles as theranostic agents have considerable potential for the treatment of cancer. Here we report the chemical synthesis and characterization of a poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-based nanocarrier containing iron oxide nanoparticles and human epithelial growth factor receptor on the outer shell. The nanocarrier was also radiolabeled with (99m)Tc and tested as a theranostic nanomedicine, ie, it was investigated for both its diagnostic ability in vivo and its therapeutic hyperthermic effects in a standard A431 human tumor cell line. Following radiolabeling with (99m)Tc, the biodistribution and therapeutic hyperthermic effects of the nanosystem were studied noninvasively in vivo in tumor-bearing mice. A substantial decrease in tumor size correlated with an increase in both nanoparticle concentration and local temperature was achieved, confirming the possibility of using this multifunctional nanosystem as a therapeutic tool for epidermoid carcinoma.
Related JoVE Video
Tackling lipophilicity of peptide drugs: replacement of the backbone N-methyl group of Cilengitide by N-oligoethylene glycol (N-OEG) chains.
Bioconjug. Chem.
PUBLISHED: 12-17-2013
Show Abstract
Hide Abstract
Cilengitide is an RGD-peptide of sequence cyclo[RGDfNMeV] that was was developed as a highly active and selective ligand for the ?v?3 and ?v?5 integrin receptors. We describe the synthesis of three analogs of this peptide in which the N-Me group has been replaced by N-oligoethylene glycol (N-OEG) chains of increasing size: namely N-OEG2, N-OEG11, and N-OEG23, which are respectively composed of 2, 11 and 23 ethylene oxide monomer units. The different N-OEG cyclopeptides and the original peptide were compared with respect to lipophilicity and biological activity. The N-OEG2 analog was straightforward to synthesize in solid-phase using an Fmoc-N-OEG2 building block. The syntheses of the N-OEG11 and N-OEG23 cyclopeptides are hampered by the increased steric hindrance of the N-substituent, and could only be achieved by segment coupling, which takes place with epimerization and thus requires extensive product purification. All the N-OEG analogs were found to be more hydrophobic than the parent peptide, and their hydrophobicity was systematically enhanced upon increasing the length of the OEG chain. The N-OEG2 cyclopeptide displayed the same capacity as Cilengitide to inhibit the integrin-mediated adhesion of HUVEC endothelial, DAOY gliobastoma, and HT-29 colon cancer cells to their ligands vitronectin and fibrinogen. The N-OEG11 and N-OEG23 analogs also inhibited cell adhesion to these immobilized ligands, but their EC50 values dropped one order of magnitude with respect to the parent peptide. These results indicate that replacement of the backbone N-Me group of Cilengitide by a short N-OEG chain provides a more lipophilic analog with a similar biological activity. Upon increasing the size of the N-OEG chain, liophilicity is enhanced, but synthetic yields drop and the longer polymer chains may impede targeted binding.
Related JoVE Video
The backbone N-(4-azidobutyl) linker for the preparation of peptide chimera.
Org. Lett.
PUBLISHED: 08-22-2013
Show Abstract
Hide Abstract
A robust synthetic strategy for the introduction of the N-(4-azidobutyl) linker into peptides using standard SPPS techniques is described. Based on the example of Cilengitide it is shown that the N-(4-azidobutyl) group exerts similar conformational restraints as a backbone N-Me group and allows conjugation of a desired molecule either via click chemistry or-after azide reduction-via acylation or reductive alkylation.
Related JoVE Video
Therapeutic targeting of tumor growth and angiogenesis with a novel anti-S100A4 monoclonal antibody.
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
S100A4, a member of the S100 calcium-binding protein family secreted by tumor and stromal cells, supports tumorigenesis by stimulating angiogenesis. We demonstrated that S100A4 synergizes with vascular endothelial growth factor (VEGF), via the RAGE receptor, in promoting endothelial cell migration by increasing KDR expression and MMP-9 activity. In vivo overexpression of S100A4 led to a significant increase in tumor growth and vascularization in a human melanoma xenograft M21 model. Conversely, when silencing S100A4 by shRNA technology, a dramatic decrease in tumor development of the pancreatic MiaPACA-2 cell line was observed. Based on these results we developed 5C3, a neutralizing monoclonal antibody against S100A4. This antibody abolished endothelial cell migration, tumor growth and angiogenesis in immunodeficient mouse xenograft models of MiaPACA-2 and M21-S100A4 cells. It is concluded that extracellular S100A4 inhibition is an attractive approach for the treatment of human cancer.
Related JoVE Video
Overexpression of S100A4 in human cancer cell lines resistant to methotrexate.
BMC Cancer
PUBLISHED: 06-01-2010
Show Abstract
Hide Abstract
Methotrexate is a chemotherapeutic drug that is used in therapy of a wide variety of cancers. The efficiency of treatment with this drug is compromised by the appearance of resistance. Combination treatments of MTX with other drugs that could modulate the expression of genes involved in MTX resistance would be an adequate strategy to prevent the development of this resistance.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.