JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Tubulin hyperacetylation is adaptive in cardiac proteotoxicity by promoting autophagy.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 11-19-2014
Show Abstract
Hide Abstract
Proteinopathy causes cardiac disease, remodeling, and heart failure but the pathological mechanisms remain obscure. Mutated ?B-crystallin (CryAB(R120G)), when expressed only in cardiomyocytes in transgenic (TG) mice, causes desmin-related cardiomyopathy, a protein conformational disorder. The disease is characterized by the accumulation of toxic misfolded protein species that present as perinuclear aggregates known as aggresomes. Previously, we have used the CryAB(R120G) model to determine the underlying processes that result in these pathologic accumulations and to explore potential therapeutic windows that might be used to decrease proteotoxicity. We noted that total ventricular protein is hypoacetylated while hyperacetylation of ?-tubulin, a substrate of histone deacetylase 6 (HDAC6) occurs. HDAC6 has critical roles in protein trafficking and autophagy, but its function in the heart is obscure. Here, we test the hypothesis that tubulin acetylation is an adaptive process in cardiomyocytes. By modulating HDAC6 levels and/or activity genetically and pharmacologically, we determined the effects of tubulin acetylation on aggregate formation in CryAB(R120G) cardiomyocytes. Increasing HDAC6 accelerated aggregate formation, whereas siRNA-mediated knockdown or pharmacological inhibition ameliorated the process. HDAC inhibition in vivo induced tubulin hyperacetylation in CryAB(R120G) TG hearts, which prevented aggregate formation and significantly improved cardiac function. HDAC6 inhibition also increased autophagic flux in cardiomyocytes, and increased autophagy in the diseased heart correlated with increased tubulin acetylation, suggesting that autophagy induction might underlie the observed cardioprotection. Taken together, our data suggest a mechanistic link between tubulin hyperacetylation and autophagy induction and points to HDAC6 as a viable therapeutic target in cardiovascular disease.
Related JoVE Video
Sumo E2 enzyme UBC9 is required for efficient protein quality control in cardiomyocytes.
Circ. Res.
PUBLISHED: 08-05-2014
Show Abstract
Hide Abstract
Impairment of proteasomal function is pathogenic in several cardiac proteinopathies and can eventually lead to heart failure. Loss of proteasomal activity often results in the accumulation of large protein aggregates. The ubiquitin proteasome system (UPS) is primarily responsible for cellular protein degradation, and although the role of ubiquitination in this process is well studied, the function of an ancillary post-translational modification, SUMOylation, in protein quality control is not fully understood.
Related JoVE Video
Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C.
J. Muscle Res. Cell. Motil.
PUBLISHED: 07-03-2014
Show Abstract
Hide Abstract
We tested whether cardiac myosin binding protein-C (cMyBP-C) affects myosin cross-bridge kinetics in the two cardiac myosin heavy chain (MyHC) isoforms. Mice lacking cMyBP-C (t/t) and transgenic controls [Formula: see text] were fed L-thyroxine (T4) to induce 90/10 % expression of ?/?-MyHC. Non-transgenic (NTG) and t/t mice were fed 6-n-propyl-2-thiouracil (PTU) to induce 100 % expression of ?-MyHC. Ca(2+)-activated, chemically-skinned myocardium underwent length perturbation analysis with varying [MgATP] to estimate the MgADP release rate [Formula: see text] and MgATP binding rate [Formula: see text]. Values for [Formula: see text] were not significantly different between [Formula: see text] (102.2 ± 7.0 s(-1)) and [Formula: see text] (91.3 ± 8.9 s(-1)), but [Formula: see text] was lower in [Formula: see text] (165.9 ± 12.5 mM(-1) s(-1)) compared to [Formula: see text] (298.6 ± 15.7 mM(-1) s(-1), P < 0.01). In myocardium expressing ?-MyHC, values for [Formula: see text] were higher in [Formula: see text] (24.8 ± 1.0 s(-1)) compared to [Formula: see text] (15.6 ± 1.3 s(-1), P < 0.01), and [Formula: see text] was not different. At saturating [MgATP], myosin detachment rate approximates [Formula: see text], and detachment rate decreased as sarcomere length (SL) was increased in both [Formula: see text] and [Formula: see text] with similar sensitivities to SL. In myocardium expressing ?-MyHC, detachment rate decreased more as SL increased in [Formula: see text] (21.5 ± 1.3 s(-1) at 2.2 ?m and 13.3 ± 0.9 s(-1) at 3.3 ?m) compared to [Formula: see text] (15.8 ± 0.3 s(-1) at 2.2 ?m and 10.9 ± 0.3 s(-1) at 3.3 ?m) as detected by repeated-measures ANOVA (P < 0.01). These findings suggest that cMyBP-C reduces MgADP release rate for ?-MyHC, but not for ?-MyHC, even as the number of cMyBP-C that overlap with the thin filament is reduced to zero. Therefore, cMyBP-C appears to affect ?-MyHC kinetics independent of its interaction with the thin filament.
Related JoVE Video
RAF1 mutations in childhood-onset dilated cardiomyopathy.
Nat. Genet.
PUBLISHED: 03-31-2014
Show Abstract
Hide Abstract
Dilated cardiomyopathy (DCM) is a highly heterogeneous trait with sarcomeric gene mutations predominating. The cause of a substantial percentage of DCMs remains unknown, and no gene-specific therapy is available. On the basis of resequencing of 513 DCM cases and 1,150 matched controls from various cohorts of distinct ancestry, we discovered rare, functional RAF1 mutations in 3 of the cohorts (South Indian, North Indian and Japanese). The prevalence of RAF1 mutations was ~9% in childhood-onset DCM cases in these three cohorts. Biochemical studies showed that DCM-associated RAF1 mutants had altered kinase activity, resulting in largely unaltered ERK activation but in AKT that was hyperactivated in a BRAF-dependent manner. Constitutive expression of these mutants in zebrafish embryos resulted in a heart failure phenotype with AKT hyperactivation that was rescued by treatment with rapamycin. These findings provide new mechanistic insights and potential therapeutic targets for RAF1-associated DCM and further expand the clinical spectrum of RAF1-related human disorders.
Related JoVE Video
The protein tyrosine phosphatase Shp2 is required for the generation of oligodendrocyte progenitor cells and myelination in the mouse telencephalon.
J. Neurosci.
PUBLISHED: 03-07-2014
Show Abstract
Hide Abstract
The protein tyrosine phosphatase Shp2 (PTPN11) is crucial for normal brain development and has been implicated in dorsal telencephalic neuronal and astroglia cell fate decisions. However, its roles in the ventral telencephalon and during oligodendrogenesis in the telencephalon remain largely unknown. Shp2 gain-of-function (GOF) mutations are observed in Noonan syndrome, a type of RASopathy associated with multiple phenotypes, including cardiovascular, craniofacial, and neurocognitive abnormalities. To gain insight into requirements for Shp2 (LOF) and the impact of abnormal Shp2 GOF mutations, we used a Shp2 conditional mutant allele (LOF) and a cre inducible Shp2-Q79R GOF transgenic mouse in combination with Olig2(cre/+) mice to target embryonic ventral telencephalic progenitors and the oligodendrocyte lineage. In the absence of Shp2 (LOF), neuronal cell types originating from progenitors in the ventral telencephalon were generated, but oligodendrocyte progenitor cell (OPC) generation was severely impaired. Late embryonic and postnatal Shp2 cKOs showed defects in the generation of OPCs throughout the telencephalon and subsequent reductions in white matter myelination. Conversely, transgenic expression of the Shp2 GOF Noonan syndrome mutation resulted in elevated OPC numbers in the embryo and postnatal brain. Interestingly, expression of this mutation negatively influenced myelination as mice displayed abnormal myelination and fewer myelinated axons in the white matter despite elevated OPC numbers. Increased proliferating OPCs and elevated MAPK activity were also observed during oligodendrogenesis after expression of Shp2 GOF mutation. These results support the notion that appropriate Shp2 activity levels control the number as well as the differentiation of oligodendrocytes during development.
Related JoVE Video
Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins.
Circ Cardiovasc Genet
PUBLISHED: 02-28-2014
Show Abstract
Hide Abstract
Hypertrophic cardiomyopathy (HCM) is a common genetic disorder caused mainly by mutations in sarcomeric proteins and is characterized by maladaptive myocardial hypertrophy, diastolic heart failure, increased myofilament Ca(2+) sensitivity, and high susceptibility to sudden death. We tested the following hypothesis: correction of the increased myofilament sensitivity can delay or prevent the development of the HCM phenotype.
Related JoVE Video
Myosin-binding protein C displaces tropomyosin to activate cardiac thin filaments and governs their speed by an independent mechanism.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 01-29-2014
Show Abstract
Hide Abstract
Myosin-binding protein C (MyBP-C) is an accessory protein of striated muscle thick filaments and a modulator of cardiac muscle contraction. Defects in the cardiac isoform, cMyBP-C, cause heart disease. cMyBP-C includes 11 Ig- and fibronectin-like domains and a cMyBP-C-specific motif. In vitro studies show that in addition to binding to the thick filament via its C-terminal region, cMyBP-C can also interact with actin via its N-terminal domains, modulating thin filament motility. Structural observations of F-actin decorated with N-terminal fragments of cMyBP-C suggest that cMyBP-C binds to actin close to the low Ca(2+) binding site of tropomyosin. This suggests that cMyBP-C might modulate thin filament activity by interfering with tropomyosin regulatory movements on actin. To determine directly whether cMyBP-C binding affects tropomyosin position, we have used electron microscopy and in vitro motility assays to study the structural and functional effects of N-terminal fragments binding to thin filaments. 3D reconstructions suggest that under low Ca(2+) conditions, cMyBP-C displaces tropomyosin toward its high Ca(2+) position, and that this movement corresponds to thin filament activation in the motility assay. At high Ca(2+), cMyBP-C had little effect on tropomyosin position and caused slowing of thin filament sliding. Unexpectedly, a shorter N-terminal fragment did not displace tropomyosin or activate the thin filament at low Ca(2+) but slowed thin filament sliding as much as the larger fragments. These results suggest that cMyBP-C may both modulate thin filament activity, by physically displacing tropomyosin from its low Ca(2+) position on actin, and govern contractile speed by an independent molecular mechanism.
Related JoVE Video
Proteotoxicity: An Underappreciated Pathology in Cardiac Disease.
J. Mol. Cell. Cardiol.
PUBLISHED: 10-27-2013
Show Abstract
Hide Abstract
In general, in most organ systems, intracellular protein homeostasis is the sum of many factors, including chromosomal state, protein synthesis, post-translational processing and transport, folding, assembly and disassembly into macromolecular complexes, protein stability and clearance. In the heart, there has been a focus on the gene programs that are activated during pathogenic processes, but the removal of damaged proteins and organelles has been underappreciated as playing an important role in the pathogenesis of heart disease. Proteotoxicity refers to the adverse effects of damaged or misfolded proteins and even organelles on the cell. At the cellular level, the ultimate outcome of uncontrolled or severe proteotoxicity is cell death; hence, the pathogenic impact of proteotoxicity is maximally manifested in organs with no or very poor regenerative capability such as the brain and the heart. Evidence for increased cardiac proteotoxicity is rapidly mounting for a large subset of congenital and acquired human heart disease. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteotoxicity as a major pathogenic factor in the heart. This dictates rigorous testing for the efficacy of proteotoxic attenuation as a new strategy to treat heart disease. This review article highlights some recent advances in our understanding of how misfolded proteins can injure and are handled in the cell, examining the emerging evidence for targeting proteotoxicity as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled Cardiac Protein Quality Control.
Related JoVE Video
Proteasomal and lysosomal protein degradation and heart disease.
J. Mol. Cell. Cardiol.
PUBLISHED: 09-25-2013
Show Abstract
Hide Abstract
In the cell, the proteasome and lysosomes represent the most important proteolytic machineries, responsible for the protein degradation in the ubiquitin-proteasome system (UPS) and autophagy, respectively. Both the UPS and autophagy are essential to protein quality and quantity control. Alterations in cardiac proteasomal and lysosomal degradation are remarkably associated with most heart disease in humans and are implicated in the pathogenesis of congestive heart failure. Studies carried out in animal models and in cell culture have begun to establish both sufficiency and, in some cases, the necessity of proteasomal functional insufficiency or lysosomal insufficiency as a major pathogenic factor in the heart. This review article highlights some recent advances in the research into proteasome and lysosome protein degradation in relation to cardiac pathology and examines the emerging evidence for enhancing degradative capacities of the proteasome and/or lysosome as a new therapeutic strategy for heart disease. This article is part of a Special Issue entitled Cardiac Protein Quality Control.
Related JoVE Video
Post-translational control of cardiac hemodynamics through myosin binding protein C.
Pflugers Arch.
PUBLISHED: 09-06-2013
Show Abstract
Hide Abstract
Cardiac myosin binding protein C (cMyBP-C) is an integral sarcomeric protein that associates with the thick, thin, and titin filament systems in the contractile apparatus. Three different isoforms of MyBP-C exist in mammalian muscle: slow skeletal (MyBPC1), fast skeletal (MyBP-C2, with several variants), and cardiac (cMyBP-C). Genetic screening studies show that mutations in MYBPC3 occur frequently and are responsible for as many as 30-35 % of identified cases of familial hypertrophic cardiomyopathy. The function of cMyBP-C is stringently regulated by its post-translational modification. In particular, the addition of phosphate groups occurs with high frequency on certain serine residues that are located in the cardiac-specific regulatory M domain. Phosphorylation of this domain has been extensively studied in vitro and in vivo. Phosphorylation of the M domain can regulate the manner in which actin and myosin interact, affecting the cross bridge cycle and ultimately, cardiac hemodynamics.
Related JoVE Video
The COP9 signalosome is required for autophagy, proteasome-mediated proteolysis, and cardiomyocyte survival in adult mice.
Circ Heart Fail
PUBLISHED: 07-19-2013
Show Abstract
Hide Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex composed of 8 unique protein subunits (CSN1 through CSN8). We have recently discovered in perinatal mouse hearts that CSN regulates not only proteasome-mediated proteolysis but also macroautophagy. However, the physiological significance of CSN in a post-mitotic organ of adult vertebrates has not been determined. We sought to study the physiological role of CSN8/CSN in adult mouse hearts.
Related JoVE Video
An endogenously produced fragment of cardiac myosin-binding protein C is pathogenic and can lead to heart failure.
Circ. Res.
PUBLISHED: 07-12-2013
Show Abstract
Hide Abstract
A stable 40-kDa fragment is produced from cardiac myosin-binding protein C when the heart is stressed using a stimulus, such as ischemia-reperfusion injury. Elevated levels of the fragment can be detected in the diseased mouse and human heart, but its ability to interfere with normal cardiac function in the intact animal is unexplored.
Related JoVE Video
Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes.
J. Biol. Chem.
PUBLISHED: 05-08-2013
Show Abstract
Hide Abstract
Cardiac autophagy is inhibited in type 1 diabetes. However, it remains unknown if the reduced autophagy contributes to the pathogenesis of diabetic cardiomyopathy. We addressed this question using mouse models with gain- and loss-of-autophagy. Autophagic flux was inhibited in diabetic hearts when measured at multiple time points after diabetes induction by streptozotocin as assessed by protein levels of microtubule-associated protein light chain 3 form 2 (LC3-II) or GFP-LC3 puncta in the absence and presence of the lysosome inhibitor bafilomycin A1. Autophagy in diabetic hearts was further reduced in beclin 1- or Atg16-deficient mice but was restored partially or completely by overexpression of beclin 1 to different levels. Surprisingly, diabetes-induced cardiac damage was substantially attenuated in beclin 1- and Atg16-deficient mice as shown by improved cardiac function as well as reduced levels of oxidative stress, interstitial fibrosis, and myocyte apoptosis. In contrast, diabetic cardiac damage was dose-dependently exacerbated by beclin 1 overexpression. The cardioprotective effects of autophagy deficiency were reproduced in OVE26 diabetic mice. These effects were associated with partially restored mitophagy and increased expression and mitochondrial localization of Rab9, an essential regulator of a non-canonical alternative autophagic pathway. Together, these findings demonstrate that the diminished autophagy is an adaptive response that limits cardiac dysfunction in type 1 diabetes, presumably through up-regulation of alternative autophagy and mitophagy.
Related JoVE Video
Enhanced autophagy ameliorates cardiac proteinopathy.
J. Clin. Invest.
PUBLISHED: 05-03-2013
Show Abstract
Hide Abstract
Basal autophagy is a crucial mechanism in cellular homeostasis, underlying both normal cellular recycling and the clearance of damaged or misfolded proteins, organelles and aggregates. We showed here that enhanced levels of autophagy induced by either autophagic gene overexpression or voluntary exercise ameliorated desmin-related cardiomyopathy (DRC). To increase levels of basal autophagy, we generated an inducible Tg mouse expressing autophagy-related 7 (Atg7), a critical and rate-limiting autophagy protein. Hearts from these mice had enhanced autophagy, but normal morphology and function. We crossed these mice with CryABR120G mice, a model of DRC in which autophagy is significantly attenuated in the heart, to test the functional significance of autophagy activation in a proteotoxic model of heart failure. Sustained Atg7-induced autophagy in the CryABR120G hearts decreased interstitial fibrosis, ameliorated ventricular dysfunction, decreased cardiac hypertrophy, reduced intracellular aggregates and prolonged survival. To determine whether different methods of autophagy upregulation have additive or even synergistic benefits, we subjected the autophagy-deficient CryABR120G mice and the Atg7-crossed CryABR120G mice to voluntary exercise, which also upregulates autophagy. The entire exercised Atg7-crossed CryABR120G cohort survived to 7 months. These findings suggest that activating autophagy may be a viable therapeutic strategy for improving cardiac performance under proteotoxic conditions.
Related JoVE Video
Functional dissection of myosin binding protein C phosphorylation.
J. Mol. Cell. Cardiol.
PUBLISHED: 04-13-2013
Show Abstract
Hide Abstract
Cardiac myosin binding protein C (cMyBP-C) phosphorylation is differentially regulated in the normal heart and during disease development. Our objective was to examine in detail three phosphorylatable sites (Ser-273, Ser-282, and Ser-302) present in the proteins cardiac-specific sequences, as these residues are differentially and reversibly phosphorylated during normal and abnormal cardiac function. Three transgenic lines were generated: DAA, which expressed cMyBP-C containing Asp-273, Ala-282, and Ala-302, in which a charged amino acid was placed at residue 273 and the remaining two sites rendered nonphosphorylatable by substituting alanines for the two serines; AAD containing Ala-273, Ala-282, and Asp-302, in which aspartate was placed at residue 302 and the remaining two sites rendered nonphosphorylatable; and SDS containing Ser-273, Asp-282, and Ser-302. These mice were compared to mice constructed previously along similar lines: wild type, in which normal cMyBP-C is transgenically expressed, AllP-, in which alanines were substituted and ADA mice as well. DAA and AAD mice showed pathology that was more severe than cMyBP-C nulls. DAA and AAD animals exhibited left ventricular chamber dilation, interstitial fibrosis, irregular cardiac rhythm and sudden cardiac death. Our results define the effects of the sites post-translational modifications on cMyBP-C functionality and together, give a comprehensive picture of the potential consequences of site-specific phosphorylation. Ser-282 is a key residue in controlling S2 interaction with the thick and thin filaments. The new DAA and AAD constructs show that phosphorylation at one site in the absence of the ability to phosphorylate the other sites, depending upon the particular residues involved, can lead to severe cardiac remodeling and dysfunction.
Related JoVE Video
Transgenic mouse ?- and ?-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences.
J. Biol. Chem.
PUBLISHED: 04-11-2013
Show Abstract
Hide Abstract
Familial hypertrophic cardiomyopathy (FHC) is a major cause of sudden cardiac death in young athletes. The discovery in 1990 that a point mutation at residue 403 (R403Q) in the ?-myosin heavy chain (MHC) caused a severe form of FHC was the first of many demonstrations linking FHC to mutations in muscle proteins. A mouse model for FHC has been widely used to study the mechanochemical properties of mutated cardiac myosin, but mouse hearts express ?-MHC, whereas the ventricles of larger mammals express predominantly ?-MHC. To address the role of the isoform backbone on function, we generated a transgenic mouse in which the endogenous ?-MHC was partially replaced with transgenically encoded ?-MHC or ?-MHC. A His6 tag was cloned at the N terminus, along with R403Q, to facilitate isolation of myosin subfragment 1 (S1). Stopped flow kinetics were used to measure the equilibrium constants and rates of nucleotide binding and release for the mouse S1 isoforms bound to actin. For the wild-type isoforms, we found that the affinity of MgADP for ?-S1 (100 ?M) is ~ 4-fold weaker than for ?-S1 (25 ?M). Correspondingly, the MgADP release rate for ?-S1 (350 s(-1)) is ~3-fold greater than for ?-S1 (120 s(-1)). Introducing the R403Q mutation caused only a minor reduction in kinetics for ?-S1, but R403Q in ?-S1 caused the ADP release rate to increase by 20% (430 s(-1)). These transient kinetic studies on mouse cardiac myosins provide strong evidence that the functional impact of an FHC mutation on myosin depends on the isoform backbone.
Related JoVE Video
LiveData, Inc: Improving the quality of patient care and lowering costs in the perioperative suite.
Crit Care Nurs Q
PUBLISHED: 03-09-2013
Show Abstract
Hide Abstract
Centers for Medicare and Medicaid Services (CMS), The Joint Commission, the National Quality Forum, and the World Health Organization are among the world bodies that are developing patient-safety standards. Successfully complying with new protocols tends to increase the workload of caregivers, distract from patient care, and demand greater administrative outlay from hospitals. Various initiatives to improve the quality of patient care are coupled with pressure to reduce healthcare costs. LiveData Inc. has been addressing these challenges since entering the healthcare sector in 2004, at a time when the issue of patient safety was coming to the forefront. This article provides background on the evolution of patient safety issues, and describes how applying technology to improve operational workflow and patient safety in the perioperative suite improves the quality of care and reduces cost.
Related JoVE Video
Phosphorylation modulates the mechanical stability of the cardiac myosin-binding protein C motif.
Biophys. J.
PUBLISHED: 02-28-2013
Show Abstract
Hide Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick-filament-associated protein that modulates cardiac contractility through interactions of its N-terminal immunoglobulin (Ig)-like C0-C2 domains with actin and/or myosin. These interactions are modified by the phosphorylation of at least four serines located within the motif linker between domains C1 and C2. We investigated whether motif phosphorylation alters its mechanical properties by characterizing force-extension relations using atomic force spectroscopy of expressed mouse N-terminal cMyBP-C fragments (i.e., C0-C3). Protein kinase A phosphorylation or serine replacement with aspartic acids did not affect persistence length (0.43 ± 0.04 nm), individual Ig-like domain unfolding forces (118 ± 3 pN), or Ig extension due to unfolding (30 ± 0.38 nm). However, phosphorylation did significantly decrease the C0-C3 mean contour length by 24 ± 2 nm. These results suggest that upon phosphorylation, the motif, which is freely extensible in the nonphosphorylated state, adopts a more stable and/or different structure. Circular dichroism and dynamic light scattering data for shorter expressed C1-C2 fragments with all four serines replaced by aspartic acids confirmed that the motif did adopt a more stable structure that was not apparent in the nonphosphorylated motif. These biophysical data provide both a mechanical and structural basis for cMyBP-C regulation by motif phosphorylation.
Related JoVE Video
The system of care for the diabetic foot: objectives, outcomes, and opportunities.
Diabet Foot Ankle
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
Most cases of lower extremity limb loss in the United States occur among people with diabetes who have a diabetic foot ulcer (DFU). These DFUs and the associated limb loss that may occur lead to excess healthcare costs and have a large negative impact on mobility, psychosocial well-being, and quality of life. The strategies for DFU prevention and management are evolving, but the implementation of these prevention and management strategies remains challenging. Barriers to implementation include poor access to primary medical care; patient beliefs and lack of adherence to medical advice; delays in DFU recognition; limited healthcare resources and practice heterogeneity of specialists. Herein, we review the contemporary outcomes of DFU prevention and management to provide a framework for prioritizing quality improvement efforts within a resource-limited healthcare environment.
Related JoVE Video
Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice.
Elife
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilitating outer membrane permeability of the MPTP. Loss of Bax/Bak reduced outer mitochondrial membrane permeability and conductance without altering inner membrane MPTP function, resulting in resistance to mitochondrial calcium overload and necrotic cell death. Reconstitution with mutants of Bax that cannot oligomerize and form apoptotic pores, but still enhance outer membrane permeability, permitted MPTP-dependent mitochondrial swelling and restored necrotic cell death. Our data predict that the MPTP is an inner membrane regulated process, although in the absence of Bax/Bak the outer membrane resists swelling and prevents organelle rupture to prevent cell death. DOI:http://dx.doi.org/10.7554/eLife.00772.001.
Related JoVE Video
In vivo delivery of nucleic acids via glycopolymer vehicles affords therapeutic infarct size reduction in vivo.
Mol. Ther.
PUBLISHED: 12-20-2011
Show Abstract
Hide Abstract
Using a new class of nontoxic and degradable glycopolymer-based vehicles termed poly(glycoamidoamine)s, we demonstrate virus-like delivery efficacy of oligodeoxynucleotide (ODN) decoys to cardiomyoblasts (H9c2), primary cardiomyocytes, and the mouse heart. These glycopolymers bind and compact ODN decoys into nanoparticle complexes that are internalized by the cell membrane and mediate nuclear uptake of DNA in 90+% of cultured primary cardiomyocytes and 87% of the mouse myocardium. Experimental results reveal that decoys delivered via these glycopolymers block the activation of the transcription factor NF-?B, a major contributor to ischemia/reperfusion injury. Decoy complexes formed with glycopolymer T4 significantly blocked downstream gene expression of Cox-2 and limited myocardial infarction in vivo, phenocopying a transgenic mouse model. These promising delivery vehicles may facilitate high-throughput genetic approaches in animal models. Additionally, the low toxicity, biodegradation, and outstanding delivery efficacy suggest that these nanomedicines may be clinically applicable for gene regulatory therapy.
Related JoVE Video
The human phospholamban Arg14-deletion mutant localizes to plasma membrane and interacts with the Na/K-ATPase.
J. Mol. Cell. Cardiol.
PUBLISHED: 11-02-2011
Show Abstract
Hide Abstract
Depressed Ca-handling in cardiomyocytes is frequently attributed to impaired sarcoplasmic reticulum (SR) function in human and experimental heart failure. Phospholamban (PLN) is a key regulator of SR and cardiac function, and PLN mutations in humans have been associated with dilated cardiomyopathy (DCM). We previously reported the deletion of the highly conserved amino acid residue arginine 14 (nucleic acids 39, 40 and 41) in DCM patients. This basic amino acid is important in maintaining the upstream consensus sequence for PKA phosphorylation of Ser 16 in PLN. To assess the function of this mutant PLN, we introduced the PLN-R14Del in cardiac myocytes of the PLN null mouse. Transgenic lines expressing mutant PLN-R14Del at similar protein levels to wild types exhibited no inhibition of the initial rates of oxalate-facilitated SR Ca uptake compared to PLN-knockouts (PLN-KO). The contractile parameters and Ca-kinetics also remained highly stimulated in PLN-R14Del cardiomyocytes, similar to PLN-KO, and isoproterenol did not further stimulate these hyper-contractile basal parameters. Consistent with the lack of inhibition on SR Ca-transport and contractility, confocal microscopy indicated that the PLN-R14Del failed to co-localize with SERCA2a. Moreover, PLN-R14Del did not co-immunoprecipitate with SERCA2a (as did WT-PLN), but rather co-immunoprecipitated with the sarcolemmal Na/K-ATPase (NKA) and stimulated NKA activity. In addition, studies in HEK cells indicated significant fluorescence resonance energy transfer between PLN-R14Del-YFP and NKA?1-CFP, but not with the NKA regulator phospholemman. Despite the enhanced cardiac function in PLN-R14Del hearts (as in PLN-knockouts), there was cardiac hypertrophy (unlike PLN-KO) coupled with activation of Akt and the MAPK pathways. Thus, human PLN-R14Del is misrouted to the sarcolemma, in the absence of endogenous PLN, and alters NKA activity, leading to cardiac remodeling.
Related JoVE Video
Autophagy and proteotoxicity in cardiomyocytes.
Autophagy
PUBLISHED: 10-01-2011
Show Abstract
Hide Abstract
Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. We wished to determine if autophagic induction by Atg7 is sufficient to reduce misfolded protein and aggregate content in protein misfolding-stressed cardiomyocytes. We used loss- and gain-of-function approaches in cultured cardiomyocytes to determine the effects of ATG7 knockdown and Atg7 overexpression in protein conformation-based toxicity induced by expression of a mutant aB crystallin (CryAB (R120G) ) known to cause human heart disease. We show that Atg7 induces basal autophagy and rescues the CryAB accumulation of misfolded proteins and aggregates in cardiomyocytes.
Related JoVE Video
Unique single molecule binding of cardiac myosin binding protein-C to actin and phosphorylation-dependent inhibition of actomyosin motility requires 17 amino acids of the motif domain.
J. Mol. Cell. Cardiol.
PUBLISHED: 08-02-2011
Show Abstract
Hide Abstract
Cardiac myosin binding protein-C (cMyBP-C) has 11 immunoglobulin or fibronectin-like domains, C0 through C10, which bind sarcomeric proteins, including titin, myosin and actin. Using bacterial expressed mouse N-terminal fragments (C0 through C3) in an in vitro motility assay of myosin-generated actin movement and the laser trap assay to assess single molecule actin-binding capacity, we determined that the first N-terminal 17 amino acids of the cMyBP-C motif (the linker between C1 and C2) contain a strong, stereospecific actin-binding site that depends on positive charge due to a cluster of arginines. Phosphorylation of 4 serines within the motif decreases the fragments actin-binding capacity and actomyosin inhibition. Using the laser trap assay, we observed individual cMyBP-C fragments transiently binding to a single actin filament with both short (~20 ms) and long (~300 ms) attached lifetimes, similar to that of a known actin-binding protein, ?-actinin. These experiments suggest that cMyBP-C N-terminal domains containing the cMyBP-C motif tether actin filaments and provide one mechanism by which cMyBP-C modulates actomyosin motion generation, i.e. by imposing an effective viscous load within the sarcomere.
Related JoVE Video
Desmin-related cardiomyopathy: an unfolding story.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 07-22-2011
Show Abstract
Hide Abstract
The intermediate filament protein desmin is an integral component of the cardiomyocyte and serves to maintain the overall structure and cytoskeletal organization within striated muscle cells. Desmin-related myopathy can be caused by mutations in desmin or associated proteins, which leads to intracellular accumulation of misfolded protein and production of soluble pre-amyloid oligomers, which leads to weakened skeletal and cardiac muscle. In this review, we examine the cellular phenotypes in relevant animal models of desmin-related cardiomyopathy. These models display characteristic sarcoplasmic protein aggregates. Aberrant protein aggregation leads to mitochondrial dysfunction, abnormal metabolism, and altered cardiomyocyte structure. These deficits to cardiomyocyte function may stem from impaired cellular proteolytic mechanisms. The data obtained from these models allow a more complete picture of the pathology in desmin-related cardiomyopathy to be described. Moreover, these studies highlight the importance of desmin in maintaining cardiomyocyte structure and illustrate how disrupting this network can be deleterious to the heart. We emphasize the similarities observed between desmin-related cardiomyopathy and other protein conformational disorders and speculate that therapies to treat this disease may be broadly applicable to diverse protein aggregation-based disorders.
Related JoVE Video
Controlled and cardiac-restricted overexpression of the arginine vasopressin V1A receptor causes reversible left ventricular dysfunction through G?q-mediated cell signaling.
Circulation
PUBLISHED: 07-11-2011
Show Abstract
Hide Abstract
[Arg8]-vasopressin (AVP) activates 3 G-protein-coupled receptors: V1A, V2, and V1B. The AVP-V1A receptor is the primary AVP receptor in the heart; however, its role in cardiac homeostasis is controversial. To better understand AVP-mediated signaling in the heart, we created a transgenic mouse with controlled overexpression of the V1A receptor.
Related JoVE Video
Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice.
J. Clin. Invest.
PUBLISHED: 06-22-2011
Show Abstract
Hide Abstract
The ubiquitin-proteasome system degrades most intracellular proteins, including misfolded proteins. Proteasome functional insufficiency (PFI) has been observed in proteinopathies, such as desmin-related cardiomyopathy, and implicated in many common diseases, including dilated cardiomyopathy and ischemic heart disease. However, the pathogenic role of PFI has not been established. Here we created inducible Tg mice with cardiomyocyte-restricted overexpression of proteasome 28 subunit ? (CR-PA28?OE) to investigate whether upregulation of the 11S proteasome enhances the proteolytic function of the proteasome in mice and, if so, whether the enhancement can rescue a bona fide proteinopathy and protect against ischemia/reperfusion (I/R) injury. We found that CR-PA28?OE did not alter the homeostasis of normal proteins and cardiac function, but did facilitate the degradation of a surrogate misfolded protein in the heart. By breeding mice with CR-PA28?OE with mice representing a well-established model of desmin-related cardiomyopathy, we demonstrated that CR-PA28?OE markedly reduced aberrant protein aggregation. Cardiac hypertrophy was decreased, and the lifespan of the animals was increased. Furthermore, PA28? knockdown promoted, whereas PA28? overexpression attenuated, accumulation of the mutant protein associated with desmin-related cardiomyopathy in cultured cardiomyocytes. Moreover, CR-PA28?OE limited infarct size and prevented postreperfusion cardiac dysfunction in mice with myocardial I/R injury. We therefore conclude that benign enhancement of cardiac proteasome proteolytic function can be achieved by CR-PA28?OE and that PFI plays a major pathogenic role in cardiac proteinopathy and myocardial I/R injury.
Related JoVE Video
Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes.
Circ. Res.
PUBLISHED: 05-26-2011
Show Abstract
Hide Abstract
Increasing evidence suggests that misfolded proteins and intracellular aggregates contribute to cardiac disease and heart failure. Several cardiomyopathies, including the ?B-crystallin R120G mutation (CryAB(R120G)) model of desmin-related cardiomyopathy, accumulate cytotoxic misfolded proteins in the form of preamyloid oligomers and aggresomes. Impaired autophagic function is a potential cause of misfolded protein accumulations, cytoplasmic aggregate loads, and cardiac disease. Atg7, a mediator of autophagosomal biogenesis, is a putative regulator of autophagic function.
Related JoVE Video
A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function.
Circ. Res.
PUBLISHED: 05-19-2011
Show Abstract
Hide Abstract
Cardiac myosin-binding protein-C (cMyBP-C) phosphorylation at Ser-273, Ser-282, and Ser-302 regulates myocardial contractility. In vitro and in vivo experiments suggest the nonequivalence of these sites and the potential importance of Ser-282 phosphorylation in modulating the proteins overall phosphorylation and myocardial function.
Related JoVE Video
Does open access improve the process and outcome of podiatric care?
J Clin Med Res
PUBLISHED: 03-29-2011
Show Abstract
Hide Abstract
Open access to clinics is a management strategy to improve healthcare delivery. Providers are sometimes hesitant to adopt open access because of fear of increased visits for potentially trivial complaints. We hypothesized open access clinics would result in decreased wait times, increased number of podiatry visits, fewer no shows, higher rates of acute care visits, and lower minor amputation rates over control clinics without open access.
Related JoVE Video
Electron microscopy and 3D reconstruction of F-actin decorated with cardiac myosin-binding protein C (cMyBP-C).
J. Mol. Biol.
PUBLISHED: 03-25-2011
Show Abstract
Hide Abstract
Myosin-binding protein C (MyBP-C) is an ?130-kDa rod-shaped protein of the thick (myosin containing) filaments of vertebrate striated muscle. It is composed of 10 or 11 globular 10-kDa domains from the immunoglobulin and fibronectin type III families and an additional MyBP-C-specific motif. The cardiac isoform cMyBP-C plays a key role in the phosphorylation-dependent enhancement of cardiac function that occurs upon ?-adrenergic stimulation, and mutations in MyBP-C cause skeletal muscle and heart diseases. In addition to binding to myosin, MyBP-C can also bind to actin via its N-terminal end, potentially modulating contraction in a novel way via this thick-thin filament bridge. To understand the structural basis of actin binding, we have used negative stain electron microscopy and three-dimensional reconstruction to study the structure of F-actin decorated with bacterially expressed N-terminal cMyBP-C fragments. Clear decoration was obtained under a variety of salt conditions varying from 25 to 180 mM KCl concentration. Three-dimensional helical reconstructions, carried out at the 180-mM KCl level to minimize nonspecific binding, showed MyBP-C density over a broad portion of the periphery of subdomain 1 of actin and extending tangentially from its surface in the direction of actins pointed end. Molecular fitting with an atomic structure of a MyBP-C Ig domain suggested that most of the N-terminal domains may be well ordered on actin. The location of binding was such that it could modulate tropomyosin position and would interfere with myosin head binding to actin.
Related JoVE Video
Hospital checklists. Transforming evidence-based care and patient safety protocols into routine practice.
Crit Care Nurs Q
PUBLISHED: 03-17-2011
Show Abstract
Hide Abstract
Hospital checklists are gaining momentum, particularly since the World Health Organizations Safe Surgery Saves Lives Program published results of its study in 2009, indicating that a safety checklist significantly improved surgical outcomes in hospitals across the world. The South Carolina Hospital Association, in partnership with Dr Atul Gawande, has launched a program to implement the World Health Organization Surgical Safety Checklist in every operating room in the state over the next few years. Governments, in such places as France and the Canadian province of Ontario, are also stepping in to make surgical checklists mandatory in their hospitals. Drawing on research, recent initiatives, and the companys experience in high-acuity units, this article explores the implications and challenges of implementing checklists in todays hospitals. If a checklist is to succeed as a mechanism for transforming evidence-based care and safety protocols into best and actual practice, it needs to be used consistently and durably; to achieve this, hospitals need to foster a supportive environment as well as acquire a system to monitor, measure, and manage a culture that effectively embraces checklists.
Related JoVE Video
Roles for cardiac MyBP-C in maintaining myofilament lattice rigidity and prolonging myosin cross-bridge lifetime.
Biophys. J.
PUBLISHED: 03-15-2011
Show Abstract
Hide Abstract
We investigated the influence of cardiac myosin binding protein-C (cMyBP-C) and its constitutively unphosphorylated status on the radial and longitudinal stiffnesses of the myofilament lattice in chemically skinned myocardial strips of the following mouse models: nontransgenic (NTG), effective null for cMyBP-C (t/t), wild-type cMyBP-C expressed into t/t (WT(t/t)), and constitutively unphosphorylated cMyBP-C (AllP-(t/t)). We found that the absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP-(t/t) resulted in a compressible cardiac myofilament lattice induced by rigor not observed in the NTG and WT(t/t). These results suggest that the presence and phosphorylation of the N-terminus of cMyBP-C provides structural support and radial rigidity to the myofilament lattice. Examination of myofilament longitudinal stiffness under rigor conditions demonstrated a significant reduction in cross-bridge-dependent stiffness in the t/t compared with NTG controls, but not in the AllP-(t/t) compared with WT(t/t) controls. The absence of cMyBP-C in the t/t and the unphosphorylated cMyBP-C in the AllP-(t/t) both resulted in a shorter myosin cross-bridge lifetime when myosin isoform was controlled. These data collectively suggest that cMyBP-C provides radial rigidity to the myofilament lattice through the N-terminus, and that disruption of the phosphorylation of cMyBP-C is sufficient to abolish this structural role of the N-terminus and shorten cross-bridge lifetime. Although the presence of cMyBP-C also provides longitudinal rigidity, phosphorylation of the N-terminus is not necessary to maintain longitudinal rigidity of the lattice, in contrast to radial rigidity.
Related JoVE Video
Signaling and myosin-binding protein C.
J. Biol. Chem.
PUBLISHED: 01-21-2011
Show Abstract
Hide Abstract
Myosin-binding protein C (MyBP-C) is a thick filament protein consisting of 1274 amino acid residues (149 kDa) that was identified by Starr and Offer over 30 years ago as a contaminant present in a preparation of purified myosin. Since then, numerous studies have defined the muscle-specific isoforms, the structure, and the importance of the proteins in normal striated muscle structure and function. Underlying the critical role the protein plays, it is now apparent that mutations in the cardiac isoform (cMyBP-C) are responsible for a substantial proportion (30-40%) of genotyped cases of familial hypertrophic cardiomyopathy. Although generally accepted that MyBP-C can interact with all three filament systems within the sarcomere (the thick, thin, and titin filaments), the exact nature of these interactions and the functional consequences of modified binding remain obscure. In addition to these structural considerations, cMyBP-C can serve as a point of convergence for signaling processes in the cardiomyocyte via post-translational modifications mediated by kinases that phosphorylate residues in the cardiac-specific isoform sequence. Thus, cMyBP-C is a critical nodal point that has both important structural and signaling roles and whose modifications are known to cause significant human cardiac disease.
Related JoVE Video
History of the team approach to amputation prevention: pioneers and milestones.
J Am Podiatr Med Assoc
PUBLISHED: 09-18-2010
Show Abstract
Hide Abstract
This historical perspective highlights some of the pioneers, milestones, teams, and system changes that have had a major impact on management of the diabetic foot during the past 100 years. In 1934, American diabetologist Elliott P. Joslin noted that mortality from diabetic coma had fallen from 60% to 5% after the introduction of insulin, yet deaths from diabetic gangrene of the lower extremity had risen significantly. He believed that diabetic gangrene was preventable. His remedy was a team approach that included foot care, diet, exercise, prompt treatment of foot infections, and specialized surgical care. The history of the team approach to management of the diabetic foot chronicles the rise of a new health profession-podiatric medicine and surgery-and emergence of the specialty of vascular surgery. The partnership among the diabetologist, vascular surgeon, and podiatric surgeon is a natural one. The complementary skills and knowledge of each can improve limb salvage and functional outcomes. Comprehensive multidisciplinary foot-care programs have been shown to increase quality of care and reduce amputation rates by 36% to 86%. Development of distal revascularization techniques to restore pulsatile blood flow to the foot has also been a major advancement. Patients with diabetic foot complications are among the most complex and vulnerable of all patient populations. Specialized diabetic foot clinics of the 21st century should be multidisciplinary and equipped to coordinate diagnosis, off-loading, and preventive care; to perform revascularization procedures; to aggressively treat infections; and to manage medical comorbidities.
Related JoVE Video
History of the team approach to amputation prevention: pioneers and milestones.
J. Vasc. Surg.
PUBLISHED: 09-01-2010
Show Abstract
Hide Abstract
This historical perspective highlights some of the pioneers, milestones, teams, and system changes that have had a major impact on the management of the diabetic foot during the past 100 years. In 1934, American diabetologist Elliott P. Joslin noted that mortality from diabetic coma had fallen from 60% to 5% after the introduction of insulin, yet deaths from diabetic gangrene of the lower extremity had risen significantly. He believed that diabetic gangrene was preventable. His remedy was a team approach that included foot care, diet, exercise, prompt treatment of foot infections, and specialized surgical care.
Related JoVE Video
Autophagy in desmin-related cardiomyopathy: thoughts at the halfway point.
Autophagy
PUBLISHED: 06-05-2010
Show Abstract
Hide Abstract
Accumulation of protein aggregates is a hallmark of several neurodegenerative disorders as well as for a number of protein conformation-based diseases, including those affecting muscle, liver and heart. Desminopathy or desmin-related myopathy (DRM) is a skeletal myopathy characterized by bilateral muscle weakness, but is often accompanied by cardiomyopathy as well. DRM can be caused by mutations in desmin, alphaB crystallin, myotilin, Z-band alternatively spliced PDZ-containing protein (ZASP), filamin C (FLNC) or Bcl-2-associated athanogene-3 (BAG3). The common pathological pattern in DRM is accumulation of misfolded proteins, however, clinical manifestations can differ significantly.
Related JoVE Video
Manipulation of death pathways in desmin-related cardiomyopathy.
Circ. Res.
PUBLISHED: 04-01-2010
Show Abstract
Hide Abstract
Transgenic mice with cardiac specific overexpression of mutated alphaB-crystallin (CryAB(R120G)) display Desmin-related myopathy (DRM) with dilated cardiomyopathy and heart failure. Our previous studies showed the presence of progressive mitochondrial abnormalities and activation of apoptotic cell death in CryAB(R120G) transgenic hearts. However, the role of mitochondrial dysfunction and apoptosis in the overall course of the disease was unclear.
Related JoVE Video
Heart-specific deletion of CnB1 reveals multiple mechanisms whereby calcineurin regulates cardiac growth and function.
J. Biol. Chem.
PUBLISHED: 12-27-2009
Show Abstract
Hide Abstract
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca(2+) following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca(2+) handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca(2+)-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the alpha-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca(2+)-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.
Related JoVE Video
Distinct sarcomeric substrates are responsible for protein kinase D-mediated regulation of cardiac myofilament Ca2+ sensitivity and cross-bridge cycling.
J. Biol. Chem.
PUBLISHED: 12-17-2009
Show Abstract
Hide Abstract
Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser(22)/Ser(23), reduces myofilament Ca(2+) sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser(22)/Ser(23) remains to be established. To determine the role of cTnI phosphorylation at Ser(22)/Ser(23) in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser(22)/Ser(23) are substituted by nonphosphorylatable Ala (cTnI-Ala(2)). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser(22)/Ser(23) and decreased the Ca(2+) sensitivity of force. In contrast, PKD had no effect on the Ca(2+) sensitivity of force in myocardium from cTnI-Ala(2) mice, in which Ser(22)/Ser(23) were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala(2) mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser(273), Ser(282), and Ser(302), and revealed that PKD phosphorylates only Ser(302). Furthermore, PKD phosphorylated Ser(302) selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala(2) mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca(2+) sensitivity through cTnI phosphorylation at Ser(22)/Ser(23) but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser(302), which may mediate the latter effect.
Related JoVE Video
Effects of myosin heavy chain manipulation in experimental heart failure.
J. Mol. Cell. Cardiol.
PUBLISHED: 09-21-2009
Show Abstract
Hide Abstract
The myosin heavy chain (MHC) isoforms, alpha- and beta-MHC, are expressed in developmental- and chamber-specific patterns. Healthy human ventricle contains approximately 2-10% alpha-MHC and these levels are reduced even further in the failing ventricle. While down-regulation of alpha-MHC in failing myocardium is considered compensatory, we previously demonstrated that persistent transgenic (TG) alpha-MHC expression in the cardiomyocytes is cardioprotective in rabbits with tachycardia-induced cardiomyopathy (TIC). We sought to determine if this benefit extends to other types of experimental heart failure and focused on two models relevant to human heart failure: myocardial infarction (MI) and left ventricular pressure overload. TG and nontransgenic rabbits underwent either coronary artery ligation at 8 months or aortic banding at 10 days of age. The effects of alpha-MHC expression were assessed at molecular, histological and organ levels. In the MI experiments, we unexpectedly found modest functional advantages to alpha-MHC expression. In contrast, despite subtle benefits in TG rabbits subjected to aortic banding, cardiac function was minimally affected. We conclude that the benefits of persistent alpha-MHC expression depend upon the mechanism of heart failure. Importantly, in none of the scenarios studied did we find any detrimental effects associated with persistent alpha-MHC expression. Thus manipulation of MHC composition may be beneficial in certain types of heart failure and does not appear to compromise heart function in others. Future considerations of myosin isoform manipulation as a therapeutic strategy should consider the underlying etiology of cardiac dysfunction.
Related JoVE Video
Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice.
Circulation
PUBLISHED: 09-08-2009
Show Abstract
Hide Abstract
Soluble stem cell factor (SCF) has been shown to mobilize bone marrow stem cells and improve cardiac repair after myocardial infarction (MI). However, the effect of membrane-associated SCF on cardiac remodeling after MI is not known. The present study investigated the effects of cardiomyocyte-specific overexpression of the membrane-associated isoform of human SCF (hSCF) on cardiac function after MI.
Related JoVE Video
Three-dimensional cardiac architecture determined by two-photon microtomy.
J Biomed Opt
PUBLISHED: 09-04-2009
Show Abstract
Hide Abstract
Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the alpha crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.
Related JoVE Video
Calcineurin protects the heart in a murine model of dilated cardiomyopathy.
J. Mol. Cell. Cardiol.
PUBLISHED: 09-01-2009
Show Abstract
Hide Abstract
Dilated cardiomyopathy (DCM) is a relatively common disease with a poor prognosis. Given that the only meaningful treatment for DCM is cardiac transplantation, investigators have explored the underlying molecular mechanisms of this disease in the hopes of identifying novel therapeutic targets. One such target is the serine-threonine phosphatase calcineurin, a Ca2+-activated signaling factor that is known to regulate the cardiac hypertrophic program, although its role in DCM is currently unknown. In order to address this issue, we crossed muscle lim protein (MLP) knock-out mice-a murine model of DCM-with calcineurin A beta ko mice, which lack the stress responsive isoform of calcineurin that critically regulates the cardiac hypertrophic response. Interestingly, the majority (73%) of the MLP/calcineurin A beta double knock-out mice died within 20 days of birth with signs of cardiomyopathy. Ultrastructural examination revealed enhanced cardiomyocyte apoptosis and necrosis in the postnatal myocardium of these mice. The MLP/calcineurin A beta double knock-out mice that survived until adulthood showed reduced left ventricular function, enhanced apoptotic and necrotic cardiomyocyte death and augmented myocardial fibrosis compared to various control groups. Antithetically, mild overexpression of activated calcineurin in the mouse heart improved function and adverse remodeling in MLP knock-out mice. Collectively, these results reveal an important and previously unrecognized protective function of endogenous myocardial calcineurin in a mouse model of dilated cardiomyopathy.
Related JoVE Video
Noonan syndrome is associated with enhanced pERK activity, the repression of which can prevent craniofacial malformations.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 08-24-2009
Show Abstract
Hide Abstract
A gain of function mutation in SHP2, a protein phosphatase encoded by PTPN11, causes Noonan syndrome (NS), which is characterized in part by developmental deficits in both the cardiac and skull fields. Previously, we found that expression of the mutated protein SHP2 Q79R in the heart led to a phenotypic presentation that mimicked some aspects of NS and that this was dependent upon activation of the ERK1/2 pathway. To understand the role that ERK1/2 signaling plays in skull development through signaling in the neural crest, we explored the consequences of Q79R expression in neural crest cells, which contribute to a subset of the bony and cartilaginous structures of the skull. Hyperactivation of ERK1/2 led to craniofacial defects that included smaller skull lengths, greater inner canthal distances, and taller frontal bone heights. In proportion to the smaller skull length, mandibular bone length was also reduced. Inhibition of ERK1/2 hyperactivity as a result of Q79R expression was achieved by injection of the MAPK/ERK kinase inhibitor U0126 during pregnancy. The drug effectively decreased the severity of the craniofacial defects and restored normal skull shape and fontanelle closure. X-ray computer-assisted microtomography analysis of the head confirmed that decreasing ERK1/2 activity led to an abrogation of the craniofacial deficits and brain shape changes that presented in the mice. These data show that normal ERK1/2 signaling in the neural crest is imperative for normal craniofacial development and offer insight into how the heart and craniofacial developmental fields might be affected in some congenital syndromic presentations.
Related JoVE Video
Protein tyrosine phosphatase activity in the neural crest is essential for normal heart and skull development.
Proc. Natl. Acad. Sci. U.S.A.
PUBLISHED: 06-18-2009
Show Abstract
Hide Abstract
Mutations within the protein tyrosine phosphatase, SHP2, which is encoded by PTPN11, cause a significant proportion of Noonan syndrome (NS) cases, typically presenting with both cardiac disease and craniofacial abnormalities. Neural crest cells (NCCs) participate in both heart and skull formation, but the role of SHP2 signaling in NCC has not yet been determined. To gain insight into the role of SHP2 in NCC function, we ablated PTPN11 specifically in premigratory NCCs. SHP2-deficient NCCs initially exhibited normal migratory and proliferative patterns, but in the developing heart failed to migrate into the developing outflow tract. The embryos displayed persistent truncus arteriosus and abnormalities of the great vessels. The craniofacial deficits were even more pronounced, with large portions of the face and cranium affected, including the mandible and frontal and nasal bones. The data show that SHP2 activity in the NCC is essential for normal migration and differentiation into the diverse lineages found in the heart and skull and demonstrate the importance of NCC-based normal SHP2 activity in both heart and skull development, providing insight into the syndromic presentation characteristic of NS.
Related JoVE Video
Cell-type-specific transgenesis in the mouse.
Methods Mol. Biol.
PUBLISHED: 06-09-2009
Show Abstract
Hide Abstract
Since the early 1980s, when the first transgenic mice were generated, thousands of genetically modified mouse lines have been created. Early on, Jaenisch established proof of principle, showing that viral integration into the mouse genome and germline transmission of those exogenous sequences were possible (Proc Natl Acad Sci USA 71:1250-1254, 1974). Gordon et al. (Proc Natl Acad Sci USA 77:7380-7384, 1980) and Brinster et al. (Cell 27:223-231, 1981) subsequently used cloned genes to create "transgenic constructs" in which the exogenous DNA was randomly inserted into different sites in the mouse genome, stably maintained, and transmitted through the germline to the progeny. The utility of the process quickly became apparent when a transgene carrying the metallothionein-1 (Mt-1) promoter linked to thymidine kinase was able to drive expression in the mouse liver when promoter activity was induced by administration of metals. In an attempt to find stronger and more reliable promoters, viral promoter elements from SV40 or cytomegalovirus were incorporated. However, while these promoters were able to drive high levels of expression, for many applications they proved to be too blunt an instrument as they drove ubiquitous expression in many, if not all cell types, making it very hard to discern organ-specific or cell-type-specific effects due to transgene expression. Thus the need to find cell-type-specific promoters that could reproducibly drive high levels of transgene expression in a particular cell type, e.g., cardiomyocyte, became apparent. One such example is the alpha myosin heavy-chain (MHC) promoter, which has been used extensively to drive transgene expression in a cardiomyocyte-specific manner in the mouse. This chapter, while not written as a typical methods section, will describe the necessary components of the alpha myosin promoter. In addition, common problems associated with transgenic mouse lines will be addressed.
Related JoVE Video
With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure.
J. Mol. Cell. Cardiol.
PUBLISHED: 05-06-2009
Show Abstract
Hide Abstract
Over the past 20 years generation and subsequent characterization of genetically modified mouse models has revolutionized our understanding of disease-gene relationships and suggested numerous therapeutic targets for human disease. Cardiac biology has perhaps benefited more than most fields from the advent of modern genetic approaches in the mouse by providing a 3-dimensional integrated platform for phenotypic dissection of single gene function, largely replacing the unitary relationships derived from 2-dimensional cell culture-based platforms. Indeed, cardiac hypertrophy and end-stage heart failure are whole organ phenomena that occur within a dynamic neuroendocrine milieu, a backdrop that cannot be adequately modeled in cultured myocytes. Here we advocate the use of genetically modified mouse models for studying cardiac biology and show how, if employed properly, these models will continue to provide highly reliable data sets that suggest disease-gene relationships and novel therapeutic targets. In addition to a discussion of proper technique and controls, we will highlight examples of genetic approaches in the mouse that suggest novel disease relationships and therapeutic treatments for human heart failure, insights not possible with other experimental systems. In the preceding review/editorial by Cook, Clerk and Sugden, a number of strong arguments are made detailing the potential short comings associated with genetic approaches in the mouse as a means of unraveling cardiac disease mechanisms. We take very little issue with these arguments per se, although here we attempt to put these shortcomings into a greater context that extends beyond a single experimental setting, as well as to carefully construct a counterpoint that delineates the advantages of genetic approaches in the mouse compared with any other system currently in use in cardiovascular biology.
Related JoVE Video
alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice.
J. Clin. Invest.
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
In noncontractile cells, increases in intracellular Ca2+ concentration serve as a second messenger to signal proliferation, differentiation, metabolism, motility, and cell death. Many of these Ca2+-dependent regulatory processes operate in cardiomyocytes, although it remains unclear how Ca2+ serves as a second messenger given the high Ca2+ concentrations that control contraction. T-type Ca2+ channels are reexpressed in adult ventricular myocytes during pathologic hypertrophy, although their physiologic function remains unknown. Here we generated cardiac-specific transgenic mice with inducible expression of alpha1G, which generates Cav3.1 current, to investigate whether this type of Ca2+ influx mechanism regulates the cardiac hypertrophic response. Unexpectedly, alpha1G transgenic mice showed no cardiac pathology despite large increases in Ca2+ influx, and they were even partially resistant to pressure overload-, isoproterenol-, and exercise-induced cardiac hypertrophy. Conversely, alpha1G-/- mice displayed enhanced hypertrophic responses following pressure overload or isoproterenol infusion. Enhanced hypertrophy and disease in alpha1G-/- mice was rescued with the alpha1G transgene, demonstrating a myocyte-autonomous requirement of alpha1G for protection. Mechanistically, alpha1G interacted with NOS3, which augmented cGMP-dependent protein kinase type I activity in alpha1G transgenic hearts after pressure overload. Further, the anti-hypertrophic effect of alpha1G overexpression was abrogated by a NOS3 inhibitor and by crossing the mice onto the Nos3-/- background. Thus, cardiac alpha1G reexpression and its associated pool of T-type Ca2+ antagonize cardiac hypertrophy through a NOS3-dependent signaling mechanism.
Related JoVE Video
Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation.
J. Biol. Chem.
PUBLISHED: 04-14-2009
Show Abstract
Hide Abstract
There is little direct evidence on the role of myosin regulatory light chain phosphorylation in ejecting hearts. In studies reported here we determined the effects of regulatory light chain (RLC) phosphorylation on in situ cardiac systolic mechanics and in vitro myofibrillar mechanics. We compared data obtained from control nontransgenic mice (NTG) with a transgenic mouse model expressing a cardiac specific nonphosphorylatable RLC (TG-RLC(P-). We also determined whether the depression in RLC phosphorylation affected phosphorylation of other sarcomeric proteins. TG-RLC(P-) demonstrated decreases in base-line load-independent measures of contractility and power and an increase in ejection duration together with a depression in phosphorylation of myosin-binding protein-C (MyBP-C) and troponin I (TnI). Although TG-RLC(P-) displayed a significantly reduced response to beta(1)-adrenergic stimulation, MyBP-C and TnI were phosphorylated to a similar level in TG-RLC(P-) and NTG, suggesting cAMP-dependent protein kinase signaling to these proteins was not disrupted. A major finding was that NTG controls were significantly phosphorylated at RLC serine 15 following beta(1)-adrenergic stimulation, a mechanism prevented in TG-RLC(P-), thus providing a biochemical difference in beta(1)-adrenergic responsiveness at the level of the sarcomere. Our measurements of Ca(2+) tension and Ca(2+)-ATPase rate relations in detergent-extracted fiber bundles from LV trabeculae demonstrated a relative decrease in maximum Ca(2+)-activated tension and tension cost in TG-RLC(P-) fibers, with no change in Ca(2+) sensitivity. Our data indicate that RLC phosphorylation is critical for normal ejection and response to beta(1)-adrenergic stimulation. Our data also indicate that the lack of RLC phosphorylation promotes compensatory changes in MyBP-C and TnI phosphorylation, which when normalized do not restore function.
Related JoVE Video
Phospholamban overexpression in rabbit ventricular myocytes does not alter sarcoplasmic reticulum Ca transport.
Am. J. Physiol. Heart Circ. Physiol.
PUBLISHED: 04-10-2009
Show Abstract
Hide Abstract
Phospholamban has been suggested to be a key regulator of cardiac sarcoplasmic reticulum (SR) Ca cycling and contractility and a potential therapeutic target in restoring the depressed Ca cycling in failing hearts. Our understanding of the function of phospholamban stems primarily from studies in genetically altered mouse models. To evaluate the significance of this protein in larger mammalian species, which exhibit Ca cycling properties similar to humans, we overexpressed phospholamban in adult rabbit cardiomyocytes. Adenoviral-mediated gene transfer, at high multiplicities of infection, resulted in an insignificant 1.22-fold overexpression of phospholamban. There were no effects on twitch Ca-transient amplitude or decay under basal or isoproterenol-stimulated conditions. Furthermore, the SR Ca load and Na/Ca exchanger function were not altered. These apparent differences between phospholamban overexpression in rabbit compared with previous findings in the mouse may be due to a significantly higher (1.5-fold) endogenous phospholamban-to-sarco(endo)plasmic reticulum Ca-ATPase (SERCA) 2a ratio and potential functional saturation of SERCA2a by phospholamban in rabbit cardiomyocytes. The findings suggest that important species-dependent differences in phospholamban regulation of SERCA2a occur. In larger mammals, a higher fraction of SERCA2a pumps are regulated by phospholamban, and this may influence therapeutic strategies to enhance cardiac contractility and functional cardiac reserve.
Related JoVE Video
Effects of cardiac myosin isoform variation on myofilament function and crossbridge kinetics in transgenic rabbits.
Circ Heart Fail
PUBLISHED: 03-30-2009
Show Abstract
Hide Abstract
The left ventricles of both rabbits and humans express predominantly beta-myosin heavy chain (MHC). Transgenic (TG) rabbits expressing 40% alpha-MHC are protected against tachycardia-induced cardiomyopathy, but the normal amount of alpha-MHC expressed in humans is only 5% to 7% and its functional importance is questionable. This study was undertaken to identify a myofilament-based mechanism underlying tachycardia-induced cardiomyopathy protection and to extrapolate the impact of MHC isoform variation on myofilament function in human hearts.
Related JoVE Video
Inducible expression of active protein phosphatase-1 inhibitor-1 enhances basal cardiac function and protects against ischemia/reperfusion injury.
Circ. Res.
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
Ischemic heart disease, which remains the leading cause of morbidity and mortality in the Western world, is invariably characterized by impaired cardiac function and disturbed Ca(2+) homeostasis. Because enhanced inhibitor-1 (I-1) activity has been suggested to preserve Ca(2+) cycling, we sought to define whether increases in I-1 activity in the adult heart may ameliorate contractile dysfunction and cellular injury in the face of an ischemic insult. To this end, we generated an inducible transgenic mouse model that enabled temporally controlled expression of active I-1 (T35D). Active I-1 expression in the adult heart elicited significant enhancement of contractile function, associated with preferential phospholamban phosphorylation and enhanced sarcoplasmic reticulum Ca(2+)-transport. Further phosphoproteomic analysis revealed alterations in proteins associated with energy production and protein synthesis, possibly to support the increased metabolic demands of the hyperdynamic hearts. Importantly, on ischemia/reperfusion-induced injury, active I-1 expression augmented contractile function and recovery. Further examination revealed that the infarct region and apoptotic as well as necrotic injuries were significantly attenuated by enhanced I-1 activity. These cardioprotective effects were associated with suppression of the endoplasmic reticulum stress response. The present findings indicate that increased I-1 activity in the adult heart enhances Ca(2+) cycling and improves mechanical recovery, as well as cell survival after an ischemic insult, suggesting that active I-1 may represent a potential therapeutic strategy in myocardial infarction.
Related JoVE Video
Biochemical and mechanical dysfunction in a mouse model of desmin-related myopathy.
Circ. Res.
PUBLISHED: 03-19-2009
Show Abstract
Hide Abstract
An R120G mutation in alphaB-crystallin (CryAB(R120G)) causes desmin-related myopathy (DRM). In mice with cardiomyocyte-specific expression of the mutation, CryAB(R120G)-mediated DRM is characterized by CryAB and desmin accumulations within cardiac muscle, mitochondrial deficiencies, activation of apoptosis, and heart failure (HF). Excessive production of reactive oxygen species (ROS) is often a hallmark of HF and treatment with antioxidants can sometimes prevent the progression of HF in terms of contractile dysfunction and cardiomyocyte survival. It is unknown whether blockade of ROS is beneficial for protein misfolding diseases such as DRM. We addressed this question by blocking the activity of xanthine oxidase (XO), a superoxide-generating enzyme that is upregulated in our model of DRM. The XO inhibitor oxypurinol was administered to CryAB(R120G) mice for a period of 1 or 3 months. Mitochondrial function was dramatically improved in treated animals in terms of complex I activity and conservation of mitochondrial membrane potential. Oxypurinol also largely restored normal mitochondrial morphology. Surprisingly, however, cardiac contractile function and cardiac compliance were unimproved, indicating that the contractile deficit might be independent of mitochondrial dysfunction and the initiation of apoptosis. Using magnetic bead microrheology at the single cardiomyocyte level, we demonstrated that sarcomeric disarray and accumulation of the physical aggregates resulted in significant changes in the cytoskeletal mechanical properties in the CryAB(R120G) cardiomyocytes. Our findings indicate that oxypurinol treatment largely prevented mitochondrial deficiency in DRM but that contractility was not improved because of mechanical deficits in passive cytoskeletal stiffness.
Related JoVE Video
Cardiac myosin binding protein-C phosphorylation in a {beta}-myosin heavy chain background.
Circulation
PUBLISHED: 02-23-2009
Show Abstract
Hide Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation modulates cardiac contractility. When expressed in cMyBP-C-null (cMyBP-C((t/t))) hearts, a cMyBP-C phosphomimetic (cMyBP-C(AllP+)) rescued cardiac dysfunction and protected the hearts from ischemia/reperfusion injury. However, cMyBP-C function may be dependent on the myosin isoform type. Because these replacements were performed in the mouse heart, which contains predominantly alpha-myosin heavy chain (alpha-MyHC), the applicability of the data to humans, whose cardiomyocytes contain predominantly beta-MyHC, is unclear. We determined the effect(s) of cMyBP-C phosphorylation in a beta-MyHC transgenic mouse heart in which >80% of the alpha-MyHC was replaced by beta-MyHC, which is the predominant myosin isoform in human cardiac muscle.
Related JoVE Video
Plasma membrane Ca2+-ATPase isoform 4 antagonizes cardiac hypertrophy in association with calcineurin inhibition in rodents.
J. Clin. Invest.
PUBLISHED: 02-04-2009
Show Abstract
Hide Abstract
How Ca2+-dependent signaling effectors are regulated in cardiomyocytes, given the extreme cytoplasmic Ca2+ concentration changes that underlie contraction, remains unknown. Cardiomyocyte plasma membrane Ca2+-ATPase (PMCA) extrudes Ca2+ but has little effect on excitation-contraction coupling, suggesting its potential role in controlling Ca2+-dependent signaling effectors such as calcineurin. We generated cardiac-specific inducible PMCA4b transgenic mice that displayed normal global Ca2+ transient and cellular contraction levels and reduced cardiac hypertrophy following transverse aortic constriction (TAC) or phenylephrine/Ang II infusion, but showed no reduction in exercise-induced hypertrophy. Transgenic mice were protected from decompensation and fibrosis following long-term TAC. The PMCA4b transgene reduced the hypertrophic augmentation associated with transient receptor potential canonical 3 channel overexpression, but not that associated with activated calcineurin. Furthermore, Pmca4 gene-targeted mice showed increased cardiac hypertrophy and heart failure events after TAC. Physical associations between PMCA4b and calcineurin were enhanced by TAC and by agonist stimulation of cultured neonatal cardiomyocytes. PMCA4b reduced calcineurin nuclear factor of activated T cell-luciferase activity after TAC and in cultured neonatal cardiomyocytes after agonist stimulation. PMCA4b overexpression inhibited cultured cardiomyocyte hypertrophy following agonist stimulation, but much less so in a Ca2+ pumping-deficient PMCA4b mutant. Thus, Pmca4b likely reduces the local Ca2+ signals involved in reactive cardiomyocyte hypertrophy via calcineurin regulation.
Related JoVE Video
Cardiac myosin isoforms exhibit differential rates of MgADP release and MgATP binding detected by myocardial viscoelasticity.
J. Mol. Cell. Cardiol.
Show Abstract
Hide Abstract
We measured myosin crossbridge detachment rate and the rates of MgADP release and MgATP binding in mouse and rat myocardial strips bearing one of the two cardiac myosin heavy chain (MyHC) isoforms. Mice and rats were fed an iodine-deficient, propylthiouracil diet resulting in ~100% expression of ?-MyHC in the ventricles. Ventricles of control animals expressed ~100% ?-MyHC. Chemically-skinned myocardial strips prepared from papillary muscle were subjected to sinusoidal length perturbation analysis at maximum calcium activation pCa 4.8 and 17°C. Frequency characteristics of myocardial viscoelasticity were used to calculate crossbridge detachment rate over 0.01 to 5mM [MgATP]. The rate of MgADP release, equivalent to the asymptotic value of crossbridge detachment rate at high MgATP, was highest in mouse ?-MyHC (111.4±6.2s(-1)) followed by rat ?-MyHC (65.0±7.3s(-1)), mouse ?-MyHC (24.3±1.8s(-1)) and rat ?-MyHC (15.5±0.8s(-1)). The rate of MgATP binding was highest in mouse ?-MyHC (325±32 mM(-1) s(-1)) then mouse ?-MyHC (152±23 mM(-1) s(-1)), rat ?-MyHC (108±10 mM(-1) s(-1)) and rat ?-MyHC (55±6 mM(-1) s(-1)). Because the events of MgADP release and MgATP binding occur in a post power-stroke state of the myosin crossbridge, we infer that MgATP release and MgATP binding must be regulated by isoform- and species-specific structural differences located outside the nucleotide binding pocket, which is identical in sequence for these four myosins. We postulate that differences in the stiffness profile of the entire myosin molecule, including the thick filament and the myosin-actin interface, are primarily responsible for determining the strain on the nucleotide binding pocket and the subsequent differences in the rates of nucleotide release and binding observed among the four myosins examined here.
Related JoVE Video
Nitric oxide synthase-3 deficiency results in hypoplastic coronary arteries and postnatal myocardial infarction.
Eur. Heart J.
Show Abstract
Hide Abstract
AimsHypoplastic coronary artery disease is a rare congenital abnormality that is associated with sudden cardiac death. However, molecular mechanisms responsible for this disease are not clear. The aim of the present study was to assess the role of nitric oxide synthase-3 (NOS3) in the pathogenesis of hypoplastic coronary arteries.Methods and resultsWild-type (WT), NOS3(-/-), and a novel cardiac-specific NOS3 overexpression mouse model were employed. Deficiency in NOS3 resulted in coronary artery hypoplasia in foetal mice and spontaneous myocardial infarction in postnatal hearts. Coronary artery diameters, vessel density, and volume were significantly decreased in NOS3(-/-) mice at postnatal day 0. In addition, NOS3(-/-) mice showed a significant increase in the ventricular wall thickness, myocardial volume, and cardiomyocyte cell size compared with WT mice. Lack of NOS3 also down-regulated the expression of Gata4, Wilms tumour-1, vascular endothelial growth factor, basic fibroblast growth factor and erythropoietin, and inhibited migration of epicardial cells. These abnormalities and hypoplastic coronary arteries in the NOS3(-/-) mice were completely rescued by the cardiac-specific overexpression of NOS3.ConclusionNitric oxide synthase-3 is required for coronary artery development and deficiency in NOS3 leads to hypoplastic coronary arteries.
Related JoVE Video
Determination of the critical residues responsible for cardiac myosin binding protein Cs interactions.
J. Mol. Cell. Cardiol.
Show Abstract
Hide Abstract
Despite early demonstrations of myosin binding protein Cs (MyBP-C) interaction with actin, different investigators have reached different conclusions regarding the relevant and necessary domains mediating this binding. Establishing the detailed structure-function relationships is needed to fully understand cMyBP-Cs ability to impact on myofilament contraction as mutations in different domains are causative for familial hypertrophic cardiomyopathy. We defined cMyBP-Cs N-terminal structural domains that are necessary or sufficient to mediate interactions with actin and/or the head region of the myosin heavy chain (S2-MyHC). Using a combination of genetics and functional assays, we defined the actin binding site(s) present in cMyBP-C. We confirmed that cMyBP-Cs C1 and m domains productively interact with actin, while S2-MyHC interactions are restricted to the m domain. Using residue-specific mutagenesis, we identified the critical actin binding residues and distinguished them from the residues that were critical for S2-MyHC binding. To validate the structural and functional significance of these residues, we silenced the endogenous cMyBP-C in neonatal rat cardiomyocytes (NRC) using cMyBP-C siRNA, and replaced the endogenous cMyBP-C with normal or actin binding-ablated cMyBP-C. Replacement with actin binding-ablated cMyBP-C showed that the mutated protein did not incorporate into the sarcomere normally. Residues responsible for actin and S2-MyHC binding are partially present in overlapping domains but are unique. Expression of an actin binding-deficient cMyBP-C resulted in abnormal cytosolic distribution of the protein, indicating that interaction with actin is essential for the formation and/or maintenance of normal cMyBP-C sarcomeric distribution.
Related JoVE Video
Guidelines for the use and interpretation of assays for monitoring autophagy.
Daniel J Klionsky, Fábio C Abdalla, Hagai Abeliovich, Robert T Abraham, Abraham Acevedo-Arozena, Khosrow Adeli, Lotta Agholme, Maria Agnello, Patrizia Agostinis, Julio A Aguirre-Ghiso, Hyung Jun Ahn, Ouardia Ait-Mohamed, Slimane Ait-Si-Ali, Takahiko Akematsu, Shizuo Akira, Hesham M Al-Younes, Munir A Al-Zeer, Matthew L Albert, Roger L Albin, Javier Alegre-Abarrategui, Maria Francesca Aleo, Mehrdad Alirezaei, Alexandru Almasan, Maylin Almonte-Becerril, Atsuo Amano, Ravi Amaravadi, Shoba Amarnath, Amal O Amer, Nathalie Andrieu-Abadie, Vellareddy Anantharam, David K Ann, Shailendra Anoopkumar-Dukie, Hiroshi Aoki, Nadezda Apostolova, Giuseppe Arancia, John P Aris, Katsuhiko Asanuma, Nana Y O Asare, Hisashi Ashida, Valerie Askanas, David S Askew, Patrick Auberger, Misuzu Baba, Steven K Backues, Eric H Baehrecke, Ben A Bahr, Xue-Yuan Bai, Yannick Bailly, Robert Baiocchi, Giulia Baldini, Walter Balduini, Andrea Ballabio, Bruce A Bamber, Edward T W Bampton, Gábor Bánhegyi, Clinton R Bartholomew, Diane C Bassham, Robert C Bast, Henri Batoko, Boon-Huat Bay, Isabelle Beau, Daniel M Béchet, Thomas J Begley, Christian Behl, Christian Behrends, Soumeya Bekri, Bryan Bellaire, Linda J Bendall, Luca Benetti, Laura Berliocchi, Henri Bernardi, Francesca Bernassola, Sébastien Besteiro, Ingrid Bhatia-Kiššová, Xiaoning Bi, Martine Biard-Piechaczyk, Janice S Blum, Lawrence H Boise, Paolo Bonaldo, David L Boone, Beat C Bornhauser, Karina R Bortoluci, Ioannis Bossis, Fréderic Bost, Jean-Pierre Bourquin, Patricia Boya, Michaël Boyer-Guittaut, Peter V Bozhkov, Nathan R Brady, Claudio Brancolini, Andreas Brech, Jay E Brenman, Ana Brennand, Emery H Bresnick, Patrick Brest, Dave Bridges, Molly L Bristol, Paul S Brookes, Eric J Brown, John H Brumell, Nicola Brunetti-Pierri, Ulf T Brunk, Dennis E Bulman, Scott J Bultman, Geert Bultynck, Lena F Burbulla, Wilfried Bursch, Jonathan P Butchar, Wanda Buzgariu, Sérgio P Bydlowski, Ken Cadwell, Monika Cahova, Dongsheng Cai, Jiyang Cai, Qian Cai, Bruno Calabretta, Javier Calvo-Garrido, Nadine Camougrand, Michelangelo Campanella, Jenny Campos-Salinas, Eleonora Candi, Lizhi Cao, Allan B Caplan, Simon R Carding, Sandra M Cardoso, Jennifer S Carew, Cathleen R Carlin, Virginie Carmignac, Leticia A M Carneiro, Serena Carra, Rosario A Caruso, Giorgio Casari, Caty Casas, Roberta Castino, Eduardo Cebollero, Francesco Cecconi, Jean Celli, Hassan Chaachouay, Han-Jung Chae, Chee-Yin Chai, David C Chan, Edmond Y Chan, Raymond Chuen-Chung Chang, Chi-Ming Che, Ching-Chow Chen, Guang-Chao Chen, Guo-Qiang Chen, Min Chen, Quan Chen, Steve S-L Chen, WenLi Chen, Xi Chen, Xiangmei Chen, Xiequn Chen, Ye-Guang Chen, Yingyu Chen, Yongqiang Chen, Yu-Jen Chen, Zhixiang Chen, Alan Cheng, Christopher H K Cheng, Yan Cheng, Heesun Cheong, Jae-Ho Cheong, Sara Cherry, Russ Chess-Williams, Zelda H Cheung, Eric Chevet, Hui-Ling Chiang, Roberto Chiarelli, Tomoki Chiba, Lih-Shen Chin, Shih-Hwa Chiou, Francis V Chisari, Chi Hin Cho, Dong-Hyung Cho, Augustine M K Choi, DooSeok Choi, Kyeong Sook Choi, Mary E Choi, Salem Chouaib, Divaker Choubey, Vinay Choubey, Charleen T Chu, Tsung-Hsien Chuang, Sheau-Huei Chueh, Taehoon Chun, Yong-Joon Chwae, Mee-Len Chye, Roberto Ciarcia, Maria R Ciriolo, Michael J Clague, Robert S B Clark, Peter G H Clarke, Robert Clarke, Patrice Codogno, Hilary A Coller, María I Colombo, Sergio Comincini, Maria Condello, Fabrizio Condorelli, Mark R Cookson, Graham H Coombs, Isabelle Coppens, Ramón Corbalán, Pascale Cossart, Paola Costelli, Safia Costes, Ana Coto-Montes, Eduardo Couve, Fraser P Coxon, James M Cregg, José L Crespo, Marianne J Cronjé, Ana Maria Cuervo, Joseph J Cullen, Mark J Czaja, Marcello D'Amelio, Arlette Darfeuille-Michaud, Lester M Davids, Faith E Davies, Massimo De Felici, John F de Groot, Cornelis A M de Haan, Luisa De Martino, Angelo De Milito, Vincenzo De Tata, Jayanta Debnath, Alexei Degterev, Benjamin Dehay, Lea M D Delbridge, Francesca Demarchi, Yi Zhen Deng, Jörn Dengjel, Paul Dent, Donna Denton, Vojo Deretic, Shyamal D Desai, Rodney J Devenish, Mario Di Gioacchino, Gilbert Di Paolo, Chiara Di Pietro, Guillermo Díaz-Araya, Inés Díaz-Laviada, Maria T Diaz-Meco, Javier Diaz-Nido, Ivan Dikic, Savithramma P Dinesh-Kumar, Wen-Xing Ding, Clark W Distelhorst, Abhinav Diwan, Mojgan Djavaheri-Mergny, Svetlana Dokudovskaya, Zheng Dong, Frank C Dorsey, Victor Dosenko, James J Dowling, Stephen Doxsey, Marlène Dreux, Mark E Drew, Qiuhong Duan, Michel A Duchosal, Karen Duff, Isabelle Dugail, Madeleine Durbeej, Michael Duszenko, Charles L Edelstein, Aimee L Edinger, Gustavo Egea, Ludwig Eichinger, N Tony Eissa, Suhendan Ekmekcioglu, Wafik S El-Deiry, Zvulun Elazar, Mohamed Elgendy, Lisa M Ellerby, Kai Er Eng, Anna-Mart Engelbrecht, Simone Engelender, Jekaterina Erenpreisa, Ricardo Escalante, Audrey Esclatine, Eeva-Liisa Eskelinen, Lucile Espert, Virginia Espina, Huizhou Fan, Jia Fan, Qi-Wen Fan, Zhen Fan, Shengyun Fang, Yongqi Fang, Manolis Fanto, Alessandro Fanzani, Thomas Farkas, Jean-Claude Farré, Mathias Faure, Marcus Fechheimer, Carl G Feng, Jian Feng, Qili Feng, Youji Feng, László Fésüs, Ralph Feuer, Maria E Figueiredo-Pereira, Gian Maria Fimia, Diane C Fingar, Steven Finkbeiner, Toren Finkel, Kim D Finley, Filomena Fiorito, Edward A Fisher, Paul B Fisher, Marc Flajolet, Maria L Florez-McClure, Salvatore Florio, Edward A Fon, Francesco Fornai, Franco Fortunato, Rati Fotedar, Daniel H Fowler, Howard S Fox, Rodrigo Franco, Lisa B Frankel, Marc Fransen, José M Fuentes, Juan Fueyo, Jun Fujii, Kozo Fujisaki, Eriko Fujita, Mitsunori Fukuda, Ruth H Furukawa, Matthias Gaestel, Philippe Gailly, Malgorzata Gajewska, Brigitte Galliot, Vincent Galy, Subramaniam Ganesh, Barry Ganetzky, Ian G Ganley, Fen-Biao Gao, George F Gao, Jinming Gao, Lorena Garcia, Guillermo Garcia-Manero, Mikel Garcia-Marcos, Marjan Garmyn, Andrei L Gartel, Evelina Gatti, Mathias Gautel, Thomas R Gawriluk, Matthew E Gegg, Jiefei Geng, Marc Germain, Jason E Gestwicki, David A Gewirtz, Saeid Ghavami, Pradipta Ghosh, Anna M Giammarioli, Alexandra N Giatromanolaki, Spencer B Gibson, Robert W Gilkerson, Michael L Ginger, Henry N Ginsberg, Jakub Golab, Michael S Goligorsky, Pierre Golstein, Candelaria Gomez-Manzano, Ebru Goncu, Céline Gongora, Claudio D Gonzalez, Ramon Gonzalez, Cristina González-Estévez, Rosa Ana González-Polo, Elena Gonzalez-Rey, Nikolai V Gorbunov, Sharon Gorski, Sandro Goruppi, Roberta A Gottlieb, Devrim Gozuacik, Giovanna Elvira Granato, Gary D Grant, Kim N Green, Aleš Gregorc, Frédéric Gros, Charles Grose, Thomas W Grunt, Philippe Gual, Jun-Lin Guan, Kun-Liang Guan, Sylvie M Guichard, Anna S Gukovskaya, Ilya Gukovsky, Jan Gunst, Asa B Gustafsson, Andrew J Halayko, Amber N Hale, Sandra K Halonen, Maho Hamasaki, Feng Han, Ting Han, Michael K Hancock, Malene Hansen, Hisashi Harada, Masaru Harada, Stefan E Hardt, J Wade Harper, Adrian L Harris, James Harris, Steven D Harris, Makoto Hashimoto, Jeffrey A Haspel, Shin-Ichiro Hayashi, Lori A Hazelhurst, Congcong He, You-Wen He, Marie-Josee Hebert, Kim A Heidenreich, Miep H Helfrich, Gudmundur V Helgason, Elizabeth P Henske, Brian Herman, Paul K Herman, Claudio Hetz, Sabine Hilfiker, Joseph A Hill, Lynne J Hocking, Paul Hofman, Thomas G Hofmann, Jörg Höhfeld, Tessa L Holyoake, Ming-Huang Hong, David A Hood, Gökhan S Hotamisligil, Ewout J Houwerzijl, Maria Høyer-Hansen, Bingren Hu, Chien-An A Hu, Hong-Ming Hu, Ya Hua, Canhua Huang, Ju Huang, Shengbing Huang, Wei-Pang Huang, Tobias B Huber, Won-Ki Huh, Tai-Ho Hung, Ted R Hupp, Gang Min Hur, James B Hurley, Sabah N A Hussain, Patrick J Hussey, Jung Jin Hwang, Seungmin Hwang, Atsuhiro Ichihara, Shirin Ilkhanizadeh, Ken Inoki, Takeshi Into, Valentina Iovane, Juan L Iovanna, Nancy Y Ip, Yoshitaka Isaka, Hiroyuki Ishida, Ciro Isidoro, Ken-Ichi Isobe, Akiko Iwasaki, Marta Izquierdo, Yotaro Izumi, Panu M Jaakkola, Marja Jäättelä, George R Jackson, William T Jackson, Bassam Janji, Marina Jendrach, Ju-Hong Jeon, Eui-Bae Jeung, Hong Jiang, Hongchi Jiang, Jean X Jiang, Ming Jiang, Qing Jiang, Xuejun Jiang, Alberto Jiménez, Meiyan Jin, Shengkan Jin, Cheol O Joe, Terje Johansen, Daniel E Johnson, Gail V W Johnson, Nicola L Jones, Bertrand Joseph, Suresh K Joseph, Annie M Joubert, Gábor Juhász, Lucienne Juillerat-Jeanneret, Chang Hwa Jung, Yong-Keun Jung, Kai Kaarniranta, Allen Kaasik, Tomohiro Kabuta, Motoni Kadowaki, Katarina Kågedal, Yoshiaki Kamada, Vitaliy O Kaminskyy, Harm H Kampinga, Hiromitsu Kanamori, Chanhee Kang, Khong Bee Kang, Kwang Il Kang, Rui Kang, Yoon-A Kang, Tomotake Kanki, Thirumala-Devi Kanneganti, Haruo Kanno, Anumantha G Kanthasamy, Arthi Kanthasamy, Vassiliki Karantza, Gur P Kaushal, Susmita Kaushik, Yoshinori Kawazoe, Po-Yuan Ke, John H Kehrl, Ameeta Kelekar, Claus Kerkhoff, David H Kessel, Hany Khalil, Jan A K W Kiel, Amy A Kiger, Akio Kihara, Deok Ryong Kim, Do-Hyung Kim, Dong-Hou Kim, Eun-Kyoung Kim, Hyung-Ryong Kim, Jae-Sung Kim, Jeong Hun Kim, Jin Cheon Kim, John K Kim, Peter K Kim, Seong Who Kim, Yong-Sun Kim, Yonghyun Kim, Adi Kimchi, Alec C Kimmelman, Jason S King, Timothy J Kinsella, Vladimir Kirkin, Lorrie A Kirshenbaum, Katsuhiko Kitamoto, Kaio Kitazato, Ludger Klein, Walter T Klimecki, Jochen Klucken, Erwin Knecht, Ben C B Ko, Jan C Koch, Hiroshi Koga, Jae-Young Koh, Young Ho Koh, Masato Koike, Masaaki Komatsu, Eiki Kominami, Hee Jeong Kong, Wei-jia Kong, Viktor I Korolchuk, Yaichiro Kotake, Michael I Koukourakis, Juan B Kouri Flores, Attila L Kovács, Claudine Kraft, Dimitri Krainc, Helmut Krämer, Carole Kretz-Remy, Anna M Krichevsky, Guido Kroemer, Rejko Krüger, Oleg Krut, Nicholas T Ktistakis, Chia-Yi Kuan, Róza Kucharczyk, Ashok Kumar, Raj Kumar, Sharad Kumar, Mondira Kundu, Hsing-Jien Kung, Tino Kurz, Ho Jeong Kwon, Albert R La Spada, Frank Lafont, Trond Lamark, Jacques Landry, Jon D Lane, Pierre Lapaquette, Jocelyn F Laporte, Lajos László, Sergio Lavandero, Josée N Lavoie, Robert Layfield, Pedro A Lazo, Weidong Le, Laurent Le Cam, Daniel J Ledbetter, Alvin J X Lee, Byung-Wan Lee, Gyun Min Lee, Jongdae Lee, Ju-Hyun Lee, Michael Lee, Myung-Shik Lee, Sug Hyung Lee, Christiaan Leeuwenburgh, Patrick Legembre, Renaud Legouis, Michael Lehmann, Huan-Yao Lei, Qun-Ying Lei, David A Leib, José Leiro, John J Lemasters, Antoinette Lemoine, Maciej S Lesniak, Dina Lev, Victor V Levenson, Beth Levine, Efrat Levy, Faqiang Li, Jun-lin Li, Lian Li, Sheng Li, Weijie Li, Xue-Jun Li, Yan-Bo Li, Yi-Ping Li, Chengyu Liang, Qiangrong Liang, Yung-Feng Liao, Pawel P Liberski, Andrew Lieberman, Hyunjung J Lim, Kah-Leong Lim, Kyu Lim, Chiou-Feng Lin, Fu-Cheng Lin, Jian Lin, Jiandie D Lin, Kui Lin, Wan-Wan Lin, Weei-Chin Lin, Yi-Ling Lin, Rafael Linden, Paul Lingor, Jennifer Lippincott-Schwartz, Michael P Lisanti, Paloma B Liton, Bo Liu, Chun-Feng Liu, Kaiyu Liu, Leyuan Liu, Qiong A Liu, Wei Liu, Young-Chau Liu, Yule Liu, Richard A Lockshin, Chun-Nam Lok, Sagar Lonial, Benjamin Loos, Gabriel Lopez-Berestein, Carlos Lopez-Otin, Laura Lossi, Michael T Lotze, Péter Low, Binfeng Lu, Bingwei Lu, Bo Lu, Zhen Lu, Fredéric Luciano, Nicholas W Lukacs, Anders H Lund, Melinda A Lynch-Day, Yong Ma, Fernando Macian, Jeff P MacKeigan, Kay F Macleod, Frank Madeo, Luigi Maiuri, Maria Chiara Maiuri, Davide Malagoli, May Christine V Malicdan, Walter Malorni, Na Man, Eva-Maria Mandelkow, Stéphen Manon, Irena Manov, Kai Mao, Xiang Mao, Zixu Mao, Philippe Marambaud, Daniela Marazziti, Yves L Marcel, Katie Marchbank, Piero Marchetti, Stefan J Marciniak, Mateus Marcondes, Mohsen Mardi, Gabriella Marfè, Guillermo Mariño, Maria Markaki, Mark R Marten, Seamus J Martin, Camille Martinand-Mari, Wim Martinet, Marta Martinez-Vicente, Matilde Masini, Paola Matarrese, Saburo Matsuo, Raffaele Matteoni, Andreas Mayer, Nathalie M Mazure, David J McConkey, Melanie J McConnell, Catherine McDermott, Christine McDonald, Gerald M McInerney, Sharon L McKenna, BethAnn McLaughlin, Pamela J McLean, Christopher R McMaster, G Angus McQuibban, Alfred J Meijer, Miriam H Meisler, Alicia Meléndez, Thomas J Melia, Gerry Melino, Maria A Mena, Javier A Menendez, Rubem F S Menna-Barreto, Manoj B Menon, Fiona M Menzies, Carol A Mercer, Adalberto Merighi, Diane E Merry, Stefania Meschini, Christian G Meyer, Thomas F Meyer, Chao-Yu Miao, Jun-Ying Miao, Paul A M Michels, Carine Michiels, Dalibor Mijaljica, Ana Milojkovic, Saverio Minucci, Clelia Miracco, Cindy K Miranti, Ioannis Mitroulis, Keisuke Miyazawa, Noboru Mizushima, Baharia Mograbi, Simin Mohseni, Xavier Molero, Bertrand Mollereau, Faustino Mollinedo, Takashi Momoi, Iryna Monastyrska, Martha M Monick, Mervyn J Monteiro, Michael N Moore, Rodrigo Mora, Kevin Moreau, Paula I Moreira, Yuji Moriyasu, Jorge Moscat, Serge Mostowy, Jeremy C Mottram, Tomasz Motyl, Charbel E-H Moussa, Sylke Müller, Sylviane Muller, Karl Münger, Christian Münz, Leon O Murphy, Maureen E Murphy, Antonio Musarò, Indira Mysorekar, Eiichiro Nagata, Kazuhiro Nagata, Aimable Nahimana, Usha Nair, Toshiyuki Nakagawa, Kiichi Nakahira, Hiroyasu Nakano, Hitoshi Nakatogawa, Meera Nanjundan, Naweed I Naqvi, Derek P Narendra, Masashi Narita, Miguel Navarro, Steffan T Nawrocki, Taras Y Nazarko, Andriy Nemchenko, Mihai G Netea, Thomas P Neufeld, Paul A Ney, Ioannis P Nezis, Huu Phuc Nguyen, Daotai Nie, Ichizo Nishino, Corey Nislow, Ralph A Nixon, Takeshi Noda, Angelika A Noegel, Anna Nogalska, Satoru Noguchi, Lucia Notterpek, Ivana Novak, Tomoyoshi Nozaki, Nobuyuki Nukina, Thorsten Nürnberger, Beat Nyfeler, Keisuke Obara, Terry D Oberley, Salvatore Oddo, Michinaga Ogawa, Toya Ohashi, Koji Okamoto, Nancy L Oleinick, F Javier Oliver, Laura J Olsen, Stefan Olsson, Onya Opota, Timothy F Osborne, Gary K Ostrander, Kinya Otsu, Jing-hsiung James Ou, Mireille Ouimet, Michael Overholtzer, Bulent Ozpolat, Paolo Paganetti, Ugo Pagnini, Nicolas Pallet, Glen E Palmer, Camilla Palumbo, Tianhong Pan, Theocharis Panaretakis, Udai Bhan Pandey, Zuzana Papackova, Issidora Papassideri, Irmgard Paris, Junsoo Park, Ohkmae K Park, Jan B Parys, Katherine R Parzych, Susann Patschan, Cam Patterson, Sophie Pattingre, John M Pawelek, Jianxin Peng, David H Perlmutter, Ida Perrotta, George Perry, Shazib Pervaiz, Matthias Peter, Godefridus J Peters, Morten Petersen, Goran Petrovski, James M Phang, Mauro Piacentini, Philippe Pierre, Valérie Pierrefite-Carle, Gérard Pierron, Ronit Pinkas-Kramarski, Antonio Piras, Natik Piri, Leonidas C Platanias, Stefanie Pöggeler, Marc Poirot, Angelo Poletti, Christian Poüs, Mercedes Pozuelo-Rubio, Mette Prætorius-Ibba, Anil Prasad, Mark Prescott, Muriel Priault, Nathalie Produit-Zengaffinen, Ann Progulske-Fox, Tassula Proikas-Cezanne, Serge Przedborski, Karin Przyklenk, Rosa Puertollano, Julien Puyal, Shu-Bing Qian, Liang Qin, Zheng-Hong Qin, Susan E Quaggin, Nina Raben, Hannah Rabinowich, Simon W Rabkin, Irfan Rahman, Abdelhaq Rami, Georg Ramm, Glenn Randall, Felix Randow, V Ashutosh Rao, Jeffrey C Rathmell, Brinda Ravikumar, Swapan K Ray, Bruce H Reed, John C Reed, Fulvio Reggiori, Anne Regnier-Vigouroux, Andreas S Reichert, John J Reiners, Russel J Reiter, Jun Ren, Jose L Revuelta, Christopher J Rhodes, Konstantinos Ritis, Elizete Rizzo, Jeffrey Robbins, Michel Roberge, Hernan Roca, Maria C Roccheri, Stéphane Rocchi, H Peter Rodemann, Santiago Rodríguez de Córdoba, Bärbel Rohrer, Igor B Roninson, Kirill Rosen, Magdalena M Rost-Roszkowska, Mustapha Rouis, Kasper M A Rouschop, Francesca Rovetta, Brian P Rubin, David C Rubinsztein, Klaus Ruckdeschel, Edmund B Rucker, Assaf Rudich, Emil Rudolf, Nelson Ruiz-Opazo, Rossella Russo, Tor Erik Rusten, Kevin M Ryan, Stefan W Ryter, David M Sabatini, Junichi Sadoshima, Tapas Saha, Tatsuya Saitoh, Hiroshi Sakagami, Yasuyoshi Sakai, Ghasem Hoseini Salekdeh, Paolo Salomoni, Paul M Salvaterra, Guy Salvesen, Rosa Salvioli, Anthony M J Sanchez, José A Sánchez-Alcázar, Ricardo Sánchez-Prieto, Marco Sandri, Uma Sankar, Poonam Sansanwal, Laura Santambrogio, Shweta Saran, Sovan Sarkar, Minnie Sarwal, Chihiro Sasakawa, Ausra Sasnauskiene, Miklós Sass, Ken Sato, Miyuki Sato, Anthony H V Schapira, Michael Scharl, Hermann M Schätzl, Wiep Scheper, Stefano Schiaffino, Claudio Schneider, Marion E Schneider, Regine Schneider-Stock, Patricia V Schoenlein, Daniel F Schorderet, Christoph Schüller, Gary K Schwartz, Luca Scorrano, Linda Sealy, Per O Seglen, Juan Segura-Aguilar, Iban Seiliez, Oleksandr Seleverstov, Christian Sell, Jong Bok Seo, Duska Separovic, Vijayasaradhi Setaluri, Takao Setoguchi, Carmine Settembre, John J Shacka, Mala Shanmugam, Irving M Shapiro, Eitan Shaulian, Reuben J Shaw, James H Shelhamer, Han-Ming Shen, Wei-Chiang Shen, Zu-Hang Sheng, Yang Shi, Kenichi Shibuya, Yoshihiro Shidoji, Jeng-Jer Shieh, Chwen-Ming Shih, Yohta Shimada, Shigeomi Shimizu, Takahiro Shintani, Orian S Shirihai, Gordon C Shore, Andriy A Sibirny, Stan B Sidhu, Beata Sikorska, Elaine C M Silva-Zacarin, Alison Simmons, Anna Katharina Simon, Hans-Uwe Simon, Cristiano Simone, Anne Simonsen, David A Sinclair, Rajat Singh, Debasish Sinha, Frank A Sinicrope, Agnieszka Sirko, Parco M Siu, Efthimios Sivridis, Vojtech Skop, Vladimir P Skulachev, Ruth S Slack, Soraya S Smaili, Duncan R Smith, María S Soengas, Thierry Soldati, Xueqin Song, Anil K Sood, Tuck Wah Soong, Federica Sotgia, Stephen A Spector, Claudia D Spies, Wolfdieter Springer, Srinivasa M Srinivasula, Leonidas Stefanis, Joan S Steffan, Ruediger Stendel, Harald Stenmark, Anastasis Stephanou, Stephan T Stern, Cinthya Sternberg, Björn Stork, Peter Stralfors, Carlos S Subauste, Xinbing Sui, David Sulzer, Jiaren Sun, Shi-Yong Sun, Zhi-Jun Sun, Joseph J Y Sung, Kuninori Suzuki, Toshihiko Suzuki, Michele S Swanson, Charles Swanton, Sean T Sweeney, Lai-King Sy, Gyorgy Szabadkai, Ira Tabas, Heinrich Taegtmeyer, Marco Tafani, Krisztina Takács-Vellai, Yoshitaka Takano, Kaoru Takegawa, Genzou Takemura, Fumihiko Takeshita, Nicholas J Talbot, Kevin S W Tan, Keiji Tanaka, Kozo Tanaka, Daolin Tang, Dingzhong Tang, Isei Tanida, Bakhos A Tannous, Nektarios Tavernarakis, Graham S Taylor, Gregory A Taylor, J Paul Taylor, Lance S Terada, Alexei Terman, Gianluca Tettamanti, Karin Thevissen, Craig B Thompson, Andrew Thorburn, Michael Thumm, Fengfeng Tian, Yuan Tian, Glauco Tocchini-Valentini, Aviva M Tolkovsky, Yasuhiko Tomino, Lars Tönges, Sharon A Tooze, Cathy Tournier, John Tower, Roberto Towns, Vladimir Trajkovic, Leonardo H Travassos, Ting-Fen Tsai, Mario P Tschan, Takeshi Tsubata, Allan Tsung, Boris Turk, Lorianne S Turner, Suresh C Tyagi, Yasuo Uchiyama, Takashi Ueno, Midori Umekawa, Rika Umemiya-Shirafuji, Vivek K Unni, Maria I Vaccaro, Enza Maria Valente, Greet Van den Berghe, Ida J van der Klei, Wouter van Doorn, Linda F van Dyk, Marjolein van Egmond, Leo A van Grunsven, Peter Vandenabeele, Wim P Vandenberghe, Ilse Vanhorebeek, Eva C Vaquero, Guillermo Velasco, Tibor Vellai, Jose Miguel Vicencio, Richard D Vierstra, Miquel Vila, Cécile Vindis, Giampietro Viola, Maria Teresa Viscomi, Olga V Voitsekhovskaja, Clarissa von Haefen, Marcela Votruba, Keiji Wada, Richard Wade-Martins, Cheryl L Walker, Craig M Walsh, Jochen Walter, Xiang-Bo Wan, Aimin Wang, Chenguang Wang, Dawei Wang, Fan Wang, Fen Wang, Guanghui Wang, Haichao Wang, Hong-Gang Wang, Horng-Dar Wang, Jin Wang, Ke Wang, Mei Wang, Richard C Wang, Xinglong Wang, Xuejun Wang, Ying-Jan Wang, Yipeng Wang, Zhen Wang, Zhigang Charles Wang, Zhinong Wang, Derick G Wansink, Diane M Ward, Hirotaka Watada, Sarah L Waters, Paul Webster, Lixin Wei, Conrad C Weihl, William A Weiss, Scott M Welford, Long-Ping Wen, Caroline A Whitehouse, J Lindsay Whitton, Alexander J Whitworth, Tom Wileman, John W Wiley, Simon Wilkinson, Dieter Willbold, Roger L Williams, Peter R Williamson, Bradly G Wouters, Chenghan Wu, Dao-Cheng Wu, William K K Wu, Andreas Wyttenbach, Ramnik J Xavier, Zhijun Xi, Pu Xia, Gengfu Xiao, Zhiping Xie, Zhonglin Xie, Da-zhi Xu, Jianzhen Xu, Liang Xu, Xiaolei Xu, Ai Yamamoto, Akitsugu Yamamoto, Shunhei Yamashina, Michiaki Yamashita, Xianghua Yan, Mitsuhiro Yanagida, Dun-Sheng Yang, Elizabeth Yang, Jin-Ming Yang, Shi Yu Yang, Wannian Yang, Wei Yuan Yang, Zhifen Yang, Meng-Chao Yao, Tso-Pang Yao, Behzad Yeganeh, Wei-Lien Yen, Jia-Jing Yin, Xiao-Ming Yin, Ook-Joon Yoo, Gyesoon Yoon, Seung-Yong Yoon, Tomohiro Yorimitsu, Yuko Yoshikawa, Tamotsu Yoshimori, Kohki Yoshimoto, Ho Jin You, Richard J Youle, Anas Younes, Li Yu, Long Yu, Seong-Woon Yu, Wai Haung Yu, Zhi-Min Yuan, Zhenyu Yue, Cheol-Heui Yun, Michisuke Yuzaki, Olga Zabirnyk, Elaine Silva-Zacarin, David Zacks, Eldad Zacksenhaus, Nadia Zaffaroni, Zahra Zakeri, Herbert J Zeh, Scott O Zeitlin, Hong Zhang, Hui-Ling Zhang, Jianhua Zhang, Jing-Pu Zhang, Lin Zhang, Long Zhang, Ming-Yong Zhang, Xu Dong Zhang, Mantong Zhao, Yi-Fang Zhao, Ying Zhao, Zhizhuang J Zhao, Xiaoxiang Zheng, Boris Zhivotovsky, Qing Zhong, Cong-Zhao Zhou, Changlian Zhu, Wei-Guo Zhu, Xiao-feng Zhu, Xiongwei Zhu, Yuangang Zhu, Teresa Zoladek, Wei-Xing Zong, Antonio Zorzano, Jürgen Zschocke, Brian Zuckerbraun.
Autophagy
Show Abstract
Hide Abstract
In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
Related JoVE Video
The extent of cardiac myosin binding protein-C phosphorylation modulates actomyosin function in a graded manner.
J. Muscle Res. Cell. Motil.
Show Abstract
Hide Abstract
Cardiac myosin binding protein-C (cMyBP-C), a sarcomeric protein with 11 domains, C0-C10, binds to the myosin rod via its C-terminus, while its N-terminus binds regions of the myosin head and actin. These N-terminal interactions can be attenuated by phosphorylation of serines in the C1-C2 motif linker. Within the sarcomere, cMyBP-C exists in a range of phosphorylation states, which may affect its ability to regulate actomyosin motion generation. To examine the functional importance of partial phosphorylation, we bacterially expressed N-terminal fragments of cMyBP-C (domains C0-C3) with three of its phosphorylatable serines (S273, S282, and S302) mutated in combinations to either aspartic acids or alanines, mimicking phosphorylation and dephosphorylation respectively. The effect of these C0-C3 constructs on actomyosin motility was characterized in both the unloaded in vitro motility assay and in the load-clamped laser trap assay where force:velocity (F:V) relations were obtained. In the motility assay, phosphomimetic replacement (i.e. aspartic acid) reduced the slowing of actin velocity observed in the presence of C0-C3 in proportion to the total number phosphomimetic replacements. Under load, C0-C3 depressed the F:V relationship without any effect on maximal force. Phosphomimetic replacement reversed the depression of F:V by C0-C3 in a graded manner with respect to the total number of replacements. Interestingly, the effect of C0-C3 on F:V was well fitted by a model that assumed C0-C3 acts as an effective viscous load against which myosin must operate. This study suggests that increasing phosphorylation of cMyBP-C incrementally reduces its modulation of actomyosin motion generation providing a tunable mechanism to regulate cardiac function.
Related JoVE Video
A thrombospondin-dependent pathway for a protective ER stress response.
Cell
Show Abstract
Hide Abstract
Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6? (Atf6?) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6? and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6? deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6?.
Related JoVE Video
Macrophage autophagy plays a protective role in advanced atherosclerosis.
Cell Metab.
Show Abstract
Hide Abstract
In advanced atherosclerosis, macrophage apoptosis coupled with defective phagocytic clearance of the apoptotic cells (efferocytosis) promotes plaque necrosis, which precipitates acute atherothrombotic cardiovascular events. Oxidative and endoplasmic reticulum (ER) stress in macrophages are important causes of advanced lesional macrophage apoptosis. We now show that proapoptotic oxidative/ER stress inducers trigger another stress reaction in macrophages, autophagy. Inhibition of autophagy by silencing ATG5 or other autophagy mediators enhances apoptosis and NADPH oxidase-mediated oxidative stress while at the same time rendering the apoptotic cells less well recognized by efferocytes. Most importantly, macrophage ATG5 deficiency in fat-fed Ldlr(-/-) mice increases apoptosis and oxidative stress in advanced lesional macrophages, promotes plaque necrosis, and worsens lesional efferocytosis. These findings reveal a protective process in oxidatively stressed macrophages relevant to plaque necrosis, suggesting a mechanism-based strategy to therapeutically suppress atherosclerosis progression and its clinical sequelae.
Related JoVE Video
Circadian rhythms govern cardiac repolarization and arrhythmogenesis.
Nature
Show Abstract
Hide Abstract
Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure) or pattern (for example, Brugadas syndrome) of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.
Related JoVE Video
Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome.
Circulation
Show Abstract
Hide Abstract
Rheb is a GTP-binding protein that promotes cell survival and mediates the cellular response to energy deprivation (ED). The role of Rheb in the regulation of cell survival during ED has not been investigated in the heart.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.