JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Atypical developmental patterns of brain chemistry in children with autism spectrum disorder.
JAMA Psychiatry
PUBLISHED: 08-02-2013
Show Abstract
Hide Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with symptoms emerging during early childhood. The pathophysiology underlying the disorder remains incompletely understood.
Related JoVE Video
Transmission disequilibrium of small CNVs in simplex autism.
Am. J. Hum. Genet.
PUBLISHED: 05-16-2013
Show Abstract
Hide Abstract
We searched for disruptive, genic rare copy-number variants (CNVs) among 411 families affected by sporadic autism spectrum disorder (ASD) from the Simons Simplex Collection by using available exome sequence data and CoNIFER (Copy Number Inference from Exome Reads). Compared to high-density SNP microarrays, our approach yielded ?2× more smaller genic rare CNVs. We found that affected probands inherited more CNVs than did their siblings (453 versus 394, p = 0.004; odds ratio [OR] = 1.19) and that the probands CNVs affected more genes (921 versus 726, p = 0.02; OR = 1.30). These smaller CNVs (median size 18 kb) were transmitted preferentially from the mother (136 maternal versus 100 paternal, p = 0.02), although this bias occurred irrespective of affected status. The excess burden of inherited CNVs among probands was driven primarily by sibling pairs with discordant social-behavior phenotypes (p < 0.0002, measured by Social Responsiveness Scale [SRS] score), which contrasts with families where the phenotypes were more closely matched or less extreme (p > 0.5). Finally, we found enrichment of brain-expressed genes unique to probands, especially in the SRS-discordant group (p = 0.0035). In a combined model, our inherited CNVs, de novo CNVs, and de novo single-nucleotide variants all independently contributed to the risk of autism (p < 0.05). Taken together, these results suggest that small transmitted rare CNVs play a role in the etiology of simplex autism. Importantly, the small size of these variants aids in the identification of specific genes as additional risk factors associated with ASD.
Related JoVE Video
A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder.
Jillian P Casey, Tiago Magalhaes, Judith M Conroy, Regina Regan, Naisha Shah, Richard Anney, Denis C Shields, Brett S Abrahams, Joana Almeida, Elena Bacchelli, Anthony J Bailey, Gillian Baird, Agatino Battaglia, Tom Berney, Nadia Bolshakova, Patrick F Bolton, Thomas Bourgeron, Sean Brennan, Phil Cali, Catarina Correia, Christina Corsello, Marc Coutanche, Geraldine Dawson, Maretha de Jonge, Richard Delorme, Eftichia Duketis, Frederico Duque, Annette Estes, Penny Farrar, Bridget A Fernandez, Susan E Folstein, Suzanne Foley, Eric Fombonne, Christine M Freitag, John Gilbert, Christopher Gillberg, Joseph T Glessner, Jonathan Green, Stephen J Guter, Hakon Hakonarson, Richard Holt, Gillian Hughes, Vanessa Hus, Roberta Igliozzi, Cecilia Kim, Sabine M Klauck, Alexander Kolevzon, Janine A Lamb, Marion Leboyer, Ann Le Couteur, Bennett L Leventhal, Catherine Lord, Sabata C Lund, Elena Maestrini, Carine Mantoulan, Christian R Marshall, Helen McConachie, Christopher J McDougle, Jane McGrath, William M McMahon, Alison Merikangas, Judith Miller, Fiorella Minopoli, Ghazala K Mirza, Jeff Munson, Stanley F Nelson, Gudrun Nygren, Guiomar Oliveira, Alistair T Pagnamenta, Katerina Papanikolaou, Jeremy R Parr, Barbara Parrini, Andrew Pickles, Dalila Pinto, Joseph Piven, David J Posey, Annemarie Poustka, Fritz Poustka, Jiannis Ragoussis, Bernadette Rogé, Michael L Rutter, Ana F Sequeira, Latha Soorya, Inês Sousa, Nuala Sykes, Vera Stoppioni, Raffaella Tancredi, Maïté Tauber, Ann P Thompson, Susanne Thomson, John Tsiantis, Herman van Engeland, John B Vincent, Fred Volkmar, Jacob A S Vorstman, Simon Wallace, Kai Wang, Thomas H Wassink, Kathy White, Kirsty Wing, Kerstin Wittemeyer, Brian L Yaspan, Lonnie Zwaigenbaum, Catalina Betancur, Joseph D Buxbaum, Rita M Cantor, Edwin H Cook, Hilary Coon, Michael L Cuccaro, Daniel H Geschwind, Jonathan L Haines, Joachim Hallmayer, Anthony P Monaco, John I Nurnberger, Margaret A Pericak-Vance, Gerard D Schellenberg, Stephen W Scherer, James S Sutcliffe, Peter Szatmari, Veronica J Vieland, Ellen M Wijsman, Andrew Green, Michael Gill, Louise Gallagher, Astrid Vicente, Sean Ennis.
Hum. Genet.
PUBLISHED: 05-12-2011
Show Abstract
Hide Abstract
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
Related JoVE Video
Evidence for broader autism phenotype characteristics in parents from multiple-incidence autism families.
Autism Res
PUBLISHED: 01-04-2011
Show Abstract
Hide Abstract
The broader autism phenotype (BAP) was assessed in parents who have two or more children with autism spectrum disorder (ASD) (multiplex (MPX) autism), parents who have no more than one child with ASD (simplex autism), parents who have a child with developmental delay without ASD, and parents who have typically developing children. Clinicians, naive to parent group membership status, rated BAP characteristics from videotaped administration of the Broader Autism Phenotype Symptom Scale (BPASS). Differences among groups in BPASS scores in the four assessed domains (social motivation, conversational skills, expressiveness, and restricted interests) were examined using multivariate ANOVA and post hoc comparisons. Further, ratings of videotapes by observers naïve to family status were compared with live, non-naive ratings by observers who were aware of family status (non-naïve). Findings demonstrate that the BPASS is an instrument resistant to rater bias. Parents from MPX autism families showed significantly more autism phenotype characteristics than the parents in the other groups. Moreover, the parents from simplex autism families did not differ from the parents of children with developmental delay or typical development. Finally, no differences between live, non-naive ratings and videotaped, naive ratings were observed. These findings suggest that characteristics of the BAP, specifically in the social and communication domains, are present in MPX autism parents to a greater degree than simplex autism and control parents. Further, the results provide support for the notion that genetic transmission mechanisms may differ between families with more than one child with autism and families with only one child with autism.
Related JoVE Video
Genome-scan for IQ discrepancy in autism: evidence for loci on chromosomes 10 and 16.
Hum. Genet.
PUBLISHED: 08-26-2010
Show Abstract
Hide Abstract
Performance IQ (PIQ) greater than verbal IQ (VIQ) is often observed in studies of the cognitive abilities of autistic individuals. This characteristic is correlated with social and communication impairments, key parts of the autism diagnosis. We present the first genetic analyses of IQ discrepancy (PIQ-VIQ) as an autism-related phenotype. We performed genome-wide joint linkage and segregation analyses on 287 multiplex families, using a Markov chain Monte Carlo approach. Genetic data included a genome-scan of 387 micro-satellite markers in 210 families augmented with additional markers added in a subset of families. Empirical P values were calculated for five interesting regions. Linkage analysis identified five chromosomal regions with substantial regional evidence of linkage; 10p12 [P = 0.001; genome-wide (gw) P = 0.05], 16q23 (P = .015; gw P = 0.53), 2p21 (P = 0.03, gw P = 0.78), 6q25 (P = 0.047, gw P = 0.91) and 15q23-25 (P = 0.053, gw P = 0.93). The location of the chromosome 10 linkage signal coincides with a region noted in a much earlier genome-scan for autism, and the chromosome 16 signal coincides exactly with a linkage signal for non-word repetition in specific language impairment. This study provides strong evidence for a QTL influencing IQ discrepancy in families with autistic individuals on chromosome 10, and suggestive evidence for a QTL on chromosome 16. The location of the chromosome 16 signal suggests a candidate gene, CDH13, a T-cadherin expressed in the brain, which has been implicated in previous SNP studies of autism and ADHD.
Related JoVE Video
A genome-wide scan for common alleles affecting risk for autism.
Richard Anney, Lambertus Klei, Dalila Pinto, Regina Regan, Judith Conroy, Tiago R Magalhães, Catarina Correia, Brett S Abrahams, Nuala Sykes, Alistair T Pagnamenta, Joana Almeida, Elena Bacchelli, Anthony J Bailey, Gillian Baird, Agatino Battaglia, Tom Berney, Nadia Bolshakova, Sven Bölte, Patrick F Bolton, Thomas Bourgeron, Sean Brennan, Jessica Brian, Andrew R Carson, Guillermo Casallo, Jillian Casey, Su H Chu, Lynne Cochrane, Christina Corsello, Emily L Crawford, Andrew Crossett, Geraldine Dawson, Maretha de Jonge, Richard Delorme, Irene Drmic, Eftichia Duketis, Frederico Duque, Annette Estes, Penny Farrar, Bridget A Fernandez, Susan E Folstein, Eric Fombonne, Christine M Freitag, John Gilbert, Christopher Gillberg, Joseph T Glessner, Jeremy Goldberg, Jonathan Green, Stephen J Guter, Hakon Hakonarson, Elizabeth A Heron, Matthew Hill, Richard Holt, Jennifer L Howe, Gillian Hughes, Vanessa Hus, Roberta Igliozzi, Cecilia Kim, Sabine M Klauck, Alexander Kolevzon, Olena Korvatska, Vlad Kustanovich, Clara M Lajonchere, Janine A Lamb, Magdalena Laskawiec, Marion Leboyer, Ann Le Couteur, Bennett L Leventhal, Anath C Lionel, Xiao-Qing Liu, Catherine Lord, Linda Lotspeich, Sabata C Lund, Elena Maestrini, William Mahoney, Carine Mantoulan, Christian R Marshall, Helen McConachie, Christopher J McDougle, Jane McGrath, William M McMahon, Nadine M Melhem, Alison Merikangas, Ohsuke Migita, Nancy J Minshew, Ghazala K Mirza, Jeff Munson, Stanley F Nelson, Carolyn Noakes, Abdul Noor, Gudrun Nygren, Guiomar Oliveira, Katerina Papanikolaou, Jeremy R Parr, Barbara Parrini, Tara Paton, Andrew Pickles, Joseph Piven, David J Posey, Annemarie Poustka, Fritz Poustka, Aparna Prasad, Jiannis Ragoussis, Katy Renshaw, Jessica Rickaby, Wendy Roberts, Kathryn Roeder, Bernadette Rogé, Michael L Rutter, Laura J Bierut, John P Rice, Jeff Salt, Katherine Sansom, Daisuke Sato, Ricardo Segurado, Lili Senman, Naisha Shah, Val C Sheffield, Latha Soorya, Inês Sousa, Vera Stoppioni, Christina Strawbridge, Raffaella Tancredi, Katherine Tansey, Bhooma Thiruvahindrapduram, Ann P Thompson, Susanne Thomson, Ana Tryfon, John Tsiantis, Herman van Engeland, John B Vincent, Fred Volkmar, Simon Wallace, Kai Wang, Zhouzhi Wang, Thomas H Wassink, Kirsty Wing, Kerstin Wittemeyer, Shawn Wood, Brian L Yaspan, Danielle Zurawiecki, Lonnie Zwaigenbaum, Catalina Betancur, Joseph D Buxbaum, Rita M Cantor, Edwin H Cook, Hilary Coon, Michael L Cuccaro, Louise Gallagher, Daniel H Geschwind, Michael Gill, Jonathan L Haines, Judith Miller, Anthony P Monaco, John I Nurnberger, Andrew D Paterson, Margaret A Pericak-Vance, Gerard D Schellenberg, Stephen W Scherer, James S Sutcliffe, Peter Szatmari, Astrid M Vicente, Veronica J Vieland, Ellen M Wijsman, Bernie Devlin, Sean Ennis, Joachim Hallmayer.
Hum. Mol. Genet.
PUBLISHED: 07-27-2010
Show Abstract
Hide Abstract
Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winners curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
Related JoVE Video
Functional impact of global rare copy number variation in autism spectrum disorders.
Dalila Pinto, Alistair T Pagnamenta, Lambertus Klei, Richard Anney, Daniele Merico, Regina Regan, Judith Conroy, Tiago R Magalhães, Catarina Correia, Brett S Abrahams, Joana Almeida, Elena Bacchelli, Gary D Bader, Anthony J Bailey, Gillian Baird, Agatino Battaglia, Tom Berney, Nadia Bolshakova, Sven Bölte, Patrick F Bolton, Thomas Bourgeron, Sean Brennan, Jessica Brian, Susan E Bryson, Andrew R Carson, Guillermo Casallo, Jillian Casey, Brian H Y Chung, Lynne Cochrane, Christina Corsello, Emily L Crawford, Andrew Crossett, Cheryl Cytrynbaum, Geraldine Dawson, Maretha de Jonge, Richard Delorme, Irene Drmic, Eftichia Duketis, Frederico Duque, Annette Estes, Penny Farrar, Bridget A Fernandez, Susan E Folstein, Eric Fombonne, Christine M Freitag, John Gilbert, Christopher Gillberg, Joseph T Glessner, Jeremy Goldberg, Andrew Green, Jonathan Green, Stephen J Guter, Hakon Hakonarson, Elizabeth A Heron, Matthew Hill, Richard Holt, Jennifer L Howe, Gillian Hughes, Vanessa Hus, Roberta Igliozzi, Cecilia Kim, Sabine M Klauck, Alexander Kolevzon, Olena Korvatska, Vlad Kustanovich, Clara M Lajonchere, Janine A Lamb, Magdalena Laskawiec, Marion Leboyer, Ann Le Couteur, Bennett L Leventhal, Anath C Lionel, Xiao-Qing Liu, Catherine Lord, Linda Lotspeich, Sabata C Lund, Elena Maestrini, William Mahoney, Carine Mantoulan, Christian R Marshall, Helen McConachie, Christopher J McDougle, Jane McGrath, William M McMahon, Alison Merikangas, Ohsuke Migita, Nancy J Minshew, Ghazala K Mirza, Jeff Munson, Stanley F Nelson, Carolyn Noakes, Abdul Noor, Gudrun Nygren, Guiomar Oliveira, Katerina Papanikolaou, Jeremy R Parr, Barbara Parrini, Tara Paton, Andrew Pickles, Marion Pilorge, Joseph Piven, Chris P Ponting, David J Posey, Annemarie Poustka, Fritz Poustka, Aparna Prasad, Jiannis Ragoussis, Katy Renshaw, Jessica Rickaby, Wendy Roberts, Kathryn Roeder, Bernadette Rogé, Michael L Rutter, Laura J Bierut, John P Rice, Jeff Salt, Katherine Sansom, Daisuke Sato, Ricardo Segurado, Ana F Sequeira, Lili Senman, Naisha Shah, Val C Sheffield, Latha Soorya, Inês Sousa, Olaf Stein, Nuala Sykes, Vera Stoppioni, Christina Strawbridge, Raffaella Tancredi, Katherine Tansey, Bhooma Thiruvahindrapduram, Ann P Thompson, Susanne Thomson, Ana Tryfon, John Tsiantis, Herman van Engeland, John B Vincent, Fred Volkmar, Simon Wallace, Kai Wang, Zhouzhi Wang, Thomas H Wassink, Caleb Webber, Rosanna Weksberg, Kirsty Wing, Kerstin Wittemeyer, Shawn Wood, Jing Wu, Brian L Yaspan, Danielle Zurawiecki, Lonnie Zwaigenbaum, Joseph D Buxbaum, Rita M Cantor, Edwin H Cook, Hilary Coon, Michael L Cuccaro, Bernie Devlin, Sean Ennis, Louise Gallagher, Daniel H Geschwind, Michael Gill, Jonathan L Haines, Joachim Hallmayer, Judith Miller, Anthony P Monaco, John I Nurnberger, Andrew D Paterson, Margaret A Pericak-Vance, Gerard D Schellenberg, Peter Szatmari, Astrid M Vicente, Veronica J Vieland, Ellen M Wijsman, Stephen W Scherer, James S Sutcliffe, Catalina Betancur.
Nature
PUBLISHED: 05-07-2010
Show Abstract
Hide Abstract
The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
Related JoVE Video
Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders.
Science
Show Abstract
Hide Abstract
Exome sequencing studies of autism spectrum disorders (ASDs) have identified many de novo mutations but few recurrently disrupted genes. We therefore developed a modified molecular inversion probe method enabling ultra-low-cost candidate gene resequencing in very large cohorts. To demonstrate the power of this approach, we captured and sequenced 44 candidate genes in 2446 ASD probands. We discovered 27 de novo events in 16 genes, 59% of which are predicted to truncate proteins or disrupt splicing. We estimate that recurrent disruptive mutations in six genes-CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and TBL1XR1-may contribute to 1% of sporadic ASDs. Our data support associations between specific genes and reciprocal subphenotypes (CHD8-macrocephaly and DYRK1A-microcephaly) and replicate the importance of a ?-catenin-chromatin-remodeling network to ASD etiology.
Related JoVE Video
Individual common variants exert weak effects on the risk for autism spectrum disorderspi.
Richard Anney, Lambertus Klei, Dalila Pinto, Joana Almeida, Elena Bacchelli, Gillian Baird, Nadia Bolshakova, Sven Bölte, Patrick F Bolton, Thomas Bourgeron, Sean Brennan, Jessica Brian, Jillian Casey, Judith Conroy, Catarina Correia, Christina Corsello, Emily L Crawford, Maretha de Jonge, Richard Delorme, Eftichia Duketis, Frederico Duque, Annette Estes, Penny Farrar, Bridget A Fernandez, Susan E Folstein, Eric Fombonne, John Gilbert, Christopher Gillberg, Joseph T Glessner, Andrew Green, Jonathan Green, Stephen J Guter, Elizabeth A Heron, Richard Holt, Jennifer L Howe, Gillian Hughes, Vanessa Hus, Roberta Igliozzi, Suma Jacob, Graham P Kenny, Cecilia Kim, Alexander Kolevzon, Vlad Kustanovich, Clara M Lajonchere, Janine A Lamb, Miriam Law-Smith, Marion Leboyer, Ann Le Couteur, Bennett L Leventhal, Xiao-Qing Liu, Frances Lombard, Catherine Lord, Linda Lotspeich, Sabata C Lund, Tiago R Magalhães, Carine Mantoulan, Christopher J McDougle, Nadine M Melhem, Alison Merikangas, Nancy J Minshew, Ghazala K Mirza, Jeff Munson, Carolyn Noakes, Gudrun Nygren, Katerina Papanikolaou, Alistair T Pagnamenta, Barbara Parrini, Tara Paton, Andrew Pickles, David J Posey, Fritz Poustka, Jiannis Ragoussis, Regina Regan, Wendy Roberts, Kathryn Roeder, Bernadette Rogé, Michael L Rutter, Sabine Schlitt, Naisha Shah, Val C Sheffield, Latha Soorya, Inês Sousa, Vera Stoppioni, Nuala Sykes, Raffaella Tancredi, Ann P Thompson, Susanne Thomson, Ana Tryfon, John Tsiantis, Herman van Engeland, John B Vincent, Fred Volkmar, J A S Vorstman, Simon Wallace, Kirsty Wing, Kerstin Wittemeyer, Shawn Wood, Danielle Zurawiecki, Lonnie Zwaigenbaum, Anthony J Bailey, Agatino Battaglia, Rita M Cantor, Hilary Coon, Michael L Cuccaro, Geraldine Dawson, Sean Ennis, Christine M Freitag, Daniel H Geschwind, Jonathan L Haines, Sabine M Klauck, William M McMahon, Elena Maestrini, Judith Miller, Anthony P Monaco, Stanley F Nelson, John I Nurnberger, Guiomar Oliveira, Jeremy R Parr, Margaret A Pericak-Vance, Joseph Piven, Gerard D Schellenberg, Stephen W Scherer, Astrid M Vicente, Thomas H Wassink, Ellen M Wijsman, Catalina Betancur, Joseph D Buxbaum, Edwin H Cook, Louise Gallagher, Michael Gill, Joachim Hallmayer, Andrew D Paterson, James S Sutcliffe, Peter Szatmari, Veronica J Vieland, Hakon Hakonarson, Bernie Devlin.
Hum. Mol. Genet.
Show Abstract
Hide Abstract
While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.