JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Drug Discovery for Human African Trypanosomiasis: Identification of Novel Scaffolds by the Newly Developed HTS SYBR Green Assay for Trypanosoma brucei.
J Biomol Screen
PUBLISHED: 10-25-2014
Show Abstract
Hide Abstract
Human African trypanosomiasis (HAT) is a vector-transmitted tropical disease caused by the protozoan parasite Trypanosoma brucei. High-throughput screening (HTS) of small-molecule libraries in whole-cell assays is one of the most frequently used approaches in drug discovery for infectious diseases. To aid in drug discovery efforts for HAT, the SYBR Green assay was developed for T. brucei in a 384-well format. This semi-automated assay is cost- and time-effective, robust, and reproducible. The SYBR Green assay was compared to the resazurin assay by screening a library of 4000 putative kinase inhibitors, revealing a superior performance in terms of assay time, sensitivity, simplicity, and reproducibility, and resulting in a higher hit confirmation rate. Although the resazurin assay allows for comparatively improved detection of slow-killing compounds, it also has higher false-positive rates that are likely to arise from the assay experimental conditions. The compounds with the most potent antitrypanosomal activity were selected in both screens and grouped into 13 structural clusters, with 11 new scaffolds as antitrypanosomal agents. Several of the identified compounds had IC50 <1 µM coupled with high selectivity toward the parasite. The core structures of the scaffolds are shown, providing promising new starting points for drug discovery for HAT.
Related JoVE Video
Selection and optimization of hits from a high-throughput phenotypic screen against Trypanosoma cruzi.
Future Med Chem
PUBLISHED: 10-23-2013
Show Abstract
Hide Abstract
Inhibitors of Trypanosoma cruzi with novel mechanisms of action are urgently required to diversify the current clinical and preclinical pipelines. Increasing the number and diversity of hits available for assessment at the beginning of the discovery process will help to achieve this aim.
Related JoVE Video
Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections.
Parasitology
PUBLISHED: 08-28-2013
Show Abstract
Hide Abstract
SUMMARY The Drugs for Neglected Diseases initiative (DNDi) has defined and implemented an early discovery strategy over the last few years, in fitting with its virtual R&D business model. This strategy relies on a medium- to high-throughput phenotypic assay platform to expedite the screening of compound libraries accessed through its collaborations with partners from the pharmaceutical industry. We review the pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity. The advantages, limitations and current achievements in identifying new quality series for further development into preclinical candidates are critically discussed, together with attractive new approaches currently under investigation.
Related JoVE Video
Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents.
Bioorg. Med. Chem.
PUBLISHED: 05-31-2013
Show Abstract
Hide Abstract
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.
Related JoVE Video
Drugs for Neglected Diseases initiative model of drug development for neglected diseases: current status and future challenges.
Future Med Chem
PUBLISHED: 09-02-2011
Show Abstract
Hide Abstract
The Drugs for Neglected Diseases initiative (DNDi) is a patients needs-driven organization committed to the development of new treatments for neglected diseases. Created in 2003, DNDi has delivered four improved treatments for malaria, sleeping sickness and visceral leishmaniasis. A main DNDi challenge is to build a solid R&D portfolio for neglected diseases and to deliver preclinical candidates in a timely manner using an original model based on partnership. To address this challenge DNDi has remodeled its discovery activities from a project-based academic-bound network to a fully integrated process-oriented platform in close collaboration with pharmaceutical companies. This discovery platform relies on dedicated screening capacity and lead-optimization consortia supported by a pragmatic, structured and pharmaceutical-focused compound sourcing strategy.
Related JoVE Video
Drug discovery and development for neglected diseases: the DNDi model.
Drug Des Devel Ther
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
New models of drug discovery have been developed to overcome the lack of modern and effective drugs for neglected diseases such as human African trypanosomiasis (HAT; sleeping sickness), leishmaniasis, and Chagas disease, which have no financial viability for the pharmaceutical industry. With the purpose of combining the skills and research capacity in academia, pharmaceutical industry, and contract researchers, public-private partnerships or product development partnerships aim to create focused research consortia that address all aspects of drug discovery and development. These consortia not only emulate the projects within pharmaceutical and biotechnology industries, eg, identification and screening of libraries, medicinal chemistry, pharmacology and pharmacodynamics, formulation development, and manufacturing, but also use and strengthen existing capacity in disease-endemic countries, particularly for the conduct of clinical trials. The Drugs for Neglected Diseases initiative (DNDi) has adopted a model closely related to that of a virtual biotechnology company for the identification and optimization of drug leads. The application of this model to the development of drug candidates for the kinetoplastid infections of HAT, Chagas disease, and leishmaniasis has already led to the identification of new candidates issued from DNDis own discovery pipeline. This demonstrates that the model DNDi has been implementing is working but its DNDi, neglected diseases sustainability remains to be proven.
Related JoVE Video
Ellagic acid derivatives from Syzygium cumini stem bark: investigation of their antiplasmodial activity.
Nat Prod Commun
PUBLISHED: 11-17-2009
Show Abstract
Hide Abstract
Bioguided fractionation of Syzygium cumini (Myrtaceae) bark decoction for antiplasmodial activity was performed, leading to the isolation of three known ellagic acid derivatives (ellagic acid, ellagic acid 4-O-alpha-L-2"-acetylrhamnopyranoside, 3-O-methylellagic acid 3-O-alpha-L-rhamnopyranoside), as well as the new derivative 3-O-methylellagic acid 3-O-beta-D-glucopyranoside. Activity investigation was based on the reduction of P. falciparum (PfK1) parasitaemia in vitro and the inhibition of beta-hematin formation, a known mechanism of action of some antimalarial drugs. Among the investigated ellagic acid derivatives, only ellagic acid was able to reduce P. falciparum parasitaemia in vitro and inhibit beta-hematin formation, suggesting that free hydroxyl groups are necessary for activity within this class of compounds.
Related JoVE Video
Simple field assays to check quality of current artemisinin-based antimalarial combination formulations.
PLoS ONE
PUBLISHED: 05-22-2009
Show Abstract
Hide Abstract
Malaria continues to be one of the major public health problems in Africa, Asia and Latin America. Artemisinin derivatives (ARTs; artesunate, artemether, and dihydroartemisinin) derived from the herb, Artemisia annua, are the most effective antimalarial drugs available providing rapid cures. The World Health Organisation (WHO) has recommended that all antimalarials must be combined with an artemisinin component (artemisinin-based combination therapy; ACT) for use as first line treatment against malaria. This class of drugs is now first-line policy in most malaria-endemic countries. Reports of ad hoc surveys from South East Asia show that up to 50% of the artesunate currently sold is counterfeit. Drug quality is rarely assessed in resource poor countries in part due to lack of dedicated laboratory facilities which are expensive to build, equip and maintain. With a view to address this unmet need we developed two novel colour reaction assays that can be used in the field to check the quality of ARTs.
Related JoVE Video
Identification of compounds with anti-proliferative activity against Trypanosoma brucei brucei strain 427 by a whole cell viability based HTS campaign.
PLoS Negl Trop Dis
Show Abstract
Hide Abstract
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC(50) value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC(50) values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill.
Related JoVE Video
Catechol pyrazolinones as trypanocidals: fragment-based design, synthesis, and pharmacological evaluation of nanomolar inhibitors of trypanosomal phosphodiesterase B1.
J. Med. Chem.
Show Abstract
Hide Abstract
Trypanosomal phosphodiesterases B1 and B2 (TbrPDEB1 and TbrPDEB2) play an important role in the life cycle of Trypanosoma brucei, the causative parasite of human African trypanosomiasis (HAT), also known as African sleeping sickness. We used homology modeling and docking studies to guide fragment growing into the parasite-specific P-pocket in the enzyme binding site. The resulting catechol pyrazolinones act as potent TbrPDEB1 inhibitors with IC?? values down to 49 nM. The compounds also block parasite proliferation (e.g., VUF13525 (20b): T. brucei rhodesiense IC?? = 60 nM, T. brucei brucei IC?? = 520 nM, T. cruzi = 7.6 ?M), inducing a typical multiple nuclei and kinetoplast phenotype without being generally cytotoxic. The mode of action of 20b was investigated with recombinantly engineered trypanosomes expressing a cAMP-sensitive FRET sensor, confirming a dose-response related increase of intracellular cAMP levels in trypanosomes. Our findings further validate the TbrPDEB family as antitrypanosomal target.
Related JoVE Video
Novel 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides as potential antitrypanosomal agents.
J. Med. Chem.
Show Abstract
Hide Abstract
A series of novel 3-nitro-1H-1,2,4-triazole-based (and in some cases 2-nitro-1H-imidazole-based) amides and sulfonamides were characterized for their in vitro antitrypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against Trypanosoma cruzi intracellular amastigotes (IC(50) ranging from 28 nM to 3.72 ?M) without concomitant toxicity to L6 host cells (selectivity 66-2782). Twenty-three of these active compounds were more potent (up to 58-fold) than the reference drug benznidazole, tested in parallel. In addition, nine nitrotriazoles which were moderately active (0.5 ?M ? IC(50) < 6.0 ?M) against Trypanosoma brucei rhodesiense trypomastigotes were 5-31-fold more active against bloodstream-form Trypanosoma brucei brucei trypomastigotes engineered to overexpress reduced nicotinamide adenine dinucleotide dependent nitroreductase. Finally, three nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani . Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent antitrypanosomal agents.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.