JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Oxidative stress decreases functional airway mannose binding lectin in COPD.
PLoS ONE
PUBLISHED: 01-01-2014
Show Abstract
Hide Abstract
We have previously established that a defect in the ability of alveolar macrophages (AM) to phagocytose apoptotic cells (efferocytosis) and pathogens is a potential therapeutic target in COPD. We further showed that levels of mannose binding lectin (MBL; required for effective macrophage phagocytic function) were reduced in the airways but not circulation of COPD patients. We hypothesized that increased oxidative stress in the airway could be a cause for such disturbances. We therefore studied the effects of oxidation on the structure of the MBL molecule and its functional interactions with macrophages. Oligomeric structure of plasma derived MBL (pdMBL) before and after oxidation (oxMBL) with 2,2'-azobis(2-methylpropionamidine)dihydrochroride (AAPH) was investigated by blue native PAGE. Macrophage function in the presence of pd/oxMBL was assessed by measuring efferocytosis, phagocytosis of non-typeable Haemophilus influenzae (NTHi) and expression of macrophage scavenger receptors. Oxidation disrupted higher order MBL oligomers. This was associated with changed macrophage function evident by a significantly reduced capacity to phagocytose apoptotic cells and NTHi in the presence of oxMBL vs pdMBL (eg, NTHi by 55.9 and 27.0% respectively). Interestingly, oxidation of MBL significantly reduced macrophage phagocytic ability to below control levels. Flow cytometry and immunofluorescence revealed a significant increase in expression of macrophage scavenger receptor (SRA1) in the presence of pdMBL that was abrogated in the presence of oxMBL. We show the pulmonary macrophage dysfunction in COPD may at least partially result from an oxidative stress-induced effect on MBL, and identify a further potential therapeutic strategy for this debilitating disease.
Related JoVE Video
Defective lung macrophage function in lung cancer ± chronic obstructive pulmonary disease (COPD/emphysema)-mediated by cancer cell production of PGE2?
PLoS ONE
PUBLISHED: 01-01-2013
Show Abstract
Hide Abstract
In chronic obstructive pulmonary disease (COPD/emphysema) we have shown a reduced ability of lung and alveolar (AM) macrophages to phagocytose apoptotic cells (defective efferocytosis), associated with evidence of secondary cellular necrosis and a resultant inflammatory response in the airway. It is unknown whether this defect is present in cancer (no COPD) and if so, whether this results from soluble mediators produced by cancer cells. We investigated efferocytosis in AM (26 controls, 15 healthy smokers, 37 COPD, 20 COPD+ non small cell lung cancer (NSCLC) and 8 patients with NSCLC without COPD) and tumor and tumor-free lung tissue macrophages (21 NSCLC with/13 without COPD). To investigate the effects of soluble mediators produced by lung cancer cells we then treated AM or U937 macrophages with cancer cell line supernatant and assessed their efferocytosis ability. We qualitatively identified Arachidonic Acid (AA) metabolites in cancer cells by LC-ESI-MSMS, and assessed the effects of COX inhibition (using indomethacin) on efferocytosis. Decreased efferocytosis was noted in all cancer/COPD groups in all compartments. Conditioned media from cancer cell cultures decreased the efferocytosis ability of both AM and U937 macrophages with the most pronounced effects occurring with supernatant from SCLC (an aggressive lung cancer type). AA metabolites identified in cancer cells included PGE2. The inhibitory effect of PGE2 on efferocytosis, and the involvement of the COX-2 pathway were shown. Efferocytosis is decreased in COPD/emphysema and lung cancer; the latter at least partially a result of inhibition by soluble mediators produced by cancer cells that include PGE2.
Related JoVE Video
Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 07-01-2010
Show Abstract
Hide Abstract
Defective efferocytosis may perpetuate inflammation in smokers with or without chronic obstructive pulmonary disease (COPD). Macrophages may phenotypically polarize to classically activated M1 (proinflammatory; regulation of antigen presentation) or alternatively activated M2 (poor antigen presentation; improved efferocytosis) markers. In bronchoalveolar lavage (BAL)-derived macrophages from control subjects and smoker/ex-smoker COPD subjects, we investigated M1 markers (antigen-presenting major histocompatibility complex [MHC] Classes I and II), complement receptors (CRs), the high-affinity Fc receptor involved with immunoglobulin binding for phagocytosis (Fc-gamma receptor, Fc?R1), M2 markers (dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin [DC-SIGN] and arginase), and macrophage function (efferocytosis and proinflammatory cytokine production in response to LPS). The availability of glutathione (GSH) in BAL was assessed, because GSH is essential for both M1 function and efferocytosis. We used a murine model to investigate macrophage phenotype/function further in response to cigarette smoke. In lung tissue (disaggregated) and BAL, we investigated CRs, the available GSH, arginase, and efferocytosis. We further investigated the therapeutic effects of an oral administration of a GSH precursor, cysteine l-2-oxothiazolidine-4-carboxylic acid (procysteine). Significantly decreased efferocytosis, available GSH, and M1 antigen-presenting molecules were evident in both COPD groups, with increased DC-SIGN and production of proinflammatory cytokines. Increased CR-3 was evident in the current-smoker COPD group. In smoke-exposed mice, we found decreased efferocytosis (BAL and tissue) and available GSH, and increased arginase, CR-3, and CR-4. Treatment with procysteine significantly increased GSH, efferocytosis (BAL: control group, 26.2%; smoke-exposed group, 17.66%; procysteine + smoke-exposed group, 27.8%; tissue: control group, 35.9%; smoke-exposed group, 21.6%; procysteine + smoke-exposed group, 34.5%), and decreased CR-4 in lung tissue. Macrophages in COPD are of a mixed phenotype and function. The increased efferocytosis and availability of GSH in response to procysteine indicates that this treatment may be useful as adjunct therapy for improving macrophage function in COPD and in susceptible smokers.
Related JoVE Video
Therapeutic role for mannose-binding lectin in cigarette smoke-induced lung inflammation? Evidence from a murine model.
Am. J. Respir. Cell Mol. Biol.
PUBLISHED: 05-01-2009
Show Abstract
Hide Abstract
Defective efferocytosis in the airway may perpetuate inflammation in smokers with/without chronic obstructive pulmonary disease. Mannose-binding lectin (MBL) improves efferocytosis in vitro; however, the effects of in vivo administration are unknown. MBL circulates in complex with MBL-associated serine proteases (MASPs), and efferocytosis involves activation of cytoskeletal-remodeling molecules, including Rac1/2/3. We hypothesized that MBL would improve efferocytosis in vivo, and that possible mechanisms for this effect would include up-regulation of Rac1/2/3 or MASPs. We used a smoking mouse model to investigate the effects of MBL on efferocytosis. MBL (20 microg/20 g mouse) was administered via nebulizer to smoke-exposed mice. In lung tissue (disaggregated) and bronchoalveolar lavage (BAL), we investigated leukocyte counts, apoptosis, and the ability of alveolar and tissue macrophages to phagocytose apoptotic murine epithelial cells. In human studies, flow cytometry, ELISA, and RT-PCR were used to investigate the effects of MBL on efferocytosis, Rac1/2/3, and MASPs. Smoke-exposed mice showed significantly reduced efferocytosis in BAL and tissue. Efferocytosis was significantly improved by MBL (BAL: control, 26.2%; smoke-exposed, 17.66%; MBL + smoke-exposed, 27.8%; tissue: control, 35.9%; smoke-exposed, 21.6%; MBL + smoke-exposed, 34.5%). Leukocyte/macrophage counts were normalized in smoke-exposed mice treated with MBL. In human studies, MBL was reduced in chronic obstructive pulmonary disease and in smokers, and was significantly correlated with reduced efferocytosis ex vivo. MASPs were not detected in BAL, and were not produced by alveolar or tissue macrophages. MBL significantly increased macrophage expression of Rac1/2/3. We provide evidence for Rac1/2/3 involvement in the MBL-mediated improvement in efferocytosis, and a rationale for investigating MBL as a supplement to existing therapies in smoking-related lung inflammation.
Related JoVE Video
Chemotactic mediators of Th1 T-cell trafficking in smokers and COPD patients.
COPD
PUBLISHED: 02-21-2009
Show Abstract
Hide Abstract
Chronic obstructive pulmonary disease (COPD) is smoking-related and associated with increased cytotoxic CD8+ T-cells in the airway. There is a wide range of susceptibility to the damaging effects of cigarette smoke with only a small proportion of smokers progressing to COPD. We have previously reported increased intracellular Th1 cytokines in blood, BAL and intraepithelial CD8+T cells in current and ex-smokers with COPD, whereas healthy smokers showed localized Th1 response in the lung only. We thus hypothesised that Th1-associated chemokines or their receptors on CD8+T-cells may be differentially expressed in the blood of healthy smokers, current smoker COPD subjects and those who had ceased smoking. We investigated chemokines, chemokine receptors and Th1 and cytotoxic T-cell markers in blood and BAL using flow cytometry, ELISA and cytometric bead array. In blood, CXCR3, CCR4, intracellular CCR3 and the Th1 marker 62L(-)CD45RO(+) were increased in both COPD groups and healthy smokers. In contrast, cytotoxic T-cells, ITAC, MIG, IFN-gamma and CCR5 were increased in both COPD groups but not smokers. In BAL, the Th1 marker 62L(-)CD45RO(+), CCR5, CXCR3, IFN-gamma, RANTES, IL-8, MCP-1, MIG and ITAC were increased in both COPD groups and smokers versus controls. Our findings are consistent with systemic inflammation in COPD associated with an increased influx of cytotoxic and Th1 cells into the airway. The differential expression of specific chemokines and their receptors in blood from COPD subjects and healthy smokers suggests that inclusion of these markers in any panel designed for the non-invasive investigation of smokers with a disposition to COPD would be clinically relevant.
Related JoVE Video
Increased proteinase inhibitor-9 (PI-9) and reduced granzyme B in lung cancer: mechanism for immune evasion?
Lung Cancer
Show Abstract
Hide Abstract
Cytotoxic CD8(+) T-cells mount immune responses to cancer via cytotoxic pathways including granzyme B. Cancer cells are also known to develop immune evasion mechanisms. We hypothesised that lung cancer cells would over-express the granzyme B-inhibitor, proteinase inhibitor-9 (PI-9) and down-regulate granzyme B expression by neighbouring CD8(+) T-cells. We investigated PI-9 expression in lung cancer cell lines, and primary lung cancer cells obtained at curative lung resection from cancer patients with/without chronic obstructive pulmonary disease (COPD). Granzyme B and PI-9 expression was also determined in CD8(+) T-cells from the cancer and non-cancer areas of resected lung tissue and from bronchoalveolar lavage (BAL). We then evaluated the effects of conditioned media from lung cancer cell lines on granzyme B expression and the cytotoxic activity of CD8(+) T-cells. PI-9 was highly expressed in lung cancer cell lines. Increased PI-9 expression was also observed in primary cancer cells vs. epithelial cells from non-cancer tissue or bronchial brushing-derived normal primary large airway epithelial cells. Expression significantly correlated with cancer stage. Significantly reduced granzyme B was noted in CD8(+) T-cells from cancer vs. non-cancer tissue. Granzyme B production by CD8(+) T-cells was reduced in the presence of conditioned media from lung cancer cell lines. Our data suggest that lung cancer cells utilise their increased PI-9 expression to protect from granzyme B-mediated cytotoxicity as an immune evasion mechanism, a function that increases with lung cancer stage.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.