JoVE Visualize What is visualize?
Stop Reading. Start Watching.
Advanced Search
Stop Reading. Start Watching.
Regular Search
Find video protocols related to scientific articles indexed in Pubmed.
Alteration in superoxide dismutase 1 causes oxidative stress and p38 MAPK activation following RVFV infection.
PLoS ONE
PUBLISHED: 02-09-2011
Show Abstract
Hide Abstract
Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV). RVFV is a category A pathogen that belongs to the genus Phlebovirus, family Bunyaviridae. Understanding early host events to an infectious exposure to RVFV will be of significant use in the development of effective therapeutics that not only control pathogen multiplication, but also contribute to cell survival. In this study, we have carried out infections of human cells with a vaccine strain (MP12) and virulent strain (ZH501) of RVFV and determined host responses to viral infection. We demonstrate that the cellular antioxidant enzyme superoxide dismutase 1 (SOD1) displays altered abundances at early time points following exposure to the virus. We show that the enzyme is down regulated in cases of both a virulent (ZH501) and a vaccine strain (MP12) exposure. Our data demonstrates that the down regulation of SOD1 is likely to be due to post transcriptional processes and may be related to up regulation of TNF? following infection. We also provide evidence for extensive oxidative stress in the MP12 infected cells. Concomitantly, there is an increase in the activation of the p38 MAPK stress response, which our earlier published study demonstrated to be an essential cell survival strategy. Our data suggests that the viral anti-apoptotic protein NSm may play a role in the regulation of the cellular p38 MAPK response. Alterations in the host protein SOD1 following RVFV infection appears to be an early event that occurs in multiple cell types. Activation of the cellular stress response p38 MAPK pathway can be observed in all cell types tested. Our data implies that maintaining oxidative homeostasis in the infected cells may play an important role in improving survival of infected cells.
Related JoVE Video

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.