JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression.
J. Immunol.
PUBLISHED: 12-07-2011
Show Abstract
Hide Abstract
Type I IFNs are important for direct control of viral infection and generation of adaptive immune responses. Recently, direct stimulation of CD4(+) T cells via type I IFNR has been shown to be necessary for the formation of functional CD4(+) T cell responses. In contrast, we find that CD4(+) T cells do not require intrinsic type I IFN signals in response to combined TLR/anti-CD40 vaccination. Rather, the CD4 response is dependent on the expression of type I IFNR (IFN?R) on innate cells. Further, we find that dendritic cell (DC) expression of the TNF superfamily member OX40 ligand was dependent on type I IFN signaling in the DC, resulting in a reduced CD4(+) T cell response that could be substantially rescued by an agonistic Ab to the receptor OX40. Taken together, we show that the IFN?R dependence of the CD4(+) T cell response is accounted for exclusively by defects in DC activation.
Related JoVE Video
Multiple innate signaling pathways cooperate with CD40 to induce potent, CD70-dependent cellular immunity.
Vaccine
PUBLISHED: 09-14-2009
Show Abstract
Hide Abstract
We have previously shown that Toll-like receptor (TLR) agonists cooperate with CD40 to generate CD8 T cell responses exponentially larger than the responses generated with traditional vaccine formulations. We have also shown that combined TLR agonist/anti-CD40 immunization uniquely induces the upregulation of CD70 on antigen bearing dendritic cells (DCs). In contrast, immunization with either a TLR agonist or a CD40 stimulus alone does not significantly increase CD70 expression on DCs. Furthermore, the CD8(+) T cell response generated by combined TLR agonist/anti-CD40 immunization is dependent on the expression of CD70 by DCs, as CD70 blockade following immunization dramatically decreases the CD8 T cell response. Here we show that other innate pathways, independent of the TLRs, can also cooperate with CD40 to induce potent, CD70 dependent, CD8 T cell responses. These innate stimuli include Type I IFN (IFN) and alpha-galactosylceramide (alphaGalCer) or aC-GalCer, glycolipids that are presented by a nonclassical class I MHC molecule, CD1d, and are able to activate NKT cells. Furthermore, this combined IFN/anti-CD40 immunization generates protective memory against bacterial challenge with Listeria monocytogenes. Together these data indicate the importance of assessing CD70 expression on DCs as a marker for the capacity of a given vaccine formulation to potently activate cellular immunity. Our data indicate that optimal induction of CD70 expression requires a coordinated stimulation of both innate (TLR, IFN, alphaGalCer) and adaptive (CD40) signaling pathways.
Related JoVE Video
Framework for evaluating anthrax risk in buildings.
Environ. Sci. Technol.
PUBLISHED: 04-17-2009
Show Abstract
Hide Abstract
If Bacillus anthracis (BA), the organism that causes anthrax, is known or suspected to have contaminated a building, a critical decision is what level of contamination is unacceptable. This decision has two components: (1) what is the relationship between the degree of contamination and the risk to occupants, (2) and what is an acceptable risk to occupants? These lead to a further decision: (3) how many samples must be taken to determine whether a building is unacceptably contaminated? We discuss existing data that bear on these questions, and introduce a nomogram that can be used to investigate the relationship between risk of contracting anthrax, the surface concentration of BA, the probability of detection, and the number of samples needed to ensure detection with a given degree of certainty. The same approach could be used for other agents that are dangerous due to resuspension of deposited particles.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.